Journal of Computing in Higher Education (2022) 34:489-516
https://doi.org/10.1007/s12528-021-09307-w

™

Check for
updates

An exploratory study on fade-in versus fade-out
scaffolding for novice programmers in online collaborative
programming settings

Langin Zheng' - Yuanyi Zhen' - Jiayu Niu' - Lu Zhong'

Accepted: 23 December 2021 / Published online: 21 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract

Programming skills have gained increasing attention in recent years because digital
technologies have become an indispensable part of life. However, little is known
about the roles of fade-in and fade-out scaffolding in online collaborative program-
ming settings. To close this research gap, the present study aims to examine the roles
of fade-in and fade-out scaffolding for novice programmers in online collaborative
programming. A total of 90 undergraduate students participated in the exploratory
study and were assigned to 15 fade-in groups and 15 fade-out groups. All of the
participants completed the same programming task. The findings reveal that fade-in
scaffolding can significantly improve collaborative knowledge building, program-
ming skills, metacognitive behaviors, emotions, and collective efficacy. Goal setting,
planning, monitoring and control, enacting strategies, and evaluation and reflection
are identified as the crucial metacognitive behaviors. The main contribution of this
exploratory study is to shed light on how to design and implement scaffolding for
novice programmers.

Keywords Fade-in scaffolding - Fade-out scaffolding - Collaborative programming -
Programming skills - Metacognitive behaviors - Emotion

Introduction

Programming skills have been widely recognized as one of the most important
set of skills for twenty-first century success in many countries (Exter & Ashby,
2019; Wu et al.,, 2020). The mastery of programming skills can help learners
improve their problem-solving abilities (Fessakis et al., 2013) and computational

4 Lanqin Zheng
bnuzhenglq@bnu.edu.cn

School of Educational Technology, Faculty of Education, Beijing Normal University, No. 19,
XinJieKouWai St., HaiDian District, Beijing 100875, People’s Republic of China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12528-021-09307-w&domain=pdf

490 L. Zheng et al.

thinking (Sentance & Csizmadia, 2016). However, many students have difficulties
and encounter challenges in programming. For example, Mladenovi¢ et al. (2016)
found that students have difficulties in problem understanding, language syntax
knowledge, and debugging. Mohd Rum et al. (2017) revealed that many students
have difficulties in planning programming, testing program output, and evaluating
programming solutions. In addition, many students do not like programming and
they believe that programming is boring and horrible (Mathrani et al., 2016). Stu-
dents become disengaged in programming because it is a notoriously difficult sub-
ject (Giacaman & De Ruvo, 2018). Furthermore, many students have a superficial
understanding of programming concepts (Kunkle & Allen, 2016) and they lack a
sufficient amount of hands-on programming experience (Yeomans et al., 2019). Pre-
vious studies revealed that scaffolding is an effective strategy for overcoming these
challenges in programming (Margulieux & Catrambone, 2021; Zhang et al., 2021).
Therefore, it is necessary to provide scaffolding for learners to overcome difficulties
during programming.

Previous studies have attempted to provide fixed and static support for novice
programmers through the use of technology. For example, Phuong and Shimakawa
(2008) developed a collaborative programming environment for programmers, and
they found the developed environment enhanced the capabilities of novice pro-
grammers. Mohd Rum et al. (2017) developed a metacognitive scaffolding learn-
ing environment for novice programmers and found that learners with metacognitive
scaffolding outperformed learners without metacognitive scaffolding. However, the
use of advanced twenty-first century technology alone cannot guarantee the desired
learning outcomes (Bond, 2020). Productive and successful learning requires the
thoughtful integration of technology and pedagogy (Janssen et al., 2019). Therefore,
this study focuses on how to provide fade-in and fade-out scaffolding for novice pro-
grammers in collaborative programming environment. Fade-in scaffolding refers to
scaffolding that is gradually introduced and fade-out scaffolding refers to scaffolding
that is gradually removed.

Previous studies indicated that learning performance was closely related to the
timing of the scaffolding (Shin et al., 2020). There is a debate about the roles of
fade-in and fade-out scaffolding. For example, Tawfik et al. (2018) revealed that
learners with fade-in scaffolding outperformed those with fade-out scaffolding in
ill-structured problem solving. On the contrary, Tullis et al. (2015) found that fad-
ing-out scaffolding improved learning more than constant scaffolding in a mouse
movement task. In addition, although previous studies have developed systems to
provide scaffolding for individual programming (Mohd Rum & Ismail, 2017; Sun
& Hsu, 2019), it is challenging to scaffold collaborative programming effectively.
Collaborative programming is particularly helpful for novice programmers because
it can offer opportunities to establish a shared understanding as well as to code, test,
and debug projects along with their peers (Teague & Roe, 2008). However, very few
studies have examined the roles of scaffolding fading in the collaborative program-
ming field. Therefore, the aim of this study is to address the research gaps and exam-
ine the roles of fade-in versus fade-out scaffolding in collaborative programming.

The remainder of the paper is organized as follows. First, a literature review
details the research status of collaborative programming and scaffolding. Next, we

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 491

present a study comparing the roles of fade-in versus fade-out scaffolding in a col-
laborative programming context. Finally, the findings of the present study are sum-
marized and discussed. As we move into the discussion section, there are a set of
limitations associated with this study that must be kept in mind.

Literature review
Collaborative programming

Information technology has developed rapidly in recent years, and it requires a large
human workforce with programming skills (Lu et al., 2017). Therefore, program-
ming skills have become increasingly important and have become a core objective
of undergraduate and graduate programs in engineering fields (Wang & Hwang,
2017). To improve programming skills, collaborative programming has been widely
adopted in many schools. Collaborative programming, in which a group of learners
work on the same code and complete programming tasks together, is considered an
effective pedagogical approach (Nosek, 1998). Collaborative programming aims to
improve learners’ programming skills through writing code and refining programs
with peers (Lu et al., 2017). Furthermore, the benefits of collaborative program-
ming, such as improving programming performance (Wang & Hwang, 2017), build-
ing computational thinking competence (Denner et al., 2014), improving problem-
solving abilities, and developing a higher level of confidence (Beck & Chizhik,
2013), have been well documented in the literature.

However, most students have many difficulties with collaborative programming.
For example, many students are not willing to collaborate with peers during col-
laborative programming (Wei et al., 2021), and experienced coders demonstrate less
enthusiasm about collaborative programming (Bowman et al., 2020). Students often
lose confidence and decrease engagement when they encounter difficulties with
programming (Mladenovi¢ et al., 2016). Furthermore, students have difficulties in
establishing a shared understanding through conflict negotiation during collabora-
tive programming (Wu et al., 2019). Therefore, it is necessary to provide scaffold-
ing during collaborative programming. To the best of our knowledge, few studies
have investigated how to provide scaffolding to improve collaborative programming
skills. Therefore, this study attempts to bridge this gap and examine fade-in versus
fade-out scaffolding in online collaborative programming environments.

Scaffolding and the fading paradigm

Scaffolding was proposed on the basis of the zone of proximal development, which
is defined as the distance between the actual developmental level and the poten-
tial development level (Vygotsky, 1978). Scaffolding is conceptualized as assis-
tance from a more knowledgeable peer or an adult (Wood et al., 1976). It has been
found that learning is the most effective within learners’ zone of proximal develop-
ment through scaffolding (Yu & Hu, 2017). One important aspect of scaffolding is

@ Springer

492 L. Zheng et al.

how the scaffolding fades over time (Puntambekar & Hubscher, 2005). There are
two types of fading paradigms, namely fade-in and fade-out (Jennings & Muldner,
2020). Traditionally, scaffolding should be fade-out when learners do not need it
anymore (Lajoie, 2005). In fade-in scaffolding, scaffolding is gradually introduced,
which is aligned with the theories of productive failure proposed by Kapur (2008).
Kapur and Bielaczyc (2012) proposed that productive failure includes two phases,
namely the exploration phase without scaffolding and the consolidation phase with
scaffolding. Productive failure is characterized as scaffolding transitioning from low
to high. Kapur (2016) believes that solving problems without scaffolding is a pro-
ductive exercise and initial failures contribute to future learning.

However, there are differing opinions about the roles of fading scaffolds. For
example, Bulu and Pedersen (2010) found that learners with continuous scaffolding
outperformed those with fade-out scaffolding. In contrast, Kalyuga and Renkl (2010)
believe that learners benefit more when scaffolding fades out. Therefore, it would
be very interesting to investigate which type of fading paradigms is more effective.
Although Wang et al. (2021) conducted an exploratory case study to investigate
how a teacher can support preschoolers’ programming, how to fade scaffolding for
novice programmers was not investigated in the study. To the best of our knowl-
edge, very few studies have investigated how to provide fade-in and fade-out scaf-
folding in an online collaborative programming environment. To clarify the roles
of fading scaffolding, this study examines the roles of fade-in and fade-out scaffold-
ing for novice programmers in such an environment. In addition, the fade-in and
fade-out scaffolding was provided by teachers in this study. Although technology
scaffolding excels at organizing knowledge (Sung & Hwang, 2013) and promoting
social interactions (Molenaar et al., 2014), it fails to provide an ongoing assessment
and personalized guidance (Jennings & Muldner, 2020). Moreover, learners per-
ceive guidance from computers as generic and unresponsive when compared with
teacher guidance (Tansomboon et al., 2017). Furthermore, Furberg (2016) revealed
that learners still need substantial teacher guidance even in a well-scaffolded learn-
ing environment. Teachers can provide explanations and personalized feedback for
learners (Yilmaz & Yilmaz, 2020), and a teacher’s involvement can promote posi-
tive interactions (Kaendler et al., 2015), increase learning engagement (Xu et al.,
2020), and foster collaboration (van Leeuwen & Janssen, 2019). Therefore, teachers
cannot be replaced because they play a very important role as an educator, a facilita-
tor, and a mentor (Mathrani et al., 2016).

Research questions
The present study aims to examine the roles of fade-in versus fade-out scaffolding
on collaborative knowledge building, programming skills, metacognitive behaviors,

emotions, and collective efficacy. The following research questions were addressed:

e RQI: Do the students who learn with fade-in scaffolding build a higher level of
collaborative knowledge than those who learn with fade-out scaffolding?

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 493

e RQ2: Do the students who learn with fade-in scaffolding demonstrate better pro-
gramming skills than those who learn with fade-out scaffolding?

e RQ3: Do the students who learn with fade-in scaffolding demonstrate more
metacognitive behaviors than those who learn with fade-out scaffolding?

e RQ4: Do the students who learn with fade-in scaffolding have more positive
emotions than those who learn with fade-out scaffolding?

e RQS5: Do the students who learn with fade-in scaffolding demonstrate higher col-
lective efficacy than those who learn with fade-out scaffolding?

Methods
Participants

This study was conducted in a higher education context, and the participants came
from public universities located in the north of China. A total of 90 undergraduate
students who had enrolled in a course of C programming in the first or second year
of college voluntarily participated in this study. Power analyses for a-priori sample
sizes for t-tests and F-tests indicated a required minimum sample size of N=84 for
an anticipated large effect size, a statistical power level of p=0.95, an a-level of
0.05 (Faul et al., 2007). Therefore, the sample size of 90 participants was a statisti-
cally fair sample. There were 59 males and 31 females, and the average age of par-
ticipants was 21 years. All of the participants were assigned into 15 fade-in groups
or 15 fade-out groups. There were no significant differences in gender (X*=3.15,
p=0.07>0.05), major (X*=0.05, p=0.82>0.05), age (z=1.26, p=0.08>0.05), or
course grades of programming in C (r=0.09, p=0.93>0.05) between the fade-in
group and fade-out group. Therefore, these two groups are statistically similar to
each other in terms of gender, age, major, and course grades of programming in C.
There were three students in each group. All participants had prior knowledge of
C programming, but they were still novice programmers because they did not have
extensive experience in C programming.

Procedure

The exploratory procedure is shown in Fig. 1. Before the exploratory experiment,
all of the participants performed a pre-test to examine their level of prior knowl-
edge. There was no significant difference in prior knowledge about C programming
between the fade-in and fade-out groups (r=0.47, p>0.05). Next, all participants
took part in an online collaborative programming project using the Visual Studio
integrated development environment and completed the same task for three hours.
The Visual Studio integrated development environment includes an editor, termi-
nal, and text-based chat window, in which participants can collaboratively program
and discuss the task with peers. Figure 2 shows a screenshot of the collaborative
programming environment. The programming task was to develop a three-player

@ Springer

494

L. Zheng et al.

Fig. 1 The diagram of the

exploratory experiment design

C 2three_snake_frame.c

1 #include<stdio.h>

2 #include<stdlib.h>

3 #includesWindows,hz

4 #include<con

5 #include<time.h>

6 #include <graphics,h>

7

8 #define WIDTH 30

9 #define HIGHT 30

10

11 struct Food 1/ BN

12

13 int x; 1/ BMIER

14 int y; 11 BRMHLIT

15 }ood;

16

17 struct Snakeone { //FR1ZNE]
18 int len; 113 KE

19 int x[78 1/ BB TR
20 int y[780]; //%BMS—THHHL
21 int count; /BB RMEER
22 }snake_one;

23

24 struct SnakeTwo //TiE2A&IAE
2

2 int len;

27 int x[780];

28 int y[780];

29 int count;

30 }snake_two;

31

32 struct SnakeThree //HFR3AME
33

34 int len;

35 int x[780];

36 int y[780];

37 int count;

38 }snake_three;

39

40

41 void GameKeys();

42 void InitMap();

43 void InitSnake();

113G
/1RSCHRE R BATEE

xperimental group

Control group

§

(45 students)

\ 4

45 students

Pre-test

)

\4

Online collaborative programming
through VScode

v \ 4

Fade-in scaffolding) @ade-out scaffolding

Session chat

Users > zhenyuanyi > Desktop > 5% > SE144A 8-

//FREE system("cls")
//FBEE’ _getch() ' SKERSR
//FEAVR SR ' time () ' &

1
5

J1ZENBHRARR
11DERHR
//Ma =KL

@48 > C 2three_snake_frame.c > ...

v

Post-test and post-questionnaire

Session chat X

ydd@bupt FEF02:10

100+1

Teichew Emotional scaffolding

W RZEHE L NANES T, ERNTHM:

a) HEEMATIN, #EBENEBR

b) EEHEFESTIARARE

c) WRENEMITMREEF, BRI, WHTHR
Eg.E—%: HRIHEZRMAURCESI0TIRR
IR B AUELR

IHeH B RIBIERPN RS

metacognit

)
+ ISR E mainE
BES: KRB\

o

ydd@bupt TFFo2M
BEDXRBTN, RERXMRNEEAUT

280821288@dq TFFo2M

a7

ydd@bupt TF02:12
BRAHBREZ TSR

Teacher 402112
105 VIRERIRITICE

i)

1052959654@qq TFHF0212
BEN

sorry
Teacher T40212

AP, BHEFAARFEZRBES, WHCEIMRFE

ydd@bupt TeF0212

oK

ydd@bupt is typing...

Fig.2 The collaborative programming environment

@ Springer

ive scaffolding

An exploratory study on fade-in versus fade-out scaffolding... 495

Fig.3 The screenshot of a three-
player hungry snake game

hungry snake game using the C programming language. Figure 3 shows the process
and outcome of a three-player hungry snake game.

Table 1 presents the details of the three types of scaffolding in each group. The
three types in the fade-in group were gradually introduced and only provided when
participants could not solve problems independently. More specifically, scaffolding
was not provided if this group met the task requirements on their first attempt, and
they had to first struggle to solve problems by themselves. The three types of scaf-
folding in fade-out group were only provided a single time when certain conditions
were met and then removed during programming. After online collaborative pro-
gramming, all participants took a post-test and answered a questionnaire on collec-
tive efficacy.

Instruments

The main measurement tools of this study were the pre-test, post-test, and question-
naire on collective efficacy. Both the pre-test and post-test were adapted from Tan
(2017). The aim of the pre-test was to evaluate participants’ prior knowledge about
the C programming language. It consisted of six multiple-choice questions, four fill-
in-the-blank questions, and two programming questions, with a full score of 100.
An example multiple-choice question of pre-test is shown in Fig. 5. An example fill-
in-the-blank question is “The three types of iteration statements in C programming
language include —, —, and —.” The two programming questions were ‘“Please
write a program to calculate the value of ‘100410141024 ---4+300” and “Please
write a program that takes 10 integers as input, stores them in a one dimensional

@ Springer

L. Zheng et al.

+ 81 ur umoys st dew 3doouod jo odwrexe ayJ,

qI=

[[0]&-auo oyeus][[p]x-ouo oyeus]dew
{++IUN0J°9UO OyeUS
{4+UQ["OUO O¥eUS

}
(z==[[0]A-ouo~aeus][[Q]x ouo oyeus]dew)j
{“yuowere)s pAINoaxa} (++1 Q1 >1Q=113Ul) I0J »
(JUQWIIE]S [BUOTIPUOD) J[IYM { JUSUIIBIS PAINJAX} Op »

{Juoware)s paINdAXd} (JUSWAIL)S [BUOT)IPUOD) IIYM o
. 10J,, *OIIUM Op,, *,2[IYM,, JUSWAE)S [0U0d doo']

sdiysuoneyax

1Y) pue s3deouod oY) INOqEe PISNIU0D Ik SHUIPNIS UYA

9pOd 0] MOY MOUY J,UOP SJUIPNIS UIYA

sdew 1doouo)

sordwexs Surpo)

suondaouodstur pey sjuapnis uoyAy suoneuedxs 1deouo))

Surpjoyess 2Anus0)

sordwrexg

suonIpuo)

sadK)-qng

sadA],
Surpjoyeos jo sadA1, | 9|qelL

496

pringer

As

497

An exploratory study on fade-in versus fade-out scaffolding...

sa3ejuBAPRSIP pUB so38)

-UBADE 3} dZLIBWWNS pue $$3001d SuIuIea] 9AIRIOqeR[[0d
S[oym 3} 1091 ued dnoi3 oA 1ey) paysa33ns ST A

Is1y

as1aa1 aseo[d ‘wapqoad Aue st a1y} J “syonpoid dnoi3 ay)
109a1 pue ajen[eAd asea]d “yse) oy a39[dwod nok uaym A

s199d InoA yarm
soSejueApesIp pue saSejueApe) 9ZATeUR USY) PUE ‘ISI
SeapI InoA ssa1dxa asea[d ‘S)o1guod Jwos dAeY NOK J] A
19139303 Inqap pue 1s9) ULd
nox ‘seapl Aue Ay noA uaym s193d yIim edIUNWWO) A
S3u133nqap pue ysey ay)
U0 Sno0J 9Se3[J [0S YY) PaAaIyor Jou sey dnoid mox A
A[orerpawrwur
J1 951421 95BI]J “Suruures3old ur SI0LID QWS T8 I, A
{1231e) 2U) WoOIJ SI Jej MOH (,3ul03 ST MOH A

Jwn 93eueW 0] ANPIYIS B AewW ued dnois mox A
sanIqe

uo paseq sajol ugIsse ued dnoid oA 1ey) paysas3ns S| A

wiyLo3[e oY) Juasa1dal 0 1IeYO MOp © USISOp 9SBIJ A
151y ueyd pojrelop

® 9w 9sBI[{ ¢ ysel Suruwrersord oy a1o[dwos 01 moH A

wres3ord nok
uayMm [e03-qns 195 UBD dnoi3 oK Jey) palsassns s1if A
Suruurdaq ay) Je [eo3
Surures] oy 19s asea[d ‘s[eos 3os jou aaey dnoig 1ok
J1 (S8 9 919[dwod noA usym (203 SuruIes] S IBYM A

9)EN[eAD PUR 19921 10U PIp sIoquiawl dnoid uaypy «
Surwwei3o1d 9ATIRIOQR[[0D JO PUD Y] Y o

9JBIOQR[[09 0} MOY JOU PIP sIoquiawt dnoi3 uaypy
SurwrwesSoxd ur sayelstw ayew sroquiawt dnois uaypy o
SurwwesSoxd saneIoqe[[0d SuLIng «

ueld e oyew pip sroquiow dnoid uayp

s[eo3-qns 39s jou pIp sioquiow dnoi3 Sy o
Surwwres3oid aaneIOqR[[0D JO SUIUUISIq AY) Y *

109[jo1 pue. 9)enfeAq

JIONUOA

suerd oyeIN

S[e0S 10§ SUIP[O}EIS 2ANIUS0-BIIN

sojdurexyg

suonIpuo))

sad£1-qng sadAT,

(ponunuoo) | |qey

pringer

As

L. Zheng et al.

498

wo[qoid oY) 9A]0s 03 s199d INOK YIIM SSNOSIP ISLI[J A
SuonN[os puy
[11m noA ‘soanodadsiad JuaIojIp wWoly yuIy) ued nok Jy A

QATNIOE AIOW 9 "S9UO 189q AU} oI NOA A
Q10w

QINQLIuod pue aAnNIsod atouwr oq ued dnoid mok adoy 1 A

pes 9q 1, uo A
Asea)1 9ye], 'SnOIXuE 9q J U0 A
SONMOYJIP AUB SWODISA0 UBD NOK JBY) SAJI[A] |
pue s109d Y)IM SSNOSIP ‘SONNOYJIP SWOS dARY NOK UM A

iqofl poon) j1ea1d 0s sJ] A
jOWOSOMY/ |[NJIOPUOM SI BIPI SIYT, A
juo awo)
pue peaye o0 {30y 0s ST A1eydsoune uoIssnosIp YL, A

padooxd

0} MOY MOUY J,UOP PUE PISNJUOD IIM SJUIPNIS UYAN

ssa1301d Aue jou pIp sjuApNIS USY A\

JUSPLUODUN PUE ‘SNOTXUE ‘PES 9IOM SJUIPNIS USYAN

s3urfe9) aanisod ay) ssaxdxa syuapnis uAYA

pasnjuo)

[eInaN

QAIBSON

ATISOq

Surpjogyeds [euonowyg

sojdurexyg

SuonIpu0D)

sad£1-qng

sadA],

(ponunuoo) | |qey

pringer

As

An exploratory study on fade-in versus fade-out scaffolding... 499

array, and then outputs them in reverse order.” The post-test consisted of three mul-
tiple-choice questions, six fill-in-the-blank questions about writing code, and one
programming item to evaluate what participants had learned during the collabora-
tive programming. The full score of the post-test was also 100. An example mul-
tiple-choice question of post-test is shown in Fig. 5. An example fill-in-the-blank
questions is “Please write code to determine whether or not two snakes have col-
lided.” The programming question was “Please write a program to make a snake
move horizontally and increase its body length by 1 unit in every 2 s. After 2 min,
end the program automatically.” These items were closely related to the structured
programming method, functions, and algorithms in C programming, and they can
represent a participant’s programming skills to a large extent. Furthermore, the dif-
ferentiation of the pre-test and post-test were 0.30 and 0.52, indicating good dif-
ferentiation. The difficulty of the pre-test and post-test were 0.75 and 0.59, imply-
ing appropriate difficulty. The homogeneity reliability of the pre-test and post-test
reached 0.83 and 0.92, indicating good reliability. The validities of the pre-test and
post-test were examined and confirmed by two experts who had extensive experi-
ence in C programming. The inter-rater agreement of the pre-test and post-test were
0.82 and 0.87, indicating good validity.

Collective efficacy is defined as a group’s shared beliefs in its abilities to execute
tasks to achieve group goals (Bandura, 1997). The questionnaire of collective effi-
cacy was adapted from Zheng (2017). It includes two types of constructs, one is the
belief in a group’s abilities to achieve the goal, and the other is the perception of
commitment to the group work. The collective efficacy questionnaire consists of 10
items with a 5-point Likert scale. The Cronbach’s alpha value of the questionnaire
was 0.85, indicting excellent reliability. In addition, the confirmatory factor analysis
(CFA) was further conducted to examine the construct validity of the collective effi-
cacy questionnaire. The CFA results revealed that X*/df=1.26, the root mean square
error of approximation (RMSEA)=0.05, the goodness of fit index (GFI)=0.95,
the comparative fit index (CFI)=0.98, the incremental fit index (IF)=0.98, and
the Tucker—Lewis index (TLI)=0.98. The model fits the data well and satisfied the
threshold values according to Hair et al. (2010). Therefore, the construct validity
of the questionnaire was confirmed further. Moreover, the results indicated that all
of the factor loading values ranged from 0.53 to 0.86, which satisfied the threshold
value of 0.5 according to Bagozzi and Yi (1988). The composite reliability (CR) of
the two constructs were 0.72 and 0.82, which satisfied the threshold value of 0.60
according to Bagozzi and Yi (1988). The average variance extracted (AVE) values
of the two constructs were 0.50 and 0.56, which satisfied the threshold value of 0.50
based on Bagozzi and Yi (1988). Therefore, the collective efficacy questionnaire
achieved good convergent validity.

Data analysis methods
This study adopted a knowledge-map-based analysis method to analyze 8913 dis-

cussion transcripts to measure collaborative knowledge building level. This analysis
method was proposed and validated by Zheng et al. (2015), and it consists of three

@ Springer

500 L. Zheng et al.

steps. The first step is to draw a target knowledge map. The second step is to code
discussion transcripts based on predefined rules by two coders. The inter-rater reli-
ability of two coders was 0.79, indicating good reliability. The last step is to calcu-
late collaborative knowledge building level and generate a knowledge graph for each
group. The collaborative knowledge building level is equal to the activity quantities
of all knowledge nodes in the knowledge graph. The activity quantity of each knowl-
edge node refers to the information entropy of online discussion transcripts, which
can be calculated through our analytical tool.

Programming skills were measured through the post-test and group products. The
group products were evaluated on the basis of the rubric shown in Table 2. Fur-
thermore, the pre-test, post-test, and group products were analyzed by two experi-
enced teachers who are blinded to experimental condition and had rich experiences
in coding procedure and programming knowledge. The inter-rater reliability of the
group products was calculated using Kappa statistics and was 0.895, indicating good
reliability.

Content analysis and lag-sequential analysis were adopted to analyze the meta-
cognitive behavioral patterns. The two coders are blinded to subject identity and
experimental condition to analyze discussion transcripts of all groups based on the
coding scheme (Table 3). This coding scheme was based on that of Zheng et al.
(2019). The inter-rater reliability was 0.9, indicating excellent reliability. Next,
GSEQ 5.1, developed by Quera et al. (2007), was adopted to calculate the behav-
ioral transition through the z-score. The z-score refers to the adjusted residual that
can represent whether the behavioral sequence is more significant than expected
by chance (Bakeman & Gottman, 1997). If the z-score is larger than 1.96, it indi-
cates that the behavioral sequence is statistically significant (Bakeman & Gottman,
1997). The z-score is sensitive to sample size (Bakeman & Quera, 2011) and this
study analyzed 8913 behavior codes to examine the behavioral transition. Moreover,
the emotional status was classified as positive, negative, neutral, or confused based
on Zheng and Huang (2016). Two coders classified the emotional status of the 30
groups and the inter-rater reliability was 0.9, indicating good reliability.

Results
Analysis of collaborative knowledge building

To examine the difference in collaborative knowledge building, the normality of the
distributions was tested using the Kolmogorov—Smirnov test. The result reveals that
all data are normally distributed (p >0.05). The homogeneity of variance was also
evaluated, and the result indicates that the homogeneity of variance is not violated
(F=0.177, p=0.678>0.05). Therefore, analysis of covariance (ANCOVA) can be
used to examine the differences between the fade-in group and fade-out group by
excluding the impact of the pre-test scores. Table 4 shows the results of ANCOVA.
The finding reveals that there is a significant difference in collaborative knowledge
building between the fade-in and fade-out groups (F=5.410, p=0.028 <0.05).
Furthermore, the fade-in group outperformed the fade-out group. Figures 6 and 7

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 501

show the knowledge graphs of one fade-in group and fade-out group. The nodes and
edges of the knowledge graphs represent the knowledge and their mutual relation-
ships, respectively. The numbers next to the nodes denote the activation quantities
that were calculated using our analytical tool. It is very clear that the fade-in group
activated more knowledge nodes and relationships than the fade-out group.

Analysis of programming skills

Programming skills were measured through post-test and group products. The nor-
mality distribution and homogeneity of variance were evaluated to examine whether
the data could be analyzed using ANCOVA. The Kolmogorov—Smirnov test results
reveal that all data sets are normally distributed (p >0.05). In addition, the findings
reveal that the homogeneity of variance is not violated for the post-test (F=0.006,
p=0.939>0.05) and group products (F=0.093, p=0.762>0.05). Thus, ANCOVA
can be used to examine the differences in the post-test and group products of the
fade-in and fade-out groups by excluding the impact of the pre-test scores. Two
ANCOVA for the post-test and group product scores were conducted using the pre-
test score as the covariant and the fading paradigm as the independent variable, and
Table 5 shows the results. The analysis shows that there is a significant difference in
the post-test scores of the fade-in and fade-out groups (F=10.383, p=0.002 <0.01).
Moreover, the adjusted means of the fade-in group are significantly higher than
those of the fade-out group. Therefore, fade-in scaffolding can significantly improve
group learning achievement.

The results also reveal that there is a significant difference in group product
scores between the fade-in and fade-out groups (F=146.879, p=0.000<0.001).
Furthermore, the fade-in groups outperform the fade-out groups in terms of group
product score. Figures 8 and 9 show portions of the group products of the fade-in
and fade-out groups, respectively.

Analysis of metacognitive behaviors

The lag-sequential analysis method was adopted to analyze metacognitive behav-
ior transitions. Tables 6 and 7 are the adjusted residuals tables for the fade-in and
fade-out groups, respectively. In the two tables, the behaviors in the left-most col-
umn indicate the starting behaviors and the behaviors in the top-most row indicate
the subsequent behaviors. The findings reveal that there are 13 significant behav-
ior sequences for the fade-in group: OG — 0OG, OG —MP, MP —MP, MP — MC,
ES—ES, ES—MC, MC—0G, MC—MP, MC—ES, ER—MC, ER—ER,
AM —ER, and AM — AM. There are only seven significant behavior sequences for
the fade-out group, namely OG — OG, MP — MP, ES —ES, MC — MP, MC — MC,
ER —ER, and AM — AM. Figures 10 shows the behavioral transition diagrams of
the fade-in and fade-out groups.

There are several differences between the fade-in group and fade-out group,
as shown in Table 8 and Fig. 10. First, the fade-in group showed more behavioral
transition than the fade-out group. There are seven significant behavior sequences

@ Springer

502 L. Zheng et al.

that only occurred in the fade-in group, namely OG —MP, MP —MC, ES — MC,
MC—OG, MC—ES, ER—MC, and AM—ER. This result indicates that goal
setting, planning, monitoring and control, enacting strategies, and evaluation and
reflection could be the crucial behaviors resulting in better programming perfor-
mance. Second, the fade-out groups show more repetitive behavior transitions, such
as OG—0G, MP— MP, and so on. Overall, the fade-in groups show a stronger
metacognitive behavioral transition than the fade-out group.

Analysis of emotional status

To examine the differences in emotional state of the fade-in and fade-out groups, the
independent samples #-test was adopted to analyze the data. As shown in Table 9,
the results indicate that there is a significant difference in the positive emotion of
the fade-in and fade-out groups (=2.59, p<0.05, d=0.94). There is a large effect
size for positive emotion according to Cohen (1988). However, there are no signifi-
cant differences in negative emotions (t=1.92, p>0.05, d=0.54), neutral emotions
(t=1.48, p>0.05, d=0.70), and confused emotions (t=0.97, p>0.05, d=0.35)
between the fade-in and fade-out groups. The fade-in group demonstrated less nega-
tive, neutral, and confused emotions. These findings reveal that fade-in scaffolding
can significantly encourage more positive emotions.

Analysis of collective efficacy

The mean of collective efficacy was 3.98 for the fade-in group and 3.54 for the
fade-out group, respectively, indicating the fade-in group outperformed the fade-out
group (Table 10). The results of the independent samples #-test reveal that there is
a significant difference in the collective efficacy between the fade-in and fade-out
groups (¢=3.29, p<0.01, d=0.70). Therefore, fade-in scaffolding can significantly
improve the collective efficacy of the group.

Discussion

This exploratory study examined the roles of fade-in scaffolding and fade-out scaf-
folding on collaborative knowledge building, programming skills, metacognitive
behaviors, emotions, and collective efficacy in an online collaborative program-
ming environment. The results indicate that the learners with fade-in scaffolding
significantly outperformed those who learned with fade-out scaffolding in terms of
knowledge building, programming skills, metacognitive behaviors, emotions, and
collective efficacy. Therefore, fade-in scaffolding may be more useful than fade-out
scaffolding for novice programmers.

This study revealed that fade-in scaffolding could significantly improve knowl-
edge building and programming skills. The main reason lay in that the scaffold-
ing was gradually introduced and increased during collaborative programming to
engage participants in exploration and solving problems. The cognitive scaffolding

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 503

provided in this study was in the form of concept maps, coding examples, and con-
cept explanations. Previous studies revealed that novice programmers faced diffi-
culties in understanding basic programming concepts (Koorsse et al., 2015; Tsai,
2019). Menon and Kovalchick (2020) found that concept maps are helpful for under-
standing programming concepts through organizing and key concepts and their rela-
tionships. Therefore, the concept maps provided in this study (as shown in Fig. 4)
demonstrated programming concepts and their relationships to improve the level of
collaborative knowledge building. In addition, coding examples can lower the dif-
ficulty and improve efficiency for programmers (Yaghmazadeh et al., 2018). Thus,
the coding examples provided in this study contributed to improving programming
skills. Moreover, concept explanations were also provided for students to clarify
their misconceptions. All in all, the fade-in cognitive scaffolding helped improve
knowledge building levels and programming skills.

Programmers need metacognition support to understand programming problems,
correct programming errors, and test program output (Mohd Rum & Ismail, 2017).

unsigned
char

Character

variable
include

is a
Types of

iS a
variables
include
Real s a long
include include variable double

1S a

Integer

i double
variable 152

is a

isa isa

Fig.4 The example of a concept map

@ Springer

504 L. Zheng et al.

An example multiple-choice question of pre-test:

Which of the following is equal to ‘!X’ in the statement of While(!x)?

(A) x!=0;

®) x=1;

©) x!=1;

(D) x==0.

An example multiple-choice question of post-test:

What is the data transfer between the actual parameter variable and formal parameter variable
when calling a function?

(A) Address transfer;

(B) pass by value;

(C) transfer from the actual parameter to the formal parameter and then pass back from the formal
parameter to the actual parameter;

(D) delivery method specified by the user.

Fig.5 The example multiple-choice questions of pre-test and post-test

Table 2 Rubric for group product evaluation

Dimensions Descriptions

Feasibility (30 scores) « The program logic is clear and reasonable
« The program can be executed correctly
« The program results meet the requirements of task
» The code is easily readable

Completeness (30 scores) « The header file is complete
« The data type is complete
« The main function is complete
« The functional definition is complete

Correctness (30 scores) « The header file is correct
« The data type is correct
« The function is correct
« The input and output are correct

Novelty (10 scores) « The algorithm is innovative
« The time complexity is lower than previous program
» The space complexity is lower than previous program

The findings of this study demonstrate that the fade-in metacognitive scaffold-
ing significantly increases metacognitive behaviors and behavioral transition. This
result corroborates with previous findings that metacognitive scaffolding can offer
substantial benefits for online collaborative learning (Kwon et al., 2013). The meta-
cognitive scaffolding provided in this study aimed to help students to set program-
ming goals, make plans, monitor progress, reflect, and evaluate as well as adapt their

@ Springer

505

An exploratory study on fade-in versus fade-out scaffolding...

sa13oens Jo ‘suefd ‘sjeo3 Jurures] o) suondepe RN uonmugooejow ydepy WV

SWONO pue ‘s3ssa001d ‘sTeos dnoid o) uo SunosPar (SUONNOS JUALIND AeN[eAr 109[Jjo1 pue 9Jen[eAq i
Su133nqap pue ‘s10110 SundIp ‘aInfrey

uorsuayaxdwos 10 Surpueisiopun ([enred) Surwred (s3ssoo01d Surwer3oid 9A1BIOQR[[0D) JOJIUOIA [013U0D PUE JOJIUOIA! OIN
JIOQE[JO UOISIAIP

QY) 9)eN032U ‘sauIowI) 395 ‘SAIFNeIs 199[9s Jurpnyoul ‘sfeod s, dnois ayy yoear 0y moy noqe sueyd eI suerd oeIN dIN

SpUBRWIAP Sk YSI[qeISa pue s[eod FuruIes] 19 s[eo3 198 DO

suonduosaqg SI0TARYDg apoD

SIOTABYQQ ANIUSOORIOW J0J SWAYDs SUIpo) € 3|qeL

pringer

As

506 L. Zheng et al.

Table 4 Summary of ANCOVA results on collaborative knowledge building

Group N Mean SD Adjusted mean Std error F n?
Fade-in group 45 689.18 203.78 699.13 55.83 5.410" 0.167
Fade-out group 45 524.05 232.53 514.10 55.83

“p<0.05

InitMap() (.) (Structure)
m 53 Struct e v
SetFood() Y L) L ember

7 Callof | 317 475 list 1
12977\ function /' 634 -
317 include include

ipclude |3 smakes]
3158 / 9.02

. . include’

is akind of

\s a kis a kind of
114 \ is a kind off

Definition | akindof [statement_

has property of of struet |} <2 2 / 1
W T is a kind nf/{/

isa 5 has pnlvpcn_\ of —~ é akind of mm‘mluss

— “’/ Loop “
\ & —is akind of-

\statement, " break
N \ PN statement
5 is a kind of 309

>

EatFood() is : kind\of

is a kind\ot

i

2
5

is a kind of

is a kind o]

s akind O Function

isakind oL\ - ctude
~ _

is a kind of 208.00

TudgeEnd()
539

I

\
) 5

ntinue

G

Three-player
hungry snake
game

statement
16.00 (

GameKeys()

1

if-else
55 development / include statement | 7

) " have propertyof 3176 T “awitch

Constant 64 include include include™]

e

statement | _
L5

types | 6.83 8

statement

includs S [T N 859 include
_—_include \ N hnelude B [Program | Running l .
\ include Y {) have property o
[Integer N program
| include include N\
| constant |)
/ 3-00 (Self-decreasing)

operation
include include ek /

164
include include

e Progtam) (viconmen) [(-]
debug configuration, 3.00 3.00

Width of game window || Hight of game window 133 55
38

10.38 1038

is akind of is akind of

Fig.6 A knowledge graph of a fade-in group

metacognition. These metacognitive behaviors indeed resulted in better program-
ming performance, on the basis of the findings in this study. Furthermore, the pre-
sent study revealed that goal setting, planning, monitoring, enacting strategies and
evaluating and reflecting could be the crucial metacognitive behaviors. As Mohd
Rum et al. (2017) found, outstanding programmers adopt more metacognitive strat-
egies than novice programmers. Therefore, the metacognitive scaffolding elicited
more metacognitive behaviors and increased programming skills.

This study revealed that fade-in emotional scaffolding promotes positive emo-
tions and decreases negative, neutral, and confused emotions. The main reason
could be that the teachers provided fade-in emotional scaffolding when the learn-
ers demonstrated various kinds of emotions. Teachers can help learners to regulate
negative, neutral, and confused emotions. For example, when learners felt sad and
anxious during programming, the teachers encouraged them to think positively and
find help from peers. On the contrary, learners’ emotions could not be captured in

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 507

TV > _
Statement of Structure _—
pointer variables name

ﬁi/ for statement
3.00 3.17

include

have property of
PppeRe /TN e N
(/ Row \‘ Definition of J

do while

statement

/ N \ pointer / structures
o) ()
variables i 293 m I 138
/, 3. s a ki 1 —
1128) \\ A -‘LOO) /\Jlms property of 158 is aKind of _—
] Definition of xl (Jsakindof / W while
58 function | "\ e - L .| statement
(o 1.58 is a kind of I3
is a kind of 158 \ S"“C""CS/‘ is a kind of .
2.40 is a kind of (Point ﬂ\ L /s akind of
(rowe)

_—

-
N - 1.58 isakindof [
is a kind of has property of Y, 2.69 is a kind of break
SN’ — 4 . = statement
951 ivakind of 0.7 e Ve i a kind of =
— is akind of - [Header [Loop \fl P
N\ include (e | | . .
include \ files) y statement /¥is a kind of X
is a kind of_:(Function)\ / 1.46/'\\\ / continue
3.98 is a kind of include includ 897 statement
is a kind of~ \ / melude —— _
)\\,// 1.46 include / \\ = 158
is a kind of Three-player . [Selection | . o
) hungry snake game mclu(le—"\\ statement /H—Lc a kind of: if-else
development statement
NS o
312 335 243

Fig.7 A knowledge graph of a fade-out group

real time when scaffolding was faded out, which led to more negative, neutral, and
confused emotions in the fade-out group. In addition, the present study found that
the fade-in group demonstrated higher collective efficacy than the fade-out group.
This result could be explained by Bandura’s (1997) views, that engaging participants
in collaborative learning with scaffolding increases a group’s efficacy beliefs.

Regarding the implications for research and practice in collaborative program-
ming, several points can be made according to the results. First, fade-in scaffolding
is better than fade-out scaffolding for novice programmers. Furthermore, novices
need scaffolding for a long time (Tawfik et al., 2018). The findings reveal that teach-
ers and practitioners should provide a set of scaffolding for novice programmers
during programming. Second, this study found that teachers cannot be replaced by
tools and learners still need teacher guidance in programming. Even with the aid
of technology, teachers still need to make explanations based on analysis results
and make decisions based on data (Yilmaz & Yilmaz, 2020). Third, learners need
multiple kinds of scaffolding during collaborative programming, including cogni-
tive, metacognitive, and emotional scaffolding. The results of this study indicate that
cognitive scaffolding in the forms of concepts maps, coding examples, and concept
explanations are very helpful for improving programming skills. In addition, meta-
cognitive scaffolding can elicit more metacognitive behaviors and help novice pro-
grammers to plan, monitor, and evaluate during programming. Emotional scaffold-
ing can promote positive emotions and motivate novice programmers to improve
their programming skills.

However, this study was constrained by several limitations. First, this study only
focused on one online collaborative programming task and the duration of the online
collaborative programming was short due to the impact of COVID-19 pandemic.
Caution should be exercised when generalizing the findings to other contexts.
Second, this study only examined the roles of fade-in and fade-out scaffolding in

@ Springer

L. Zheng et al.

508

1000>d__ ‘100>d_,

dnoi3
681 LY 0v 658 €eor St n0-3peq
S¥8°0 L OL8 OV 681 96'CL ws 01'€L ¢y dnoi3 ur-opeq jonpoid dnoin
dnoi3
8T 16t 0TtC STov Sy no-apeq
LOT°0 28€°01 8'C 9¢'79 91°CI 1629 Sy dnoi3 ur-opeq 1891-1s04
I0II3 P)S ueoW pajsnlpy as UBOIN N dnoip SwoN

- d

jonpoid dnois pue 159)-1s0d 9y U0 JNSAT YAQDNYV JO Arewruing g ajqel

pringer

As

An exploratory study on fade-in versus fade-out scaffolding... 509

175 void EatFood(struct Snakex snake)

176

177 int tail_x = snake->x[snake->len - 1];
178 int tail_y = snake->y[snake->len - 1];
179

180 int dx = tail_x - snake->x[snake->len - 2];
181 int dy = tail_y - snake->y[snake->len - 2];
182

183 int nx = tail_x + dx;

184 int ny = tail_y + dy;

185

186 snake->len++;

187 snake->x[snake->len - 1] = nx;

188 snake->y [snake->len - 1] = ny;

189

190 map [nx] [ny] = snake->sid;

191}

192

193 void SetTime()

194 {

195 int a = 180;

196 system("color 0a");

197 while (a >= 0) {

198 system("cls");

199 printf("%d",a);

200 sleep(1000); a=a-1;

201 }

202 system("pause");

203 printf("EELER\N");

204

205

206 bool JudgeEnd()

207 {

208 return cnt != 0;

209 }

210

211 void StartGame()

212 {

213 GameKeys () ;

214 InitMap();

215 InitSnake();

216 dirs[@]['2'] = 0; dirs[0]['8'] = 1; dirs[@]['4'] = 2; dirs[0]['6'] = 3;
217

Fig. 8 The fade-in group product

programming performance, metacognitive behaviors, emotions, and collective effi-
cacy for novice programmers.

@ Springer

510 L. Zheng et al.

173 void EatFood()

174 {

175 if(map [snake_one.x[0]] [snake_one.y[0]]==2)
176 {

177 snake_one. len++;

178 snake_one.count++;

179 map [snake_one.x[0]] [snake_one.y[0]] = 1;
180 }

181

182 if(map[snake_two.x[0]] [snake_two.y[0]]==2)
183 {

184 snake_two. len++;

185 snake_two.count++;

186 map [snake_two.x[0]] [snake_two.y[0]] = 1;
187 }

188

189 if(map[snake_three.x[0]] [snake_three.y[0]]==2)
190 {

191 snake_three. len++;

192 snake_three.count++;

193 map [snake_three.x[0]] [snake_three.y[0]] = 1;
194 }

195 SetFood();

196 }

197

198 void SetTime()

199 {

200

201 }

202

203 void JudgeEnd()

204 {

205

206

207 void StartGame()

208 {

209

210 }

211

212 int win(int grade)

213 {

214

215)3

Fig.9 The fade-out group product

@ Springer

An exploratory study on fade-in versus fade-out scaffolding...

5N

Table 6 Adjusted residuals of the fade-in group

Starting behavior Subsequent behavior

oG MP ES MC ER AM
Orientating goals (OG) 22.10" 5.59" —10.79 1.12 -0.78 -0.92
Making plans (MP) 1.68 18.64° —11.78 372" —-173 —1.29
Enacting strategies (ES) —10.88 -10.76 6.64" 2.10" 0.90 —1.88
Monitoring and controlling (MC) 3.58" 1.98" 622" —7.15 —-245 042
Evaluating and reflecting (ER) —-1.54 -291 —-4.72 4.59" 3.47" 0.83
Adapting metacognition (AM) -0.91 -1.29 -1.88 —1.65 274" 17.79"
*p<0.05
Table 7 Adjusted residuals of the fade-out group
Starting behavior Subsequent behavior

oG MP ES MC ER AM
Orientating goals (OG) 21.65" 1.68 -1.72 —0.10 -0.74 -0.19
Making plans (MP) -0.44 23.63" -8.53 1.81 -3.53 -0.92
Enacting strategies (ES) -232 -9.77 10.28" -6.20 -0.33 —1.88
Monitoring and controlling (MC) 1.15 1.98" —4.65 5.53" —-2.30 —-1.25
Evaluating and reflecting (ER) -0.67 —-1.90 -3.94 0.78 7.09 0.13
Adapting metacognition (AM) -0.18 —-0.92 —1.88 —1.24 0.12 21.38"
*p<0.05

The fade-in group

22.10 18. 64
5. 59

1.98

i 3.72
17. 7‘3;
6. 64

The fade-out group

23.63
2L 653

SORNCY
O

Fig. 10 Behavioral transition diagrams of the fade-in and fade-out groups

10. 28

@ Springer

512 L. Zheng et al.
Table 8 Significant behavior sequences that occur in the fade-in and fade-out groups

Groups Significant behavior sequences

Fade-in groups 0G—0G, 0G—MP, MP—-MP, MP—MC, ES—ES, ES>MC, MC—O0G,

MC—-MP, MC—ES, ER->MC, ER—ER, AM—ER, AM—AM

Fade-out groups 0G—0G, MP—-MP, ES—ES, MC—MP, MC—MC, ER—ER, AM—AM

Table 9 Independent samples

. Emotion Group N Mean SD t Cohen’s d
t-test results of emotional status
Positive ~ Fade-in group 45 30720 71.51 2.59" 0.94
Fade-out group 45 236.27 77.88
Negative Fade-in group 45 0.60 232 192 0.54
Fade-out group 45 2.47 4.27
Neutral ~ Fade-in group 45 1.13 1.72 1.48 0.70
Confused Fade-out group 45 3.93 535 097 035
Fade-in group 45 1947 09.15
Fade-out group 45 23.27 11.97
"p<0.05
Table 10 Independent.samples Group N Mean sD t Cohen’s d
t-test results of collective
efficacy Fade-in group 45 3.98 054 329" 0.0
Fade-out group 45 3.54 0.70
“p<0.01
Conclusions

This exploratory study sought to examine the roles of fade-in and fade-out scaf-
folding for novice programmers and obtain a better understanding of the com-
plexity of scaffolding. This study serves to demonstrate the importance of fade-in
scaffolding for novice programmers. The present study revealed that the fade-in
scaffolding played a very important role in helping novice programmers improve
knowledge building and programming skills, foster positive emotions, and
increase metacognitive behaviors and collective efficacy. This study also provides
a valuable reference for research and practice in collaborative programming.
Future studies should examine the roles of fade-in and fade-out scaffolding
when learners complete different programming tasks over a longer period of time.

@ Springer

An exploratory study on fade-in versus fade-out scaffolding... 513

Moreover, there is a need for further studies to investigate the roles of fade-in
and fade-out scaffolding in higher-order skills, transfer skills, and cognitive load
through mixed methods to obtain a deep understanding of the nature of fade-in
and fade-out scaffolding. In addition, the current scaffolding approach should be
extended in instructing student programming processes to contribute to the grow-
ing research community.

Acknowledgements This study is funded by the International Joint Research Project of Huiyan Interna-
tional College, Faculty of Education, Beijing Normal University (ICER202101).

Declarations

Conflict of interest The authors have no conflicts of interests.

Consent to participate Informed consent was obtained from all participants included in the study.

References

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis.
Cambridge University Press. https://doi.org/10.1017/CB0O9780511527685

Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sci-
ences. Cambridge University Press.

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy
of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327

Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman.

Beck, L., & Chizhik, A. (2013). Cooperative learning instructional methods for CS1: Design, implemen-
tation, and evaluation. ACM Transactions on Computing Education, 13(3), 10-21. https://doi.org/
10.1145/2492686

Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2020). Mapping research in
student engagement and educational technology in higher education: A systematic evidence map.
International Journal of Educational Technology in Higher Education, 17, 2. https://doi.org/10.
1186/s41239-019-0176-8

Bowman, N. A, Jarratt, L., Culver, K. C., & Segre, A. M. (2020). Pair programming in perspective:
Effects on persistence, achievement, and equity in computer science. Journal of Research on Educa-
tional Effectiveness, 13(4), 731-758. https://doi.org/10.1080/19345747.2020.1799464

Bulu, S. T., & Pedersen, S. (2010). Scaffolding middle school students’ content knowledge and ill-struc-
tured problem solving in a problem-based hypermedia learning environment. Educational Technol-
0gy Research & Development, 58(5), 507-529. https://doi.org/10.1007/s11423-010-9150-9

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Earlbaum
Associates.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it
advantageous for middle school students? Journal of Research on Technology in Education, 46(3),
277-296. https://doi.org/10.1080/15391523.2014.888272

Exter, M. E., & Ashby, 1. (2019). Preparing today’s educational software developers: Voices from
the field. Journal of Computing in Higher Education, 31(3), 472-494. https://doi.org/10.1007/
$12528-018-9198-9

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analy-
sis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2),
175-191. https://doi.org/10.3758/BF03193146

@ Springer

https://doi.org/10.1017/CBO9780511527685
https://doi.org/10.1007/BF02723327
https://doi.org/10.1145/2492686
https://doi.org/10.1145/2492686
https://doi.org/10.1186/s41239-019-0176-8
https://doi.org/10.1186/s41239-019-0176-8
https://doi.org/10.1080/19345747.2020.1799464
https://doi.org/10.1007/s11423-010-9150-9
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1007/s12528-018-9198-9
https://doi.org/10.1007/s12528-018-9198-9
https://doi.org/10.3758/BF03193146

514 L. Zheng et al.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten children
in a computer programming environment: A case study. Computers & Education, 63, 87-97. https://
doi.org/10.1016/j.compedu.2012.11.016

Furberg, A. (2016). Teacher support in computer-supported lab work: Bridging the gap between lab
experiments and students’ conceptual understanding. International Journal of Computer-Supported
Collaborative Learning, 11(1), 89-113. https://doi.org/10.1007/s11412-016-9229-3

Giacaman, N., & De Ruvo, G. (2018). Bridging theory and practice in programming lectures with active
classroom programmer. /[EEE Transactions on Education, 61(3), 177-186. https://doi.org/10.1109/
TE.2018.2819969

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Prentice
Hall.

Kaendler, C., Wiedmann, M., Rummel, N., & Spada, H. (2015). Teacher competencies for the implemen-
tation of collaborative learning in the classroom: A framework and research review. Educational
Psychology Review, 27(3), 505-536. https://doi.org/10.1007/s10648-014-9288-9

Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: Intro-
duction to the special issue. Instructional Science, 38(3), 209-215. https://doi.org/10.1007/
$11251-009-9102-0

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379—-424. https://doi.org/10.
1080/07370000802212669

Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and unpro-
ductive success in learning. Educational Psychologist, 51(2), 289-299. https://doi.org/10.1080/
00461520.2016.1155457

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sci-
ences, 21(1), 45-83. https://doi.org/10.1080/10508406.2011.591717

Koorsse, M., Cilliers, C., & Calitz, A. (2015). Programming assistance tools to support the learning
of IT programming in South African secondary schools. Computers & Education, 82, 162—178.
https://doi.org/10.1016/j.compedu.2014.11.020

Kwon, K., Hong, R. Y., & Laffey, J. M. (2013). The educational impact of metacognitive group coor-
dination in computer-supported collaborative learning. Computers in Human Behavior, 29(4),
1271-1281. https://doi.org/10.1016/j.chb.2013.01.003

Kunkle, W. M., & Allen, R. B. (2016). The impact of different teaching approaches and languages on
student learning of introductory programming concepts. ACM Transactions on Computing Edu-
cation, 16(1), 1-26. https://doi.org/10.1145/2785807

Lajoie, S. P. (2005). Extending the scaffolding metaphor. Instructional Science, 33(5-6), 541-557.
https://doi.org/10.1007/s11251-005-1279-2

Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S.J. (2017). Applying learning analytics for improv-
ing students engagement and learning outcomes in an MOOCs enabled collaborative program-
ming course. Interactive Learning Environments, 25(2), 220-234. https://doi.org/10.1080/10494
820.2016.1278391

Janssen, N., Knoef, M., & Lazonder, A. W. (2019). Technological and pedagogical support for pre-
service teachers’ lesson planning. Technology, Pedagogy and Education, 28(1), 115-128. https://
doi.org/10.1080/1475939X.2019.1569554

Jennings, J., & Muldner, K. (2020). Assistance that fades in improves learning better than assis-
tance that fades out. Instructional Science, 48(4), 371-394. https://doi.org/10.1007/
s11251-020-09520-7

Margulieux, L. E., & Catrambone, R. (2021). Scaffolding problem solving with learners’ own self
explanations of subgoals. Journal of Computing in Higher Education, 33, 499-523. https://doi.
org/10.1007/s12528-021-09275-1

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlayIT: Game based learning approach for
teaching programming concepts. Educational Technology & Society, 19(2), 5-117.

Menon, P., & Kovalchick, L. (2020). Using a concept map to represent the composition of knowledge
in an introductory programming course. Information Systems Education Journal, 18(3), 4-17.

Mladenovié, S., Krpan, D., & Mladenovié, M. (2016). Using games to help novices embrace program-
ming: From elementary to higher education. The International Journal of Engineering Educa-
tion, 32(1), 521-531.

Mohd Rum, S. N., & Ismail, M. A. (2017). Metacognitive support accelerates computer assisted
learning for novice programmers. Educational Technology & Society, 20(3), 170-181.

@ Springer

https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1007/s11412-016-9229-3
https://doi.org/10.1109/TE.2018.2819969
https://doi.org/10.1109/TE.2018.2819969
https://doi.org/10.1007/s10648-014-9288-9
https://doi.org/10.1007/s11251-009-9102-0
https://doi.org/10.1007/s11251-009-9102-0
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/10508406.2011.591717
https://doi.org/10.1016/j.compedu.2014.11.020
https://doi.org/10.1016/j.chb.2013.01.003
https://doi.org/10.1145/2785807
https://doi.org/10.1007/s11251-005-1279-2
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1080/1475939X.2019.1569554
https://doi.org/10.1080/1475939X.2019.1569554
https://doi.org/10.1007/s11251-020-09520-7
https://doi.org/10.1007/s11251-020-09520-7
https://doi.org/10.1007/s12528-021-09275-1
https://doi.org/10.1007/s12528-021-09275-1

An exploratory study on fade-in versus fade-out scaffolding... 515

Molenaar, 1., Sleegers, P., & van Boxtel, C. (2014). Metacognitive scaffolding during collaborative
learning: A promising combination. Metacognition and Learning, 9(3), 309-332. https://doi.org/
10.1007/s11409-014-9118-y

Nosek, J. T. (1998). The case for collaborative programming. Communications of the ACM, 41(3),
105-108. https://doi.org/10.1145/272287.272333

Phuong, D. T. D., & Shimakawa, H. (2008). Collaborative learning environment to improve novice
programmer with convincing opinions. WSEAS Transactions on Advances in Engineering Educa-
tion, 5(9), 635-644.

Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning envi-
ronment: What have we gained and what have we missed? Educational Psychologist, 40(1),
1-12. https://doi.org/10.1207/s15326985ep4001_1

Quera, V., Bakeman, R., & Gnisci, A. (2007). Observer agreement for event sequences: Methods and
software for sequence alignment and reliability estimates. Behavior Research Methods, 39(1),
39-49. https://doi.org/10.3758/BF03192842

Sentance, S., & Csizmadia, A. (2016). Computing in the curriculum: Challenges and strategies from a
teacher’s perspective. Education and Information Technologies, 22(2), 469-495. https://doi.org/10.
1007/s10639-016-9482-0

Shin, Y., Kim, D., & Song, D. (2020). Types and timing of scaffolding to promote meaningful peer inter-
action and increase learning performance in computer-supported collaborative learning environ-
ments. Journal of Educational Computing Research, 58(3), 640-661. https://doi.org/10.1177/07356
33119877134

Sun, J. C. Y., & Hsu, K. Y. C. (2019). A smart eye-tracking feedback scaffolding approach to improving
students’ learning self-efficacy and performance in a C programming course. Computers in Human
Behavior, 95, 66-72. https://doi.org/10.1016/j.chb.2019.01.036

Sung, H. Y., & Hwang, G. J. (2013). A collaborative game-based learning approach to improving stu-
dents’ learning performance in science courses. Computers & Education, 63, 43-51. https://doi.org/
10.1016/j.compedu.2012.11.019

Tan, H. Q. (2017). Programming in C (5th ed.). Tsinghua University Press.

Tansomboon, C., Gerard, L. F., Vitale, J. M., & Linn, M. C. (2017). Designing automated guidance to
promote productive revision of science explanations. International Journal of Artificial Intelligence
in Education, 27(4), 729-757. https://doi.org/10.1007/s40593-017-0145-0

Tawfik, A. A., Law, V., Ge, X., Xing, W., & Kim, K. (2018). The effect of sustained vs. faded scaffolding
on students’ argumentation in ill-structured problem solving. Computers in Human Behavior, 87,
436-449. https://doi.org/10.1016/j.chb.2018.01.035

Teague, D., & Roe, P. (2008). Collaborative learning-towards a solution for novice programmers. In Pro-
ceedings of the tenth Australasian computing education conference in conferences in research and
practice in information technology-CRPIT volume 78 (pp. 147-153). Australian Computer Society.
https://eprints.qut.edu.au/17818/1/c17818.pdf

Tsai, C. Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-
gramming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232. https://
doi.org/10.1016/j.chb.2018.11.038

Tullis, J., Goldstone, R., & Hanson, A. (2015). Scheduling scaffolding: The extent and arrangement of
assistance during training impacts test performance. Journal of Motor Behavior, 47, 1-11. https://
doi.org/10.1080/00222895.2015.1008686

van Leeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative
learning in primary and secondary education. Educational Research Review, 27, 71-89. https://doi.
org/10.1016/j.edurev.2019.02.001

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard
University Press.

Wang, X. C., Choi, Y., Benson, K., Eggleston, C., & Weber, D. (2021). Teacher’s role in fostering pre-
schoolers’ computational thinking: An exploratory case study. Early Education and Development,
36(1), 26-48. https://doi.org/10.1080/10409289.2020.1759012

Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating stu-
dents’ computer programming skills in the team-based learning mode. Educational Technology
Research and Development, 65(6), 1655—1671. https://doi.org/10.1007/s11423-017-9551-0

Wei, X., Lin, L., Meng, N., Tan, W., & Kong, S. C. (2021). The effectiveness of partial pair programming
on elementary school students’ Computational Thinking skills and self-efficacy. Computers & Edu-
cation, 160, 104023. https://doi.org/10.1016/j.compedu.2020.104023

@ Springer

https://doi.org/10.1007/s11409-014-9118-y
https://doi.org/10.1007/s11409-014-9118-y
https://doi.org/10.1145/272287.272333
https://doi.org/10.1207/s15326985ep4001_1
https://doi.org/10.3758/BF03192842
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1177/0735633119877134
https://doi.org/10.1177/0735633119877134
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1016/j.compedu.2012.11.019
https://doi.org/10.1016/j.compedu.2012.11.019
https://doi.org/10.1007/s40593-017-0145-0
https://doi.org/10.1016/j.chb.2018.01.035
https://eprints.qut.edu.au/17818/1/c17818.pdf
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1080/00222895.2015.1008686
https://doi.org/10.1080/00222895.2015.1008686
https://doi.org/10.1016/j.edurev.2019.02.001
https://doi.org/10.1016/j.edurev.2019.02.001
https://doi.org/10.1080/10409289.2020.1759012
https://doi.org/10.1007/s11423-017-9551-0
https://doi.org/10.1016/j.compedu.2020.104023

516 L. Zheng et al.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child
Psychology and Psychiatry, 17(2), 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wu, B, Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative
programming: A quantitative ethnography approach. Journal of Computer Assisted Learning, 35(3),
421-434. https://doi.org/10.1111/jcal.12348

Wu, L., Looi, C. K., Multisilta, J., How, M. L., Choi, H., Hsu, T. C., & Tuomi, P. (2020). Teacher’s
perceptions and readiness to teach coding skills: A comparative study between Finland, Mainland
China, Singapore, Taiwan, and South Korea. The Asia-Pacific Education Researcher, 29(1), 21-34.
https://doi.org/10.1007/s40299-019-00485-x

Xu, B., Chen, N. S., & Chen, G. (2020). Effects of teacher role on student engagement in WeChat-Based
online discussion learning. Computers & Education. https://doi.org/10.1016/j.compedu.2020.
103956

Yaghmazadeh, N., Wang, X., & Dillig, I. (2018). Automated migration of hierarchical data to relational
tables using programming-by-example. Proceedings of the VLDB Endowment, 11(5), 580-593.

Yeomans, L., Zschaler, S., & Coate, K. (2019). Transformative and troublesome? Students’ and pro-
fessional programmers’ perspectives on difficult concepts in programming. ACM Transactions on
Computing Education, 19(3), 1-27. https://doi.org/10.1145/3283071

Yilmaz, F. G. K., & Yilmaz, R. (2020). Student opinions about personalized recommendation and feed-
back based on learning analytics. Technology, Knowledge and Learning, 25, 753-768. https://doi.
org/10.1007/s10758-020-09460-8

Yu, S., & Hu, G. (2017). Can higher-proficiency L2 learners benefit from working with lower-proficiency
partners in peer feedback? Teaching in Higher Education, 22(2), 178-192. https://doi.org/10.1080/
13562517.2016.1221806

Zhang, J. H., Meng, B., Zou, L. C., Zhu, Y., & Hwang, G. J. (2021). Progressive flowchart development
scaffolding to improve university students’ computational thinking and programming self-efficacy.
Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1943687

Zheng, L. (2017). Knowledge building and regulation in computer-supported collaborative learning.
Springer.

Zheng, L., & Huang, R. (2016). The effects of sentiments and co-regulation on group performance in
computer-supported collaborative learning. The Internet and Higher Education, 28, 59-67. https://
doi.org/10.1016/j.iheduc.2015.10.001

Zheng, L., Huang, R., Hwang, G.-J., & Yang, K. (2015). Measuring knowledge elaboration based on a
computer-assisted knowledge map analytical approach to collaborative learning. Educational Tech-
nology & Society, 18(1), 321-336.

Zheng, L., Li, X., Zhang, X., & Sun, W. (2019). The effects of group metacognitive scaffolding on group
metacognitive behaviors, group performance, and cognitive load in computer-supported collabora-
tive learning. The Internet and Higher Education, 42, 13-24. https://doi.org/10.1016/j.iheduc.2019.
03.002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Lanqin Zheng currently works as an associate professor at the Faculty of Education in Beijing Normal
University. Her research interests include computer supported collaborative learning, learning analytics,
personalized learning, and AIED.

Yuanyi Zhen received the M.S. degree in educational technology from the Faculty of Education in Bei-
jing Normal University.

Jiayu Niu is a master student at the Faculty of Education in Beijing Normal University. Her research
interests focus on computer supported collaborative learning.

Lu Zhong is a master student at the Faculty of Education in Beijing Normal University. Her research
interests focus on computer supported collaborative learning.

@ Springer

https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1007/s40299-019-00485-x
https://doi.org/10.1016/j.compedu.2020.103956
https://doi.org/10.1016/j.compedu.2020.103956
https://doi.org/10.1145/3283071
https://doi.org/10.1007/s10758-020-09460-8
https://doi.org/10.1007/s10758-020-09460-8
https://doi.org/10.1080/13562517.2016.1221806
https://doi.org/10.1080/13562517.2016.1221806
https://doi.org/10.1080/10494820.2021.1943687
https://doi.org/10.1016/j.iheduc.2015.10.001
https://doi.org/10.1016/j.iheduc.2015.10.001
https://doi.org/10.1016/j.iheduc.2019.03.002
https://doi.org/10.1016/j.iheduc.2019.03.002

	An exploratory study on fade-in versus fade-out scaffolding for novice programmers in online collaborative programming settings
	Abstract
	Introduction
	Literature review
	Collaborative programming
	Scaffolding and the fading paradigm
	Research questions

	Methods
	Participants
	Procedure
	Instruments
	Data analysis methods

	Results
	Analysis of collaborative knowledge building
	Analysis of programming skills
	Analysis of metacognitive behaviors
	Analysis of emotional status
	Analysis of collective efficacy

	Discussion
	Conclusions
	Acknowledgements
	References

