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Abstract
Abiotic and biotic stressors are known to trigger reproductive activities in several aquatic organisms. In reef environments, 
physical contact as a response to competition for space on the benthos is a common stressor among sessile organisms, 
often leading to severe tissue damage and even mortality due to biological and chemical mechanisms. However, the effect 
of physical stress on coral reproduction has received less attention. In this study, we observed colonies of the scleractin-
ian coral Siderastrea stellata releasing larvae in response to physical contact with the zoantharian Palythoa caribaeorum. 
Organisms were collected from reefs in Brazil and taken to the laboratory, where competition through physical contact 
was simulated in tanks by placing the two species in direct contact for 72 h. During this period, seven out of eight corals 
that were in physical contact with the zoantharian released larvae, showing tissue discoloration and a marked decrease in 
photosynthetic efficiency. Only one of the other eight colonies held as a control with no physical contact released larvae, 
indicating that physical contact may have been the trigger for larval release. This is, to our knowledge, the first report of 
physical contact-induced larval release in a scleractinian species, providing grounds for further investigating the potential 
mechanisms involved in this phenomenon.
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Introduction

Environmental and biological cues are widely known to 
induce reproductive activities in aquatic organisms, includ-
ing water temperature, pheromones that synchronize fish 
spawning (Kobayashi et al. 2002; Vine et al. 2019), and 
solar and lunar cycles that trigger spawning in corals (Boch 
et al. 2011; Lin et al. 2021). Spawning events in marine 
invertebrates have also been associated with short-term 
acute stress. For example, heat shock is commonly used 
to stimulate spawning in sea cucumbers, oysters, and giant 
clams in aquaculture (Morgan 2000; Battaglene et al. 2002; 

Mies and Sumida 2012); light shocks stimulate spawning in 
bryozoans and ascidians (Marshall and Keough 2004); and 
sea urchins often spawn when handled and transported in 
dry environments (James and Evensen 2022). In hard cor-
als, larval release has been documented following changes 
in pH and oil pollution (Loya and Rinkevich 1979; Petersen 
and Van Moorsel 2005), and soft corals can propagate after 
mechanical damage (Henry et al. 2003), pointing to stress as 
a common factor triggering reproductive activities in these 
organisms.

In sessile benthic invertebrates, competition for space 
through physical contact is a common source of stress given 
an often limited space availability for settlement and growth 
(Chadwick and Morrow 2011). Sessile benthic organisms 
can preempt space using physical means to harm neighbor-
ing organisms, by overgrowing, overtopping, or abrading 
them, but also using chemicals, by releasing harmful second-
ary metabolites (McCook et al. 2001; Chadwick and Morrow 
2011). Moreover, the modular construction in colonial inver-
tebrates allows them to allocate different energetic resources 
according to the requirements of their specific polyps (Hughes 
2005). This trade-off allows colonial sessile organisms to 
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display different responses to competitive or environmental 
stress within the same colony and might represent an adapta-
tive strategy to escape from detrimental situations (Sammarco 
1982; Dias et al. 2008).

The zoantharian Palythoa caribaeorum Duchassaing & 
Michelotti, 1860 (Cnidaria: Anthozoa: Zoantharia: Sphe-
nopidae), commonly found in shallow reefs of the West-
ern Atlantic, is a strong competitor and has been recorded 
overgrowing and killing several sessile organisms, including 
sponges, gorgonians, scleractinian corals, and hydrocorals 
(Suchanek and Green 1981). Regardless of the mechanisms 
employed by this zoantharian, physical contact is mostly det-
rimental to corals, causing tissue discoloration, reduction in 
photosynthetic efficiency, and necrosis (Lonzetti et al. 2022; 
Grillo et al. 2024). Furthermore, changes in both sexual and 
asexual reproductive strategies following environmental and 
competitive stress have been recorded for other invertebrates 
(Hughes et al. 2003; Dias et al. 2008). It is unclear, however, 
if stress following physical contact with a competitor may 
affect spawning in corals. Here, we document an unexpected 
larval release response of the scleractinian coral Siderastrea 
stellata Verrill, 1868, following a simulated contact interac-
tion with P. caribaeorum in laboratory conditions.

Materials and methods

The organisms were collected in shallow coastal reefs of 
Northeastern Brazil (APARC – Coral Reefs Marine Pro-
tected Area; 5° 12′ 34.4″S, 35° 21′ 46.4″W) in December 
2021. We collected 16 healthy colonies of the scleractin-
ian coral S. stellata (~ 5 cm diameter) and 8 fragments of 
the zoantharian P. caribaeorum (~ 10 cm2 area). Speci-
mens were transported to the laboratory, 70 km from the 
collection site, and left to acclimatize for 5 days under 
ambient conditions in separate tanks (27.7 °C, salinity 
37 psu, pH 8.2). This study was initially delineated as a 
pilot experiment for a wider research looking into com-
petition between corals, macroalgae, and zoantharians 
(Grillo et al. 2024).

We used two different recirculating systems, each 
divided in four 30-L connected tanks, and we placed two 
coral colonies in each tank (n = 16): one physically con-
tacting the zoantharian and another placed ~ 5 cm away 
from the contacting pair as a control (totalizing eight 
interacting groups). The interactions lasted 72 h. Because 
of the massive morphology of the corals, the zoanthar-
ian fragments were carefully attached to the colonies with 
cable ties to simulate competition through physical contact 
and with the polyps of both organisms facing each other to 
guarantee a contacted area in the corals (refer to Supple-
mentary Information in Grillo et al. (2024) for the manipu-
lation setup). Although in the field this interaction mainly 

occurs through the edges of the colonies, another study 
has obtained similar results to field interactions using this 
approach and different responses from corals when using 
an inert mimic (Lonzetti et al. 2022).

Every 24 h, during 3 days, the zoantharian was care-
fully detached to analyze the photosynthetic efficiency of 
corals (effective quantum yield; Y) using a pulse-amplitude 
modulated (PAM) fluorometer (Diving-PAM underwater 
fluorometer; Walz, Germany), after which the contact was 
reestablished.

We conducted a Fisher’s exact test to confirm the influ-
ence of physical interactions (contact and non-contact coral 
colonies) on the spawning activity of corals (categorical 
variables) and a Kruskal–Wallis test to investigate differ-
ences in the photosynthetic efficiency (response variable) 
between contact and non-contact areas within coral colonies 
(independent variable). Statistical tests were run using R in 
RStudio (R Core Team, v.4.2.3).

Results and discussion

Before the end of the interaction period (after 24–48 h 
of interaction), seven out of the eight contacted corals 
released larvae, while only one control colony out of eight 
had a similar response (p < 0.05, Fisher’s exact test). We 
could not observe if the larvae were fully developed nor 
if they were able to settle upon release, but they were 
motile (Supplementary Material 1). Among the contacted 
colonies, only the polyps that were in direct physical con-
tact with the zoantharian released larvae (Fig. 1). These 
polyps further suffered local discoloration and reduction 
of photosynthetic efficiency, which was not observed 
in the rest of the colonies (average Y of contacted area: 
0.136 ± 0.007 SE; average Y of adjacent area not con-
tacted: 0.822 ± 0.016 SE; p < 0.01, Kruskal–Wallis test; 
Fig. 1).

In corals, environmental factors are considered cues for 
spawning events in nature, like lunar and solar light (Boch 
et al. 2011), solar insolation (Van Woesik et al. 2006), and 
rapid increases in sea surface temperature (Keith et al. 
2016). Reproductive activity has also been observed fol-
lowing other conditions considered stressful, including 
rapid increases in pH (Petersen and Van Moorsel 2005), 
chemical pollution in the water by oil and alcohol (Loya 
and Rinkevich 1979), and mechanical disturbance (Henry 
et al. 2003), although these could later negatively affect 
the survival of larvae and colonies (Loya and Rinkevich 
1979; Henry et al. 2003). Our experiment did not involve 
changes in overall environmental parameters in the 
aquariums, but the interacting corals underwent physical 
stress by contacting the zoantharian that triggered spawn-
ing. This is further enforced by the differences observed 
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between contacted and non-contacted areas of the same 
colonies.

The zoantharian P. caribaeorum is known to outcom-
pete corals using biological mechanisms that allow it to 
quickly overgrow coral colonies (Suchanek and Green 
1981; Bastidas and Bone 1996) and release chemical toxic 
compounds that can damage corals’ tissue upon contact 
(Suchanek and Green 1981; Lonzetti et al. 2022). The 
interaction in our experiment lasted a few days, which 
allowed us to observe a short-term response of the corals 

following a likely stressful interaction with the zoanthar-
ian. A caveat of our experiment is that we did not control 
for the chemical or biological effects of P. caribaeorum 
and, therefore, we cannot exclude the possibility of other 
stressful conditions, indirectly caused by contacts with 
the zoantharian, that could trigger spawning in corals like 
shading. This could have altered the conditions at a micro-
environmental scale. Experiments conducted between cor-
als and algae have shown that contact and close proximity 
led to local hypoxia and shifts in microbial communities in 
the interacting zones of corals, which could be highly det-
rimental to them and a source of stress (Smith et al. 2006; 
Barott et al. 2009; Haas et al. 2013a, 2013b). Therefore, it 
remains to be tested whether the reproductive activity of 
corals triggered by stress was directly or indirectly influ-
enced by contacts with the competitor.

Colonial invertebrates can allocate different resources 
and invest in distinct reproductive mechanisms depending 
on specific needs and phases of their modules or polyps 
(Hughes 2005). Central older polyps can require more 
energy if they are in sexual reproductive activity, while 
peripheral polyps would invest more on colony growth 
(Burgess et al. 2017). Also, it has been reported that her-
maphrodite bryozoans and ascidians can increase the pro-
portion of male polyps or reduce the number of female 
polyps in response to stress conditions like competition 
for space, since less energy is needed for male gonad pro-
duction (Hughes et al. 2003; Dias et al. 2008). In our 
experiment, we report a differential investment in sexual 
reproductive activity within the same colony, highlighting 
possible energetic trade-offs. Under stressful conditions 
imposed in a specific area of the colonies, the release of 
larvae could represent a strategy to reduce the energy lost 
by the colony, where the polyps could be highly damaged 
after contacting the zoantharian. Moreover, this strategy 
could be an adaptative response to escape from stress and 
ensure reproduction within the species (Sammarco 1982).

To our knowledge, this is the first coral spawning 
observation induced by contact interactions with a ses-
sile competitor. We were unable to analyze the viability 
of the larvae and the specific mechanisms involved in 
this phenomenon, but this record can provide grounds 
for further investigation. The zoantharian P. caribaeorum 
is considered a strong sessile competitor on reefs and 
triggered larval release in coral colonies by either bio-
logical, chemical, or physical means. This also possibly 
led to distinct energy investments among the colonies, 
where spawning occurred in polyps that were contacted 
by the zoantharian. Our observation adds information 
on the reproduction behavior of scleractinian corals 
under stressful conditions and can generate insights 
on the potential consequences of negative ecological 
interactions.
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Fig. 1   a, b Tissue damage in the brooding coral Siderastrea stellata 
when in physical contact with the zoantharian Palythoa caribaeorum 
(white band). Arrows point to larvae that are being released by polyps 
that were previously interacting with the zoantharian. c Close-up of 
polyps releasing larvae, seen at the microscope
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12526-​024-​01439-3.
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