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Abstract
The study introduces an automated approach for extracting water bodies from satellite images using the Faster R-CNN

algorithm. The approach was tested on two datasets consisting of water body images collected from Sentinel-2 and

Landsat-8 (OLI) satellite images, totaling over 3500 images. The results showed that the proposed approach achieved an

accuracy of 98.7% and 96.1% for the two datasets, respectively. This is significantly higher than the accuracy achieved by

the convolutional neural network (CNN) approach, which achieved 96% and 80% for the two datasets, respectively. These

findings highlight the effectiveness of the proposed approach in accurately mapping water bodies from satellite imagery.

Additionally, the Sentinel-2 dataset performed better than the Landsat dataset in both the Faster R-CNN and CNN

approaches for water body extraction.
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Introduction

Water bodies extraction is critical in hydrology and water

resources management. Accurate and up-to-date informa-

tion on the location, size, and distribution of water bodies

such as lakes, rivers, and wetlands can provide insights into

the quantity and quality of available water resources. This

information is important for the management of water

resources, including water allocation, flood management,

and water quality monitoring. Water body extraction plays

an essential role in environmental studies, including ecol-

ogy, biology, and geology. Accurate data on water bodies

can provide insights into environmental conditions, habitat

suitability, and species distribution. This information is

critical for identifying conservation priorities, understand-

ing ecological processes, and assessing the impacts of

human activities on the environment (Lacaux et al., 2007;

Viala, 2008). It is also important for climate change stud-

ies. Water bodies, particularly lakes, and reservoirs, play a

critical role in the global carbon cycle and the exchange of

greenhouse gases between the atmosphere and water bod-

ies. Extracting accurate data on the size and distribution of

water bodies is important for understanding the role of

water bodies in the global carbon cycle, predicting the

impacts of climate change on water resources, and

designing effective adaptation strategies (Enan, 2021). In

addition, water body mapping can be crucial in disaster

management and emergency response, such as during

natural disasters like floods or hurricanes. Accurate water

body extraction can help identify areas that are at risk of

flooding and provide information on potential evacuation

routes (Wang, 2021; Qin, 2019).

Satellite imagery is a powerful tool for mapping water

bodies, and its use has been demonstrated in various studies

across the globe (Frazier & Page, 2000; Santoro et al.,

2015). The availability of high-resolution satellite images

and advanced image processing techniques can provide

accurate and detailed information on water body dynamics,

distribution, and quality (Gharbia et al., 2018; Verpoorter

et al., 2014). Das et al. (2020) utilized satellite imagery to

map water bodies within the Brahmaputra River basin in

India. The study found that high-resolution satellite images
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can be used to accurately map water bodies and assess their

dynamics. Sentinel-2 satellite images were used to map

water bodies in the Three Gorges Reservoir, China. The

study found that Sentinel-2 imagery can provide accurate

and detailed information on water body dynamics (Bie,

2020). Several methods have been suggested for recog-

nizing water bodies by utilizing Landsat bands in various

water indices (Du et al., 2012; Rokni et al., 2014). Mean-

while, some investigations have employed high-resolution

datasets such as Indian Remote Sensing data of RS2-L4 to

revise the glacier lake inventory in the Indus River basin.

This was accomplished by manually outlining the borders

of the lakes and visually interpreting them (Gupta et al.,

2022).

Since the 1990s, numerous supervised and unsupervised

methods have been utilized to identify water bodies using

Landsat Enhanced Thematic Mapper data; unsupervised

image classification was found to provide the highest

accuracy but was limited at lake edges (Elsahabi et al.,

2016; Guo et al., 2017; Yan, 2018; Yang & Chen, 2017).

Several water indexes techniques have been proposed, such

as the normalized difference water index (NDWI) based on

Landsat which has been used to analyze seasonal variations

over a 15-year period (2001–2015) in the Telibandha Lake

Catchment (Kumari et al., 2022). However, shadows in

built-up areas can interfere with NDWI’s performance. To

address this issue, Xu proposed an adjusted standardized

contrast water file (MNDWI) which uses shortwave infra-

red (SWIR) band instead of a NIR band (Xu, 2006). But

this model is unable to distinguish between water bodies

and shadows (Huang et al., 2015). The limited spectral

resolution of high-resolution remote-sensing images gen-

erally makes it challenging to implement improvements in

the water index (Chen et al., 2018).

In general, unsupervised classification techniques

involve k-means clustering and ISODATA clustering

approaches, while machine-learning techniques typically

include neural networks and support vector machines

(Katz, 2016). One limitation of machine learning in water

body extraction from remote sensing is the reliance on

accurately labeled training data. This can be challenging to

obtain, as manually labeling large amounts of data can be

time-consuming and resource intensive. Additionally,

variations in water body types, sizes, and environmental

conditions can make it difficult to create a model that can

be trained to perform effectively across a variety of con-

texts. Another limitation is the complexity of the algo-

rithms used, which can make it difficult to interpret and

explain the results. Furthermore, the accuracy of the model

is highly dependent on the quality and resolution of the

input remote-sensing data, which can limit its applicability

in certain scenarios. Traditional machine-learning tech-

niques typically involve the manual selection of features

from the imagery, such as texture, color, and shape. These

features are then used to train a model, such as a support

vector machine, to classify pixels as water or non-water.

Despite its effectiveness, the semantic segmentation

approach can be time-consuming and requires domain

expertise to identify and select the appropriate features, as

noted by Mao et al. (2019). On the other hand, deep

learning approaches utilize convolutional neural networks

(CNNs) to discover more distinctive spatial-spectral char-

acteristics, leading to improved detection and identification

of water bodies (Isikdogan et al., 2017). Convolutional

neural networks (CNNs) have been widely used in recent

years to recognize objects such as water bodies from high-

resolution satellite imagery (Chen et al., 2020; Dong et al.,

2019; Gharbia et al., 2021; Wang et al., 2020; Zhang et al.,

2021). Compared to ratio-based indexes for extracting

water bodies, CNNs offer significant multi-scale feature

representation capabilities and can effectively extract both

low-level location information and high-level semantic

information. When it comes to detecting continuous sur-

face objects, such as water bodies and highways, semantic

segmentation is generally considered the most appropriate

approach. Models commonly used for this purpose include

DeepLab (Chen et al., 2017), UNet (Ronneberger et al.,

2015), PSPNet (Zhou et al., 2017), and SegNet (Badri-

narayanan et al., 2017). It has been demonstrated that deep

learning methods are generally more effective than shallow

classification methods, such as SVM, as noted by LeCun

et al. (2015). Cheng et al. (2017) used CNN (convolutional

neural network) instead of manually engineered features to

segment water bodies in their study. On the other hand, Lin

et al. (2017) employed a fully convolutional network

(FCN) to incorporate multi-scale information into their

research. They designed a multilayer deconvolutional net-

work to address the scale challenge (Noyola-Medrano &

Martı́nez-Sı́as, 2017). Autoencoders have been used to

extract high-level feature maps from high-resolution ima-

ges (Miao et al., 2018), while the ResNet model has been

employed to identify global water reservoirs. Additionally,

related regions with convolutional neural networks (R-

CNN) models have been widely used in the field of object

detection (Fang et al., 2019).

Faster R-CNN is a type of object detection model that

uses a CNN as a backbone network. It combines the region

proposal network (RPN) with a detection network to per-

form both object localization and classification. Faster

R-CNN is known for its speed and accuracy and has been

used in various applications such as autonomous vehicles,

surveillance, and robotics. while CNNs are primarily used

for image classification. Faster R-CNNs are used for object

detection tasks and have the added advantage of being

faster and more accurate than other object detection models

(Lee et al., 2016).
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Faster R-CNN has been shown to significantly improve

overall performance by incorporating the region proposal

network (RPN), particularly in terms of detection speed.

The Faster R-CNN is primarily designed for object detec-

tion (Ren et al., 2015), and there are several research

studies that have explored using Faster R-CNN for image

classification. Researchers have modified the Faster

R-CNN algorithm in these studies to work with fixed image

regions rather than region proposals. The Faster R-CNN

algorithm was used to improve both object detection and

image classification. In their study, Wang et al. (2019)

made modifications to the RPN (region proposal network)

by creating a fixed set of anchor boxes, as opposed to

region proposals. These anchor boxes were utilized to

generate predetermined image regions for the purposes of

classification. The proposed algorithm is evaluated on

several standard image classification benchmarks, achiev-

ing state-of-the-art results.

This paper proposes an automated approach for

extracting water bodies from satellite imagery using Faster

R-CNN. This method was applied to extract water bodies

from Sentinel-2 and Landsat-8 (OLI) data for comparison.

The paper is arranged as follows: Second section outlines

the materials and methods, the Third section presents the

results and discussion, and the fourth section provides

conclusions and future work.

Materials and Methods

Study Area

Regarding the importance of covering various types and

sizes of water bodies to assess the proposed approach,

Egypt is the suitable choice for this study, because it

includes abundant and varied bodies of water and various

urban environments. According to El-Rawy et al. (2020),

Egypt is situated in Northeast Africa and has a land area of

approximately one million square kilometers. Egypt has

both the Mediterranean and the Red Sea as part of its

borders. This country borders, Libya and Sudan to the west

and south Fig. 1. Egypt’s water resources include the Nile

River, rainfall, and flash flooding. Fresh water in Egypt is

derived from the Nile River Nile, which provides about

97% of the country’s supply. Egypt has riverine and coastal

rivers (Yu et al., 2019):

The Qattara Depression is the northern inner basin

covering a total area of 520.881 km2, approximately 52%.

The area of the Nile Basin is 326,751 km2, about 33% of

the country’s total area. The Mediterranean Coast Basin is

65,568 km2, about 6% of its total area and the Red Sea

Basin is an area of roughly 438,000 km2.

The Proposed Approach

The paper suggests using the Faster R-CNN (region-based

convolutional neural network) for water bodies extraction,

which involves two phases as follows; see Fig. 2:

1. Preprocessing

2. Faster R_CNN for water bodies extraction

The proposed Faster R_CNN to extract the water bodies

approach is trained and validated on different satellite

datasets, Landsat-8 (OLI) and Sentinel-2 satellite.

Dataset and Preprocessing

Optical satellite systems have been used the most in water

body extraction science. The visible and near infrared

(VNIR) ranges from 0.4 to 1.3 m, the shortwave infrared

(SWIR) ranges from 1.3 to 3.0 m, the thermal infrared

(TIR) ranges from 3.0 to 15.0 m, and the long-wavelength

infrared (LWIR) ranges by (7–14 m) are both protected by

these sensors. The proposed approach was trained and

validated on different satellite datasets, Landsat-8 (OLI)

and Sentinel-2 satellite. Sentinel-2A is a satellite that car-

ries a multispectral instrument. The MSI instrument has a

ten-day repeat interval over a broadband of 290 km. In

February 2013, the Landsat-8 satellite launched loads of

the Thermal Infrared Sensor and Operational Land Imager

(OLI) that observes the Planet’s land surface over 185 km

in a repeat cycle. Both sensors have a 12-bit dynamic

resolution and are rarely saturated on highly reflective

surfaces. Landsat-8 OLI and Sentinel-2A MSI have a

greater than 97 percent association between their mea-

surements. The MSI Sentinel-2 is equipped with bands of

13 reflective wavelengths: four visible bands with a reso-

lution of 10 m and a near-infrared (NIR) band with a res-

olution of 10 m, 6 red edges, NIR, and (SWIR) short-wave

infrared bands with a resolution of 20 m, and other bands

for resolution of 60 m. The Landsat-8 (OLI) owns nine

wavelength bands, six of them with 30 m spatial resolution

(visible, NIR, SWIR1, SWIR2) destined for land

applications.

The images are downloaded individually from the

satellite. Several preprocessing processes must be com-

pleted or treated effectively before using Sentinel-2 and

Landsat-8. More than ten scenes for each Landsat-8 (OLI)

and Sentinel-2 satellite cover Egypt, and the scenes have

been downloaded from the USGS Earth Explorer and ESA

Sentinel-2 Pre-Operations Hub, respectively. A clear non-

hazy day, minimizing potential impact from the atmo-

sphere, was set for all images; see the characteristics of the

bands in each scene. The dataset was splatted into two

datasets.
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The first dataset is the Sentinel-2 images. The Sentinel-2

Level-1C production, which was provided by geometric

and radiometric corrections, contains ortho-rectification

and spatial registration. The Level-1C of Sentinel-2 pro-

duction in the UTM/WGS84 projection is formed in

100 km 9 100 km. Ten scenes of the Sentinel-2 Level-1C

image were obtained from 1st July to 1st Oct. 2020. All

bands were resampled by using SNAP software and the

false-color composite (FCC) image of the Sentinel-2 at

10 m is produced from the green band (3), red band (4),

and NIR band (8). The FCC is produced in layer stack in

Imagine Erdas software. The satellite image covered a very

large area, usually reaching larger than

20,000 m 9 20,000 m. Therefore, it is difficult to process

the full image at the same time. The FCC image is used to

prepare the training data by subset it into two classes water

and no-water. The water objects are specified by the

presence of light black on the FCC (band 8 4 3). Each

subset image is (226 9 226 9 3) pixels. The number of

training data reaches more than 1500 images for the first

dataset.

The second dataset is the Landsat-8 (OLI) level-2 pro-

duct, which is provided through geometric and atmospheric

corrections. The Level-2 product that is Landsat-8 (OLI) is

in the UTM/WGS84 projection. Ten scenes of Landsat-8

(OLI) images were obtained from 1st July to 1st Oct. 2020.

All bands were resampled by using Imagine Erdas software

and the false-color composite (FCC) image of the Landsat-

8 (OLI) at 30 m is produced from bands 5, 4, and 3

respectively. As the first dataset, the FCC image is used to

Fig. 1 Egypt Map
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prepare the training data by subset it into two classes water

(black) and no-water (red) based on the features; see Fig. 3.

The water objects are specified by the presence of light

black on the FCC (band 5 4 3). Each image is

(226 9 226 9 3) pixels. The number of training data

reaches more than 1500 images for the second dataset.

Faster R_CNN for Water Bodies Extraction

In this section, we provide a brief overview of the funda-

mental components of Faster R-CNN. For more in-depth

technical information, we suggest referring to the original

paper (Ren et al., 2015). The RPN involves the use of

convolution layers from a pre-trained network, followed by

a 3 9 3 convolutional layer. This effectively reduces the

dimensionality of a large spatial window (e.g., 228 9 228)

in the input image to a lower-dimensional feature vector at

a center stride (e.g., 16). Next, two 1 9 1 convolutional

layers are added for both the classification and regression

branches of all spatial windows.

The proposed Faster R-CNN approach for water bodies

extraction consists of combining a region proposal network

(RPN) with a Fast-RCNN to detect and localize water

bodies in an image as the following steps:

1. Input label image into the network.

2. Use a convolutional neural network (CNN) to extract

features from the image.

Satellite bands

Atmospheric

Correction 

Subset Layer stack label water

label no_water 

Fully connected layers.

CNN
Feature 

Map

Proposal

Region Proposal Network

classifier RoI pooling 

Preprocessing

Faster R_CNN for Water bodies extraction

Fig. 2 The framework of the proposed Faster R_CNN for water bodies extraction approach

Fig. 3 Loss value and accuracy of the training and validation for the Landsat-8 (OLI) dataset
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3. Use a region proposal network (RPN) to generate

candidate object regions in the image.

4. Use a region of interest (RoI) pooling layer to extract

features from each candidate region.

5. Pass the extracted features through a series of fully

connected layers to classify the object and predict its

bounding box.

6. Apply the non-maximum suppression (NMS) tech-

nique to eliminate redundant detections and produce

the ultimate detection outcomes.

7. These steps can be further optimized and fine-tuned

through transfer learning, data augmentation, and

hyperparameter tuning techniques.

The training is done as the following:

1. Training, validation, and testing: The images and label

arrays are randomly shuffled. This allows the images

and their corresponding labels to remain linked even

after shuffling. The dataset is split into 3 datasets. The

training and evaluation datasets are used to train the

model, while the testing dataset is used to assess the

model on unseen data. Unseen data are applied for

simulating real-world prediction, as the model has not

seen this data before. The dataset is partitioned into

three subsets, with 70% allocated for training, 20% for

validation, and 10% for testing. During training, the

network is set to run 50 epochs with a set size of 16.

2. The loss and accuracy for the training and validation

datasets: A loss function is used to help a machine-

learning algorithm to optimize. The loss is based on

training and validation, and how well the model is

performing in these two test sets. It is the sum of all

mistakes made in all training and test sets. A loss

estimate is a method that describes how badly or well

the model behaves after each cycle of optimization,

Figs. 3 and 4 show the loss and accuracy for the

training and validation of Landsat-8 (OLI) and Sen-

tinel-2 datasets, respectively.

Evaluation Metrics

There are several metrics that can be used to measure the

performance of a deep learning binary classification model.

Some commonly used metrics include precision, recall, and

overall accuracy (Simonyan & Zisserman, 2014).

Precision

Precision is a performance metric used in binary classifi-

cation models that measures the accuracy of positive pre-

dictions. It is the ratio of true-positive predictions to the

total number of positive predictions made by the model. In

other words, precision represents the proportion of positive

predictions that are correct. It is a measure of the model’s

ability to avoid making false-positive predictions, or in

other words, its ability to correctly identify true-positive

cases. The precision formula is expressed as:

Precision ¼ Number of True Positives

= Number of True Positivesþ Number of False Positivesð Þ

True positives refer to the count of positive instances

that the model correctly predicted, while false positives

represent the count of negative instances that the model

mistakenly predicted as positive. Precision ranges between

0 and 1, where a higher value indicates better performance.

A precision of 1.0 means that all positive predictions made

by the model are correct, while a precision of 0.0 means

that none of the positive predictions are correct.

Recall

Recall is a performance metric used in binary classification

models that measures the ability of the model to correctly

identify all positive cases. It is the ratio of true-positive

predictions to the total number of actual positive cases in

the dataset. In other words, recall represents the proportion

of actual positive cases that the model correctly identified

as positive. It is a measure of the model’s ability to avoid

making false-negative predictions, or in other words, its

ability to correctly identify true-positive cases. The for-

mula for the recall is:

Recall ¼ True Positives= True Positivesþ False Negativesð Þ

where true positives are the number of positive cases that

the model correctly predicted, and false negatives are the

number of positive cases that the model incorrectly pre-

dicted as negative. Recall ranges between 0 and 1, where a

higher value indicates better performance. A recall of 1.0

means that the model correctly identified all positive cases

in the dataset, while a recall of 0.0 means that the model

did not identify any positive cases.

F1 Score

The F1 score is a commonly used metric for evaluating the

performance of binary classification models. It is a measure

of the balance between precision and recall, which are two

important evaluation metrics in machine learning. The F1

score is the harmonic mean of precision and recall, and it

provides a single score that combines these two metrics.

The F1 score formula combines precision and recall into a

single metric that varies from 0 to 1, where a higher value

indicates better performance. It is calculated using the

formula:
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F1 score ¼ 2 � precision � recallð Þ= precisionþ recallð Þ

Overall Accuracy

Overall accuracy is a performance metric used to evaluate

the performance of classification models. It measures the

proportion of correct predictions made by the model across

all classes in the dataset (Uijlings et al., 2013). The formula

for overall accuracy is:

Overall accuracy ¼ Number of Correct Predictionsð Þ=
Total Number of Predictionsð Þ

where the number of correct predictions is the sum of true

positives and true negatives, and the total number of pre-

dictions is the sum of true positives, false positives, true

negatives, and false negatives. Overall accuracy varies

from 0 to 1, where a higher value indicates better perfor-

mance. A perfect model would have an accuracy of 1.0,

meaning that it correctly predicted all cases in the dataset.

While overall accuracy can be a useful metric, it may not

always provide a complete picture of a model’s

performance.

Results and Discussion

Satellite image classification was executed to characterize

the classes of (water and no-water), based on the Faster

R_CNN described in Fig. 2; also. It uses the Faster R_CNN

approach to compare Sentinel-2 and Landsat-8 (OLI)

datasets. To show which are more perfect for automatic

extraction of the water body. The water class encompasses

significant and distinct features of surface water, such as

the sea, streams, lakes, canals, or rivers the training data

were assigned to each land category (urban, rivers, lakes,

canals, fields, and forests) by CORINE land cover termi-

nology (Tao et al., 2016). The class designated for each

dataset was confirmed using Google Earth. The dataset

consists of a subset of images extracted from Sentinel-2

and Landsat-8 (OLI) satellite imagery collected over Egypt

country. It includes approximately 1500 images for each

dataset. The training images are labeled with either a

‘‘water’’ or ‘‘no-water’’ classification. The Landsat-8 (OLI)

l dataset has 1525 total images, 765 images for the no-

water class, and 760 images for the water class; see Fig. 5.

The Sentinel-2 dataset has 1504 total images, 754 ima-

ges for the no-water class, and 750 images for the water

class; see Fig. 6.

In our model, the data are balanced in two datasets

(Landsat-8 (OLI) and Sentinel-2) in different classes (water

and no_water); see Figs. 5 and 6. Balanced data refers to a

situation where the classes or categories in a dataset are

equally represented. In machine learning, balanced data are

important because it helps ensure that the model is trained

on an unbiased representation of the underlying data. When

the dataset is balanced, the model is trained equally on all

classes, which helps to prevent it from becoming biased

towards any particular class. This is important because

biased models can lead to inaccurate predictions and

decisions. In addition, balanced data can improve the

quality of the model’s training by reducing the risk of

overfitting; see Figs. 3 and 4. Overfitting transpires when

the model tends to memorize the data in the training set

rather than understanding the underlying patterns present in

the data, which can result in poor performance on new,

Fig. 4 Loss value and accuracy of the training and validation for the Sentinel-2 dataset
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unseen data. With balanced data, the model is less likely to

overfit to any class, which can help to improve its gener-

alization performance. Figure 7 demonstrates the

application of the Faster R-CNN approach on a subset of

Sentinel-2 data of Egypt.

Recent research in this domain has focused on applying

deep learning methods to improve the precision of water

Fig. 5 The Landsat-8 (OLI)

dataset distribution per class

Fig. 6 The Sentinel-2 dataset

distribution per class

no_water
water

Fig. 7 The sentinel-2 classified

image based on the Faster

R-CNN
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body extraction from satellite images. One such study by

Yan et al. (2022) proposed a U-Net architecture for

extracting water bodies from Sentinel-2 images, with an F1

score of 0.90 and a relative error of 3%. Similarly, Singh

et al. (2021) combined a CNN with a fully connected

conditional random field model to extract water bodies

from Landsat-8 images, achieving an overall accuracy of

94.5%. Additionally, Yu et al. (2022) proposed a hierar-

chical attentive high-resolution network that achieved high

accuracy with an average precision of 98.44% and an

average recall of 97.84%. These recent works demonstrate

the potential of deep learning methods in the field of water

body extraction from satellite imagery and highlight the

importance of exploring new architectures and algorithms

to further enhance the accuracy of water body extraction.

To compare the proposed Faster R-CNN approach for

water extraction with other existing approaches, such as

CNN-based approaches, it is common practice to evaluate

the detection performance using a common dataset and

consistent evaluation criteria. Metrics such as precision,

recall, F1 score, and overall accuracy can be used for

comparison. It is crucial to ensure a fair comparison by

using the same evaluation criteria, dataset, and prepro-

cessing steps. In addition, the computational resources

required to train and run the models, as well as the models’

complexity and ability to generalize to different environ-

ments, should also be considered. Faster R-CNN is a two-

stage architecture, while CNN is a single-stage architec-

ture. Faster R-CNN uses a region proposal network (RPN)

to generate regions of interest (RoIs) and then classifies and

refines the RoIs using a separate detection network. In

contrast, CNN directly classifies water bodies and their

locations in a single pass. The Faster R-CNN for water

bodies extraction approach is designed specifically for

water body detection, while CNN is a more general-pur-

pose model used for a variety of computer vision tasks,

including image classification and segmentation. Faster

R-CNN achieves higher accuracy in object detection tasks

compared to CNN. This is because Faster R-CNN uses a

more complex architecture that can accurately localize

objects and reduce false positives.

Tables 1 and 2 present a comparison between the Faster

R-CNN and CNN approaches implemented on two data-

sets: Landsat-8 (OLI) and Sentinel-2. The results show that

the Faster R-CNN approach for water bodies extraction

achieved higher accuracy than the CNN approach based on

different metrics, such as precision, recall, F1 score, and

overall accuracy on the Landsat-8 (OLI) dataset. On the

other hand, the Faster R-CNN approach achieved compa-

rable results in the Sentinel-2 and Landsat-8 (OLI) datasets.

The sentinel-2 dataset achieved result better than Landsat-8

(OLI) datasets based on CNN and Faster R_CNN.

Conclusions and Future Work

This study introduces a Faster R-CNN approach for water

extraction from satellite imagery on two datasets, Sentinel-

2 and Landsat-8 (OLI), containing over 1500 images each.

The training dataset was labeled with a ‘‘water’’ or ‘‘no-

water’’ classification. The Faster R-CNN approach out-

performed the CNN approach in terms of precision, recall,

F1_score, and overall accuracy on both datasets, with the

Sentinel-2 dataset performing better than Landsat-8 (OLI)

for both approaches. Comparative tests demonstrated the

practical feasibility and advanced superiority of the Faster

R-CNN approach in water body extraction tasks. Although

the Faster R-CNN model proposed in this study has shown

promise in water body extraction from remote sensing

images, there are still limitations that affect its accuracy in

localizing and segmenting water bodies. To address these

limitations, future research may investigate advanced

techniques such as super-resolution to improve the quality

of extraction for small and narrow water bodies, spatial

context characterization strategies to enhance the extrac-

tion of occluded water body regions, and weakly super-

vised or few-shot learning architectures to reduce the need

for large amounts of training data.
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Table 1 The performance of the Landsat-8 (OLI) dataset

F1_score Precision Recall Overall accuracy

F_RCNN 0.963 0.975 0.952 0.961

CNN 0.876 0.808 0.985 0.805

Table 2 The performance of the Sentinel-2 dataset

F1_score Precision Recall Overall accuracy

F_RCNN 0.967 0.974 0.961 0.987

CNN 0.824 1.000 0.700 0.964

Bold indicates to clarify the results of the proposed approach in

comparison with the results of CNN approach
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