Skip to main content

Advertisement

Log in

Transformation Analysis on Landuse/Land Cover Changes for Two Decades Between 1999 and 2019 CE with Reference to Aquaculture—Nagapattinam Coast, Southeast India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Even though the aquaculture is more lucrative compared to other high yielding variety of agricultural activities, the leakage of chemicals and wastages affects other landuse and land cover including the nearby rice fields in different parts of coastal India. We mapped the landuse/land covers of crop land, plantation, land with shrub, land without shrub, rural, urban and marshy land at Nagapattinam coast of southeast India by using Landsat series satellite images (TM and OLI) and estimated the changes with transformation analysis to assess the impacts of brackish water aquaculture between 1999 and 2019 CE. In two decades, the brackish water aquaculture activities have increased 2.5 times from 23.87 km2 to 61.34 km2 mostly by using 6.76 km2 of crop land, 18.67 km2 of fallow land, 3.64 km2 of marshy land and 2.3 km2 of plantation area. The accuracy assessment was carried out using 180 sample locations for each year (1999, 2009 and 2019). The accuracy assessment analysis shows overall accuracy of 81.66% (1999), 82.22% (2009) and 80.55% (2019), and overall Kappa coefficient values are 0.80, 0.81 and 0.79 for 1999, 2009 and 2019, respectively. This shows that the prepared Lu/Lc features are accurate enough for landuse and land cover change investigations. Our results and maps provide quantitative data to take proper actions to regulate the anthropogenic land alteration practices in this ecologically sensitive coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, A., Khalid, A., Butt, M. A., Mehmood, R., Mahmood, S. A., Sami, J., & Ali, F. (2018). Towards a remote sensing and GIS-based technique to study population and urban growth: A case study of Multan. Advances in Remote Sensing, 7(03), 245–258. https://doi.org/10.4236/ars.2018.73017

    Article  Google Scholar 

  • Aredehey, G., Mezgebu, A., & Girma, A. (2018). Land-use land-cover classification analysis of Giba catchment using hyper temporal MODIS NDVI satellite images. International Journal of Remote Sensing, 39(3), 810–821.

    Article  Google Scholar 

  • Ashraf, MDewan, Yasushi Yamaguchi, . (2009). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment, 2009(150), 237–249.

    Google Scholar 

  • Bagan, H., & Yamagata, Y. (2012). Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sensing of Environment, 127, 210–222.

    Article  Google Scholar 

  • Bagan, H., Takeuchi, W., Kinoshita, T., Bao, Y., & Yamagata, Y. (2010). Landcover classification and change analysis in the Horqin sandy land from 1975 to 2007. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(2), 168–177.

    Article  Google Scholar 

  • Barbier, E. B. (2006). Natural barriers to natural disasters: Replanting Mangroves after the Tsunami. Frontiers in Ecology and the Environment., 4, 124–131.

    Article  Google Scholar 

  • Boyd, C. E., & McNevin, A. (2014). Aquaculture, resource use, and the environment. Willey.

    Google Scholar 

  • Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egypt Journal of Remote Sensing and Space Sciences, 18(2), 251–259.

    Google Scholar 

  • Camacho-Valdez, V., Ruiz-Luna, A., Ghermandi, A., & Ce´sar A., Berlanga-Robles., Paulo, A. L. D., Nunes. . (2014). Effects of land use changes on the ecosystem service values of coastal wetlands. Environmental Management., 54, 852–864.

    Article  Google Scholar 

  • Carlotto, M. J. (2009). Effect of errors in ground truth on classification accuracy. International Journal of Remote Sensing, 30, 4831–4849.

    Article  Google Scholar 

  • Clay, J. W. (1996). Market potentials for redressing the environmental impact of wild captured and pondproduced shrimp. Draft. World Wildlife Fund, Washington DC, 21 Nov.

  • Dewalt, B., Vergne, P., & Hardin, M. (1996). Shrimp aq culture development and the environment: People, mangroves and fisheries on the Gulf of Fonseca. Honduras. World Development, 24(7), 1193–1208.

    Article  Google Scholar 

  • Duong, P. C., Nauditt, A., Nam, H., & Phong, N. T. (2016). Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam—a case study of the Nhue-Day River Basin. Journal of Natural Resources and Development, 6, 81–91.

    Article  Google Scholar 

  • Emerson, K., & Rajalakshmi, N. (2002). Environmental and social conflicts of aquaculture in Tamilnadu and Andhra Pradesh. Journal of Social and Economic Development, 13–26.

  • Flaherty, M., Vandergeest, P., & Miller, P. (1999). Rice paddy or shrimp pond: Tough decisions in rural Thailand. World Development, 27(12), 2045–2060.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

    Article  Google Scholar 

  • Foody, G. M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment, 114, 2271–2285.

    Article  Google Scholar 

  • Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18, 799–810.

    Article  Google Scholar 

  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, blue Nile basin, Ethiopia. Science of the Total Environment, 619–620, 1394–1408.

    Article  Google Scholar 

  • Geneletti, D., & Dawa, D. (2009). Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya. Environmental Impact Assessment Review, 29, 229–242.

    Article  Google Scholar 

  • Godde, M. P., Price, M. F., & Zimmermann, F. M. (2000). Tourism and development in mountain regions: Moving forward into the new millennium. Tourism and development in mountain regions. CABI Publishing, Wallingford, pp. 1–25.

  • Gujja, B., & Finger-Stich, A. (1996). What price prawn? Shrimp cultivation in Asia. Environment, 38, 12–39.

    Google Scholar 

  • Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67.

    Google Scholar 

  • Hein. . (2000). Impact of shrimp farming on mangroves along east coast of India. Unasylva, 51, 48–54.

    Google Scholar 

  • Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29(8), 941–951.

    Article  Google Scholar 

  • Jin, S., Yang, L., Zhu, Z., & Homer, C. (2017). A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment, 195, 44–55.

    Article  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., & Saravanan, S. (2017). Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Sciences, 20(2), 169–185.

    Article  Google Scholar 

  • Kiruki, H. M., Van der Zanden, E. H., Malek, Z., & Verburg, P. H. (2017). Land cover change and woodland degradation in a charcoal producing semi-arid area in Kenya. Land Degradation & Development., 28, 472–481.

    Article  Google Scholar 

  • Lambin, E. F. (1999). Monitoring forest degradation in tropical regions by remote sensing: Some methodological issues. Global Ecology and Biogeography, 8(3–4), 191–198.

    Article  Google Scholar 

  • Lea, C., & Curtis, A. C. (2010). Thematic accuracy assessment procedures: National Park Service Vegetation Inventory, version 2.0. Natural Resource Report NPS/2010/ NRR––2010/204, National Park Service, Fort Collins, Colorado, USA. Retrieved from <http://www.science.nature.nps.gov/im/inventory/veg/index.cfm>. Accessed 21 February 2015.

  • Lin, C. K., & Yi, Y. (2003). Minimizing environmental impacts of freshwater aquaculture and reuse of pond effluents and mud. Aquaculture, 226, 57–68.

    Article  Google Scholar 

  • Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54.

    Article  Google Scholar 

  • Lv, Z., Liu, T., Wan, Y., Benediktsson, J. A., & Zhang, X. (2018). Post-processing approach for refining raw land cover change detection of very high-resolution remote sensing images. Remote Sensing, 10, 472.

    Article  Google Scholar 

  • Mei, A., Manzo, C., Fontinovo, G., Bassani, C., Allegrini, A., & Petracchini, F. (2016). Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data. Journal of African Earth Sciences, 122, 15–24.

    Article  Google Scholar 

  • Messerli, B., & Ives, J. D. (1997). Mountains of the World: A global priority. Parthenon.

    Google Scholar 

  • Mujabar, P. S., & Chandrasekar, N. (2013). Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences , 6, 647–664.

    Article  Google Scholar 

  • Natarajan, L., Usha, T., Gowrappan, M., et al. (2021a). Flood susceptibility analysis in Chennai Corporation Using Frequency Ratio Model. Journal of the Indian Society of Remote Sensing (2021). https://doi.org/10.1007/s12524-021-01331-8.

  • Natarajan, L., Sivagnanam, N., Usha, T., et al. (2021b). Shoreline changes over last five decades and predictions for 2030 and 2040: A case study from Cuddalore, southeast coast of India. Earth Science Informatics, 14, 1315–1325. https://doi.org/10.1007/s12145-021-00668-5

    Article  Google Scholar 

  • Prabu, P., & Dar, M. A. (2018). Land-use/cover change in Coimbatore urban area (Tamil Nadu, India)—a remote sensing and GIS-based study. Environmental Monitoring and Assessment, 190, 445.

    Article  Google Scholar 

  • Priyadarsi, D. R., Natarajan, L., Chokkalingam, L., & Jose L. S.-Z. (2021). Decadal-scale spatiotemporal changes in land use/land cover of EL Potosi basin at semi-arid northeast Mexico and evolution of peat fire between 1980 and 2020 CE. Journal of South American Earth Sciences, 110, 103395.

  • Ravichandran, P. (2005). Coastal aquaculture and its impact on fisheries development in India. In Proceedings of the Seventh Indian Fisheries Forum, Bangalore, India, November 8–12, pp. 30–34.

  • Rembold, F., Carnicelli, S., Nori, M., & Ferrari, A. (2000). Use of aerial photographs, Landsat TM imagery and multidisciplinary field survey for land-cover change analysis in the lakes region (Ethiopia). International Journal of Applied Earth Observation and Geoinformation, 2(3–4), 181–189.

    Article  Google Scholar 

  • Sahana, M., Ahmed, R., & Sajjad, H. (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model Earth Systems and Environment, 2, 81. https://doi.org/10.1007/s40808-016-0135-5

    Article  Google Scholar 

  • Sajjad, H., Muhammad, M., Ashfaq, A., Waseem, A., Hafiz, M. H., Mazhar, A., Nasir, M., Asad, A., Hafiz, U. F., SyedaRefat, S., Shah, F., Depeng, W., & Wajid, N. (2020). Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environmental Science and Pollution Research, 2020(27), 39676–39692.

    Google Scholar 

  • SCGE. (2011). Supervised/unsupervised land use land Cover classification using ERDAS imagine. Summer course computational geoecology. Retrieved from http://horizon.science.uva. Accessed 30 May 2015.

  • Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and landuse changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41. https://doi.org/10.1016/j.apgeog.2006.09.004

    Article  Google Scholar 

  • Shang, Y. C., Leung, P., & Ling, B. H. (1998). Comparative economics of shrimp farming in Asia. Aquaculture, 164(1–4), 183–200.

    Article  Google Scholar 

  • Shiva, V., & Karir, G. (1997). Towards sustainable aquaculture. Research Foundation for Science, New Delhi, India, 133.

  • Szuster, B. W., Chen, Q., & Borger, M. (2011). A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525–532.

    Article  Google Scholar 

  • Thirumalai, P., Senthiland, J., & Anand, P. H. (2007). Impact of tsunami on aquaculture farms along the Nagapattinam coast zone, Tamil Nadu, India. Journal of the Indian Society of Remote Sensing, 35(1).

  • Tolessa, T., Senbeta, F., & Kidane, M. (2017). The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosystem Services, 23, 47–54.

    Article  Google Scholar 

  • Udin, W. S., & Zahuri, Z. N. (2017). Land use and land cover detection by different classification systems using remotely sensed data of KualaTiga, Tanah Merah Kelantan, Malaysia. Journal of Tropical Resources and Sustainable Science, 5, 145–151.

    Google Scholar 

  • Vera, C. V., Arturo, R. L., Andrea, G., & Ce´sar, A. B. R., Paulo, A. L. D. N., (2014). Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands. Environmental Management, 54, 852–864.

    Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/s0034-4257(03)00079-8

    Article  Google Scholar 

  • Yang, L., Stehman, S. V., Smith, J. H., & Wickham, J. D. (2001). Short communication: Thematic accuracy of MRLC land-cover for the eastern United States. Remote Sensing of Environment, 76, 418–422.

    Article  Google Scholar 

  • Yang, C. B., He, X. Y., Yan, F. Q., Yu, L. X., Bu, K., Yang, J. C., Chang, L. P., & Zhang, S. W. (2017). Mapping the influence of land use/land cover changes on the urban heat island effect-a case study of Changchun, China. Sustainability, 9, 312.

    Article  Google Scholar 

  • Yuan, F., Sawaya, K. E., Loeffelholz, B., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2–3), 317–328.

    Article  Google Scholar 

  • Zahra, H., Rabia, S., Sheikh Saeed, A., AmirHaider, M., Neelam, A., Amna, B., & Summra, E. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus, 5, 812. https://doi.org/10.1186/s40064-016-2414-z

    Article  Google Scholar 

  • Zaidi, S. M., Akbari, A., AbuSamah, A., Kong, N. S., Gisen, A., & Isabella, J. (2017). Landsat-5 time series analysis for land use/land cover change detection using NDVI and semi-supervised classification techniques. Polish Journal of Environmental Studies, 26(6), 2833–2840. https://doi.org/10.15244/pjoes/68878.

  • Zhang, S., Zhang, S., & Zhang, J. (2000). A study on wetland classification model of remote sensing in the Sangjiang plain. Chinese Geographical Science, 10, 68–73.

    Article  Google Scholar 

  • Zhang, P., Lv, Z., & Shi, W. (2014). Local spectrum-trend similarity approach for detecting land-cover change by usingspot-5 satellite images. IEEE Geoscience and Remote Sensing Letters, 11, 738–742.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the Ministry of Tribal Affairs (Grant No. 201819-NFST-TAM-01538) and NCCR- Chennai, Ministry of Earth science (MoES), Government of India. GM acknowledges and thanks to EU EQUIP Project “FISHERCOAST—ES/R010404/1.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshumanan Chokkalingam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periyasamy, R., Roy, P.D., Chokkalingam, L. et al. Transformation Analysis on Landuse/Land Cover Changes for Two Decades Between 1999 and 2019 CE with Reference to Aquaculture—Nagapattinam Coast, Southeast India. J Indian Soc Remote Sens 49, 2831–2845 (2021). https://doi.org/10.1007/s12524-021-01432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01432-4

Keywords

Navigation