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Abstract
Fine particulate matter (PM2.5) has a considerable impact on the environment, climate change, and human health. Herein,

we introduce a deep neural network model for deriving ground-level, hourly PM2.5 concentrations by Himawari-8 aerosol

optical depth, meteorological variables, and land cover information. A total of 151,726 records were collected from 313

ground-level PM2.5 monitoring stations (spread across the North China Plain) to calibrate and test the proposed model. The

sample- and site-based cross-validation yielded satisfactory performance, with correlation coefficients[ 0.8 (R = 0.86 and

0.83, respectively). Furthermore, the variation in mean ground-level hourly PM2.5 concentrations, using 2017 data, showed

that the proposed method could be applied for spatiotemporal continuous PM2.5 monitoring. This study will serve as a

reference for the application of geostationary meteorological satellite to perform ground-level PM2.5 estimation and the

utilization in atmospheric monitoring.
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Introduction

Fine particulate matter (PM2.5), which consists of particles

with aerodynamic diameters\ 2.5 lm, has attracted con-

siderable scientific attention (Pope & Dockery, 2006).

Previous studies have indicated that prolonged exposure to

PM2.5 is affiliated with many human health issues including

respiratory problems, cardiovascular disease, cancer, and

infectious diseases (Bartell et al., 2013; Brauer et al., 2012;

Chen et al., 2017; Crouse et al., 2012; Dominici et al.,

2006; Gent et al., 2009; Guo et al., 2016; Lao et al., 2019;

Pope, 2000; Zhang et al., 2020). Generally, ground

monitoring sites can provide accurate PM2.5 measurements,

but there are many regions for which measurements are

unavailable as there are no monitoring networks. Thus, the

sparse distribution of ground sites limits our capability to

estimate the impacts of human exposure to PM2.5, with data

on local meteorological effects and emission sources

absent. Consequently, it is important that models that can

accurately predict the broader spatiotemporal distribution

of ground-level PM2.5 concentrations are developed.

Satellite has been applied to monitor ground-level PM2.5

emissions to fill in spatial gaps in ground measurement

coverage (Chu et al., 2016; Hu et al., 2014; Kloog et al.,

2012; Ma et al., 2014). Several studies were conducted for

estimating PM2.5 concentrations from the aerosol optical

depth (AOD), derived by satellite remote sensing, includ-

ing multiple linear regression (Chu et al., 2016; Gupta &

Christopher, 2008, 2009; Kacenelenbogen et al., 2006; Liu

et al., 2005; Paciorek et al., 2008; Schaap et al., 2009;

Wang, 2003; Yao et al. 2018), mixed-effect models (Just

et al. 2015; Kloog et al. 2011, 2012, 2014; Lee et al. 2012;

Zheng et al. 2016), geographically weighted regressions

(Bai et al., 2016; Guo et al., 2017; He & Huang, 2018a, b;

Hu, 2009; Ma et al., 2014; You et al., 2015; Zou et al.,

2016), and chemical transport models (Crouse et al.,
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2012, 2016; Hystad et al., 2012; Liu et al., 2004; van

Donkelaar et al., 2006; Wang & Chen, 2016). To improve

the model performance, an increasing number of predic-

tors, including meteorological information, land cover, and

aerosol properties, were integrated. Thus, machine learning

models, which are capable of complex nonlinear relation-

ships fitting, have been applied to get PM2.5 concentrations

from satellite observations. For example, random forests

(Chen et al., 2018; Hu et al., 2017), deep belief networks

(DBNs) (Li et al., 2018; Liu et al., 2018), deep neural

networks (DNNs) (Wang & Sun, 2019), and machine

learning models with high-dimensional expansion (Xue

et al., 2019) have been used, and they have delivered

superior prediction accuracy and applicability.

All these studies were limited to the use of polar orbit

satellites, however, geostationary satellites are still rarely

used in the estimation of PM2.5. These geostationary

satellites are able to conduct more measurements and

facilitate the capturing of atmospheric aerosol variation

data hourly. In particular, with the launch and operation of

next-generation geostationary meteorological satellites—

such as the Advanced Geosynchronous Radiation Imager

(AGRI) on board FengYun-4A, the Advanced Himawari

Imager (AHI) on board Himawari-8/9, and the Advanced

Baseline Imager (ABI) on board GOES-R—abundant AOD

datasets have become available. The quality of these data

has been validated: for example, it has been reported that

the expected uncertainty for the Himawari-8 AOD is ±

(0.1 ? 0.3 9 AOD) (Zhang et al., 2019), whereas the

expected uncertainty for the MODIS (C6.1) 10 km AOD

product is ± (0.05 ? 0.15 9 AOD) (Aldabash et al.,

2020).

The North China Plain (NCP), which is renowned for

experiencing severe atmospheric pollution events, has

experienced high PM2.5 concentrations for decades owing

to the rapid economic and population development that has

taken place nearby. In this study, we applied the DNN

methodology to estimate hourly ground-level PM2.5 con-

centrations over the NCP using Himawari-8 AHI AOD

data.

The balance of this paper has been laid out as follows:

data sets and a detailed description of the methodology

may be found in ‘‘Materials and Methods’’ section,

whereas the results and discussion have been given in

‘‘Results and Discussion’’ section. The study has been

concluded in ‘‘Summary and Conclusions’’ section.

Materials and Methods

Datasets

Ground-Level PM2.5 Measurements

Ground-level PM2.5 concentration dataset was obtained

from the China Environmental Monitoring Center

(CEMC). Hourly PM2.5 measurements from 313 air quality

sites in the NCP (as shown in Fig. 1) were collated for

2017. These concentrations represented the hourly aver-

ages established at the stations by the tapered element

oscillating microbalance (TEOM). The accuracy of TEOM

is ± 1.5 lg/m3 (You et al., 2016). The data are available at

http://106.37.208.233:20035/.

Himawari-8 AOD

Himawari-8 was launched by the Japan Meteorological

Agency on October 7, 2014. It is a next-generation geo-

stationary meteorological satellite. The AHI on board

Himawari-8 has 16 channels. Its spatial temporal resolution

is 0.5–2 km and 5–10 min, respectively (Yumimoto et al.,

2016; Zhang et al., 2019).

The AOD products are provided with three levels:

‘‘Level2’’ (L2), ‘‘Level3’’ (L3), and ‘‘Level4’’ (L4)

(Kikuchi et al., 2018). The spatial and temporal resolution

of L3 is 0.05� and 1 h, respectively. In this study, the AOD

data of L3 Version 3.0, which can be received from https://

www.eorc.jaxa.jp/ptree/index.html, were collected to esti-

mate hourly PM2.5 concentrations. It should be noted that a

comprehensive AOD validation, as used in this study, can

be found in our previous work (Zhang et al., 2019).

Meteorological and Land Cover Data

Meteorological data for 2017 were obtained from the sec-

ond Modern-Era Retrospective analysis for Research and

Applications (MERRA-2). It is the atmospheric product

supported by National Aeronautics and Space Adminis-

tration, with a spatial resolution of 0.5 9 0.625� (Gelaro

et al., 2017; Rienecker et al., 2011). We extracted six

hourly meteorological factors from this dataset: surface

pressure (PS; as Pa), air temperature at 2 m (TMP; as K), E

and N wind speed at 10 m above ground (EW and NW; as

m/s), relative humidity (RH; as %), and planetary boundary

layer height (PBLH; as m). The data can be downloaded

from the website https://disc.gsfc.nasa.gov/datasets.

Landcover-related variables—surface albedo

(ALBEDO; which is a unitless variable) and surface

incoming shortwave flux (SWGDN; as W/m2)—were also

extracted from the MERRA-2 data. Elevation (ELEV; as
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m) was terrain data at 1 km, whereas the normalized dif-

ference vegetation index (NDVI) was derived from

MOD13A3, a monthly 1-km resolution dataset.

Based on the AOD, meteorological and land cover, there

are 11 predictors were used to derive hourly PM2.5 con-

centrations over the NCP. That is AOD, surface pressure,

air temperature, wind speed (E and N), PBLH, RH,

ALBEDO, SWGDN, ELEV, and NDVI. Statistics for these

datasets and predictors are listed in Table 1.

Methods

Data Integration

Firstly, because the original data involved various coordi-

nate systems and spatial resolutions, all independent vari-

ables were recalibrated into the WGS84 coordinate system.

Meteorological variables and land cover data were also

recalibrated to, in this case, 0.05� resolution to ensure

consistency. After these processes, the 11 predictors were

matched with ground PM2.5 in a co-location procedure. The

predictors were collected into a station-centered pixel.

These selection process eventually gave rise to a dataset

consisting of 151,726 records.

DNN Model

The concentrations of ground-level PM2.5 were affected by

multiple factors, such as aerosol, meteorological, and sur-

face cover. This complex relationship is difficult to

describe accurately with a simple linear model, and so deep

learning, which has been widely used in fitting complex,

nonlinear relationships, was used to estimate ground-level

PM2.5 concentrations. Thus, a DNN model (Hinton et al.,

2012) was fitted using Eq. (1):

PM2:5 ¼ f AOD, PS, TMP, EW, NW, PBLH, RH,ð
ALBEDO; SWGDN;ELEV ;NDVIÞ;

ð1Þ

Fig. 1 North China Plain elevation. Ground-level data for the study were acquired from the air quality sites (white dots) (color figure online)
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where f (�) describes the prediction function. The

meaning of each predictor has been described above.

Figure 2 shows the structure of the DNN model, where

it can be seen that the model contained five hidden layers

(which contained 60, 40, 30, 20, and 10 neurons), one input

layer (which contained the 11 neurons shown in Eq. (1),

and one output layer (which consisted of PM2.5 concen-

tration estimates). This gave the proposed DNN model a

structure of 11-60-40-30-20-10-1. It should be noted that

the numbers of layers and neurons were chosen by

increasing the numbers of neurons until the best estimation

results were derived.

Figure 3 illustrates the workflow used to estimate

ground-level, hourly PM2.5. The process can be described

as follows:

(1) Conduct data integration, as described in ‘‘Data

Integration’’ section. The derived AOD, meteoro-

logical variables, and land cover, which were

consistent in time and space, were treated as model

training and validation samples.

(2) Perform DNN model fitting. To this end, all the

151,726 records (belonging to 313 sites) were first

used to train the model, after which sample- and site-

based tenfold cross-validation (CV) was carried out

to evaluate the performance. CV was conducted as

follows:

(a) For sample-based CV, the samples were

randomly divided into ten sets, with each set

accounting for approximately 10% of the

records. For each CV process, nine sets were

used for training samples, with the tenth used

to make predictions. Then, we repeated ten

times until the predictions from each set were

established;

(b) Site-based CV was conducted to examine

model sensitivity with respect to the number

of ground stations and performance with

respect to spatial variations. The 313 sites

were randomly split into ten sets, with each set

accounting for approximately 10% of the sites.

As for the sample-based CV, nine sets were

Table 1 Dataset information

and statistics
Datasets Predictorsa Units Spatial resolution Temporal resolution Factors

Himawari-8 AOD – 0.05� Hourly Aerosol

MERRA-2 PS Pa 0.5 9 0.625� Hourly Meteorological

TMP K 0.5 9 0.625� Hourly Meteorological

EW m/s 0.5 9 0.625� Hourly Meteorological

NW m/s 0.5 9 0.625� Hourly Meteorological

PBLH m 0.5 9 0.625� Hourly Meteorological

RH % 0.5 9 0.625� Hourly Meteorological

ALBEDO – 0.5 9 0.625� Hourly Land cover

SWGDN W/m2 0.5 9 0.625� Hourly Land cover

GMTED2010 ELEV m 1 km – Land cover

MOD13A3 NDVI – 1 km Monthly Land cover

aThe meaning of each item is explained in text

Fig. 2 Structure of the DNN model used for PM2.5 estimation
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used to fit the model, with the tenth used to

make predictions. PM2.5 concentration predic-

tions were finally obtained by completing ten

CV cycles;

(c) Finally, to evaluate the levels of agreement,

linear fit statistics for model predictions vs

observations were performed. The statistical

indicators include the correlation coefficient

(R), slope, y intercept, and prediction root

mean squared error (RMSE).

(3) Finally, the prediction data (locations with no ground

PM2.5 observations) were input into the derived

DNN model to obtain spatial distributions of hourly

PM2.5 concentrations over the NCP.

Results and Discussion

Descriptive Statistics

Variable histograms, covering all 151,726 samples, are

presented in Fig. 4. The surface pressure (PS) was found to

be almost exponentially distributed, whereas air tempera-

ture (TMP) was approximately bimodal in its distribution.

The E wind speed, N wind speed, PBLH, surface albedo,

surface incoming shortwave flux (SWGDN), RH, and

NDVI were found to have approximately normal distribu-

tions. The other variables, including elevation, AOD, and

PM2.5, exhibited similar logarithmic distributions. The

minimum, maximum, and mean PM2.5 concentrations were

1, 534, and 55.13 lg/m3, respectively, whereas the mini-

mum, maximum, and mean AOD were calculated to be 0,

2.99, and 0.4, respectively, with the high AOD and PM2.5

maximums indicating that severe pollution was experi-

enced over the NCP. Their standard deviations were cal-

culated as 0.34 and 42.15 mg/m3, respectively, indicating

Fig. 3 Workflow applied to

estimate ground-level, hourly

PM2.5 concentrations
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that there had been significant fluctuations in the atmo-

spheric particulate matter concentrations.

Variable Importance Analysis

To evaluate the potential effect of each predictor to the

proposed DNN, we conducted a variable importance

analysis. In Fig. 5, the variables for predicting PM2.5 have

been represented in the y axis, with the percentage RMSE

increase without using the corresponding variable

(%IncRMSE) shown on the x axis. The figure shows that

AOD (55.07%) was the variable with the highest contri-

bution, which would be attributable to its strong correlation

with PM2.5 concentrations. The %IncRMSE calculated

without using air temperature as a predictor was 45.92%,

followed by PBLH (41.21%), SWGDN (35.07%), RH

(34.86%), N wind speed (32.09%), surface pressure

Fig. 4 Descriptive statistics for dependent and independent variables (minimums, maximums, means, and standard deviations). The meaning of

each item is explained in text

Fig. 5 Variable importance analysis. The x axis indicates the

percentage RMSE increase achieved without using the corresponding

predictor (%IncRMSE)
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(30.63%), E wind speed (24.22%), and surface albedo

(24.01%).

Figure 5 also shows that elevation and NDVI were the

weakest contributing variables for hourly PM2.5 concen-

trations. These relatively low contributions may have been

due to the small elevation variations over the NCP (shown

in Fig. 4j). Furthermore, hourly PM2.5 concentrations,

usually with high frequency variations, were likely to be

less affected by variables that varied only slowly over time,

such as NDVI.

Model Performance and Validation

The scatter plot showing ground observed (x axis) and

estimated (y axis) PM2.5 concentrations for sample- and

site-based CVs is shown in Fig. 6a, b. The R, RMSE, slope,

and y intercept of sample-based CVs were 0.86, 21.40 lg/
m3, 0.81, and 10.22 lg/m3, respectively; with regard to the

site-based CVs, the corresponding values were 0.83,

23.65 lg/m3, 0.76, and 13.17 lg/m3, respectively. This

good level of consistency demonstrated that the proposed

DNN model was capable of achieving satisfactory

performance.

We noted that the site-based CV outcome was compa-

rable with that of the sample-based CV, which indicated

that the proposed model had good spatial prediction

capability. In addition, both the regression linear fit slopes

were\ unity (0.81 and 0.76), which implied that the DNN

model tended to develop results that were slightly under-

estimated in comparison with the observed PM2.5 concen-

tration. This underestimation was confirmed by noting

observed PM2.5 concentrations[ 54 lg/m3.

We deduced two possible reasons for the ground-ob-

served PM2.5 concentration underestimation by the model.

Firstly, using spatially averaged AOD, meteorological, and

land surface variables to estimate point ground-level PM2.5

meant that it was difficult for meteorological parameters

with relatively coarse spatial resolution (0.5� 9 0.625�) to
characterize detailed spatial variations. The other reason

was that a spatial average would lead to high values being

averaged and low values being overwhelmed. Taken

together, these points meant that when we compared spa-

tially averaged estimations with ground measurements, low

values appeared to be overestimated and high values

underestimated.

The spatial performance of the sample-based CV is

illustrated in Fig. 7, where it can be seen that both R and

RMSE (Figs. 7a, b, respectively) exhibit spatial variations.

The R ranged between 0.48 and 0.93, whereas the RMSE

ranged between 13.33 and 45.63, with 81% of R[ 0.75

(254 sites out of 313), and 68% of the RMSE\ 25 lg/m3

(213 out of the 313 sites). With respect to geographic

distribution, sites in Henan Province performed better, with

the RMSE being lower in Anhui and Zhejiang.

Scatter plots for ground-observed (x axis) and estimated

(y axis) daily and monthly PM2.5 concentrations are shown

in Figs. 8a, b. The daily data R and RMSE were calculated

to be 0.81 and 24.94 lg/m3, whereas the corresponding

estimates for the monthly data were 0.90 and 9.91 lg/m3,

respectively, showing that the model could accurately

represent seasonal PM2.5 levels, with only small deviations.

Map of PM2.5 Estimation

The distributions of seasonal average PM2.5 over NCP in

2017 are shown in Fig. 9; in Fig. 9a–d; the seasonal vari-

ations in PM2.5 are clearly observable. The highest PM2.5

estimations were in winter, followed by spring, and then

autumn, with the lowest values appearing in summer. Mean

PM2.5 estimations for spring, summer, autumn, and winter

Fig. 6 Scatter plots for tenfold cross-validations (CVs): a sample-based CV; b site-based CV
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were 48.93, 39.85, 48.06, and 74.78 lg/m3, respectively.

The seasonal ground-level PM2.5 observations showed

spatial distributions similar to those seen for the estimates,

as shown in Figs. 9e–h. The R values of four seasons were

0.88, 0.86, 0.91, and 0.97, respectively (Figs. 9i–l),

whereas the corresponding RMSEs were 4.53, 5.22, 4.83,

and 5.80 lg/m3, respectively.

Annual estimated PM2.5 patterns for the NCP are plotted

in Fig. 10. Generally, low AOD and PM2.5 levels occurred

in NW Hebei Province, with its low population density and

few industries. These spatial AOD (Fig. 10a) and PM2.5

(Fig. 10b) distribution results were not completely consis-

tent, however, which indicated that their interrelationship

was complex. Meanwhile, a heavily polluted region was

revealed at the junction of the five provinces (Hebei,

Henan, Anhui, Jiangsu, and Shandong). Scatter plots for

annualized ground-level observations vs estimated PM2.5

levels are shown in Fig. 10c, with the R and RMSE cal-

culated to be 0.94 and 3.64 lg/m3 (Fig. 10d), respectively.

Annualized PM2.5 estimate averages for ten hours

(00:00–09:00 (Coordinated Universal Time, UTC)), in

2017, are shown in Fig. 11, whereas Fig. 12 shows the

corresponding ground-level observation frequencies. Fig-

ure 11 proves that the proposed model can provide at least

ten hourly PM2.5 estimations in one day for any given area,

i.e., it can provide PM2.5 concentration information at high

Fig. 7 Cross-validation spatial performance: a R; b RMSE

Fig. 8 Model validation scatter plots: a daily data; b monthly averages
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frequencies. In Fig. 12, we can see that the spatial distri-

bution of ground-level measurements exhibited temporal

variations, peaking at noon, local time (03:00 UTC),

whereas the data volume gradually decreased in the

mornings and afternoons. This could be explained by the

fact that the ability of the satellite to capture aerosol signals

decreased as the solar zenith angle increased (Zhang et al.,

2019).

Variations in annual average hourly PM2.5 estimations

experienced by different cities are shown in Fig. 13. The

cities were selected based on their distribution and repre-

sentativeness for different regions. They displayed similar

trends, i.e., over the period 00:00–09:00 (UTC), the PM2.5

Fig. 9 Spatial distributions for spring (March, April, and May),

summer (June, July, and August), autumn (September, October, and

November), and winter (December, January, and February) mean

PM2.5 concentrations: a–d estimates; e–h ground-observations; i–
l ground observation versus estimates distribution scatter plots

Fig. 10 Spatial distribution for annual average PM2.5 concentrations: a AOD; b estimates; c ground-level observations; d scatter plot for ground-

level observations versus estimates
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levels peaked at certain times and then decreased. The

peaks for Hefei (117.24, 31.84), Shijiazhuang (114.52,

38.03), Nanjing (118.80, 32.07), and Jinan (117.13, 36.64)

appeared at either 02:00 or 03:00 (UTC), whereas Beijing

(116.41, 39.90) and Zhengzhou (113.64, 34.75) peaked at

01:00. Minimum values were experienced by all cities at

either 08:00 or 09:00 (UTC). Figure 13 shows that the

proposed model could describe variety in PM2.5 concen-

trations at a temporal resolution of 1 h.

Summary and Conclusions

It is still a challenge to derive high temporal ground-level

PM2.5 accurately using satellite-derived AOD data, espe-

cially for regions with higher particulate matter concen-

trations and complex compositions, such as the NCP,

which has become heavily polluted with respect to PM2.5.

Herein, we presented a DNN model that was calibrated

using aerosol product (from a new-generation geostation-

ary satellite Himawari-8), meteorological, and land cover

information to estimate hourly ground-level PM2.5 con-

centrations of NCP. The estimated PM2.5 concentrations

had a spatial and temporal resolution of 0.05� and 1 h,

respectively, which can capture detailed variations in

temporal PM2.5 distributions than would have been possi-

ble using polar orbit satellites such as MODIS. A total of

11 independent variables were used to fit the proposed

model: AHI AOD, surface pressure, air temperature, E and

N wind speeds, PBLH, RH, surface albedo, SWGDN,

elevation, and NDVI. Through data integration, a total of

151,726 records related to 313 ground stations were col-

lected. To validate the model performance, tenfold CV was

conducted, and it was found that both sample-based

(R = 0.86, RMSE = 21.40 lg/m3) and site-based

(R = 0.83, RMSE = 23.65 lg/m3) CVs exhibited satisfac-

tory performances. R values were calculated to be 0.81 and

Fig. 11 Annualized PM2.5 estimate averages for different hours (as UTC) in 2017: a–j represent 00:00–09:00, respectively
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0.90, respectively, for daily and monthly averaged PM2.5

levels.

When mapped, the estimated PM2.5 concentrations for

the NCP showed clear seasonal variations, with the highest

PM2.5 concentrations appearing in winter, followed by

spring, autumn, and summer. The annual patterns showed

that low PM2.5 concentration levels occurred in NW Hebei

Province, whereas the area representing the junction of

Hebei, Henan, Anhui, Jiangsu, and Shandong provinces

was identified as being heavily polluted.

We also produced mapping, in which 2017 hourly data

were used to generate annualized averages for ten hours

(from 00:00 to 09:00 UTC). These results suggested that

the proposed model could provide at least ten different

hourly PM2.5 estimations daily, and thus, it had the capa-

bility to reveal high levels of atmosphere variation over

time. Such successful testing allowed us to conclude that

new-generation geostationary satellites have the potential

to be used as useful data sources for ground-level PM2.5

estimation.
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