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Abstract
Nearshore bathymetry is a basic parameter of the ocean, which is crucial to the research and management of coastal zones.

Previous studies have demonstrated that remote sensing techniques can be employed in estimating bathymetric infor-

mation. In this paper, we propose a deep belief network with data perturbation (DBN-DP) algorithm for shallow water

depth inversion from high resolution multispectral data, and applying it in Xinji Island of Malacca Strait and Yongxing

Island in China. Results show that the DBN-DP method can produce more accurate water depth estimations than other

traditional methods particularly for deeper water, which reaches 1.2 m of mean absolute error (MAE) and 12.8% of mean

relative error (MRE) in Xinji Island. Most of the estimated bathymetry meet the category of zone of confidence C level

defined by the International Hydrographic Organization. These findings are encouraging for employing deep learning in

bathymetry, which may become a novel approach for bathymetric inversion in the future.
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Introduction

Water depth is one of the important parameters of the

marine environment. It is of great significance for maritime

transportation, coastal management, and coral reef

ecosystem protection. Shipborne sonar measurement and

airborne light detection and ranging (LiDAR) measurement

have produced quality water depth data. Multi-beam Sonar

measurement can acquire accurate data that meet the

chart measurement standard, but it is time-consuming and

demanding. While the airborne LiDAR can collects accu-

rate bathymetry data fast and safely, especially in areas

where sonar is not available (Guenther 2007), it still suffers

from a number of drawbacks, such as limited areal cov-

erage, complexity in operation and costly.

Satellite-Derived Bathymetry (hereinafter SDB) has

received attention since the 1960s. Compared to traditional

bathymetric measurements, remote sensing gets easy

access to dangerous or disputed areas. Besides, remote

sensing can provide large-scale and high spatial/temporal-

resolution data, which makes it an emerging technique for

bathymetry inversion. In recent years, SDB has also been

used to help NOAA update nautical charts at higher fre-

quencies (Pe’Eri et al. 2014).Under optimal clear water

conditions, SDB is commonly employed for depths of

0–30 m.

Optical bathymetry retrieval depends on the radiative

transmission principle that the amount of radiation energy

reflected from water column is a function of depth (Gao

2009). Recent launches of multi-spectral satellites have

promoted the development of multi-spectral SDB models.

Until now, three kinds of bathymetry inversion models

have been put forward: theoretical model (Lyzenga 1985;

Chen et al. 2012), semi-analytical model (Polcyn and

Sattinger, 1969; Lyzenga et al. 2006), and statistical model

(Lyzenga 1978). They have been widely studied and

applied in bathymetry measurements. (Liang et al. 2017;

Figueiredo et al. 2016). In order to avoid the negative

difference between the deep-water radiance and the
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radiance acquired by optical remote sensors, Stumpf et al.

developed a semi-analytical model that established a linear

relationship between the ratio of water depth and the

reflectance of green and blue bands (Stumpf et al. 2003;

Ma et al. 2014). Relevant scholars have applied some

researches on this model (Halls and Costin 2016; Su et al.

2008; Poursanidis et al. 2019). Although Stumpf’s linear

transform method is competent for some bathymetry

inversion, these parameters also need to be calibrated with

field data for different water areas.

Artificial neural network (ANN) water depth inversion

is a special form of statistical model, with advantages of

self-learning, self-organizing, adaptive, and nonlinear

dynamic processing, which has better adaptability than

traditional statistical models (Cybenko 1988). Related

studies have shown that the accuracy of ANN water depth

inversion is higher than that of classical models, by which

MRE reaches 13%-24% (Liu et al. 2018; Nagamani et al.

2012). However, the high accuracy is based on a large

amount of training samples, which limits the application

capabilities of ANN. Although ANN has been applied to

the SDB and achieved better accuracy, the disadvantages of

slow convergence, local miniaturization, and sample

dependence make it difficult to further improve the

bathymetry accuracy.

Deep belief network (DBN), a classical and important

deep learning model, was proposed by Hinton and

Salakhutdinov (2006). DBN is composed of multiple

Restricted Boltzmann Machines (RBM), which use gener-

ative model in the pre-training procedure, and back-prop-

agation algorithm in the fine-tuning stage (Larochelle et al.

2007) Different from ANN, the weight of each layer is

trained in advance rather than randomly initialized, thus

overcoming the shortcomings of traditional neural network,

such as long training time and easily to fall into local

optimal solution.

DBN has been successfully applied in the fields of

speech recognition, image classification, data dimension-

ality reduction, and pattern recognition (Hinton et al.

2006). In recent years, DBN has been widely used in

remote sensing image classification (Han et al. 2015),

including high-resolution images, hyperspectral images,

and SAR images (Zhong et al. 2016; Chen et al. 2015;

Zhao et al. 2017; Liu et al. 2016). In these researches, DBN

model outperforms other approaches. DBN is also used for

regression, but mainly focuses on the prediction of time

series data (Huang et al. 2014; Kuremoto et al. 2014) and

few researches focus on non-time series data. DBN is very

effective under the limited number of training samples

conditions (Larochelle et al. 2007, 2009). It enables to

learn more key features quicker with fewer parameters

(Hinton et al. 2006) and to build multiple hidden layer

nodes in order to deepen the depth of the model structure,

thus reducing the complexity of bathymetry.

In this paper, we investigate the effectiveness of DBN

for Satellite-Derived Bathymetry. A DBN method with

data perturbation is proposed, whose input data are

reflectance data after perturbation. Taking the QuickBird

image collected on Xinji Island and the WorldView-2

image on Yongxing Island as examples, the ability of this

algorithm to estimate bathymetry is presented. The results

are analyzed compared with other three classical methods

to assess the inversion accuracy. It is the first time that deep

learning method is employed in bathymetry estimation.

Materials and Methods

Study Areas

The study areas are selected in two areas, shown in Fig. 1.

One is located in Xinji Island of Malacca Strait, east of

Sumatra. Geographically, it spans 104�150–104�230 E and

0�160–0�240 S. The study area is shallow, with many shoals

around the scattered small islands. The other locates at

Yongxing Island of Xisha Archipelago. With an area of

3.16 square kilometers and an average elevation of 5 m, it

is the island with the largest land area in Xisha Archipe-

lago. As the whole is surrounded by the ocean, Yongxing

Island has the comprehensive characteristics of tropical

monsoon climate and tropical ocean climate.

Data Preparation

A QuickBird image, which was acquired on 22 September,

2014, was used for bathymetric mapping in Xinji Island. It

has good geolocation accuracy, massive on-board storage,

and high-spatial resolution. The relevant parameters of

QuickBird satellite are shown in Table 1. Overall 66 water

depth points are extracted from the 1:1,25,000-scale nau-

tical chart whose production time is June 21, 2001, in

which 45 control points and 21 check points are selected.

The WorldView-2 image, acquired in 2 May, 2012, was

also applied in bathymetric mapping in Yongxing Island.

WorldView-2 has eight multi-spectral bands. According to

DigitalGlobe’s 2009 report, these bands are used in dif-

ferent fields, including resource management, coastal sur-

veying and environmental monitoring. Overall 46 control

points and 20 check points are selected in the experiment.

In each water depth interval, the ratio of control points to

check points is about 2:1. The optimal image was selected

under clear-sky conditions, minimum sunglint.

After geometric correction and atmospheric correction,

the influence of data geolocation accuracy and aerosol on

the inversion is eliminated. In order to be closer to the true
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Fig. 1 Location of the study

sites

Table 1 QuickBird and WorldView-2 satellite parameters

Sensor Band names Band ranges (lm) Spatial resolution (m) Revisiting time (d) Orbit altitude (km) Swath (km)

QuickBird Pan 0.45–0.90 Pan (0.6)

Multispectral (2.4)

1–3.5 450 16.5

Blue 0.45–0.52

Green 0.52–0.60

Red 0.63–0.69

Near-infrared 0.76–0.90

WorldView-2 Coastal 0.40–0.45 Pan (0.5)

Multispectral (1.8)

1.1 (on average) 770 16.4

Blue 0.45–0.51

Green 0.51–0.58

Yellow 0.59–0.63

Red 0.63–0.69

Red Edge 0.71–0.75

Near-infrared 1 0.77–0.90

Near-infrared 2 0.86–1.04
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water depth, it is necessary to do tidal correction. By

looking up the tide table, the instantaneous tidal heights of

the QuickBird and WorldView-2 image are 1.22 and

1.02 m, respectively. The in-situ depth of SDB should be

the water depth of chart plus the instantaneous tidal height.

DBN-DP Model

The Structure of DBN

DBN is constructed by layer-wise training restricted

Boltzmann machine (RBM) models. Each RBM has a

‘‘visible’’ unit v ¼ 0; 1f gD and a ‘‘hidden’’ unit

h ¼ 0; 1f gF . The pixels correspond to ‘‘visible’’ units

because their states are observed, and the feature detectors

correspond to ‘‘hidden’’ units (Larochelle et al. 2007;

Huang et al. 2014). A joint configuration of the visible and

hidden units has an energy given by

E v; h; hð Þ ¼ �
XD

i¼1

bivi �
XF

j¼1

ajhj �
XD

i¼1

XF

j¼1

wivihj; ð1Þ

where h ¼ bi; aj;wij

� �
, wij is the weight between visible

unit i and hidden unit j; bi and aj are bias of visible and

hidden unit, respectively.

The conditional distributions of hidden unit h and input

vector v are given by logistic function

p hj ¼ 1jv
� �

¼ g
XD

i¼1

Wijvi þ aj

 !
ð2Þ

p vi ¼ 1jhð Þ ¼ g
XF

j¼1

Wijhj þ bi

 !
ð3Þ

g xð Þ ¼ 1

1þ exp �xð Þ ð4Þ

When the hidden units’ states are chosen, the input data

can be reconstructed by setting each vi to 1 with the

probability of Eq. (3), and then the states of hidden units

are updated.

The classical DBN architecture is made by several

RBMs and a back propagation (BP) network (Fig. 2), the

process of training contains two steps:

First, each layer of the RBM network is pre-trained

separately and unsupervised to ensure that the feature

information is retained as much as possible when the fea-

ture vector is mapped to different feature spaces.

Second, the BP network is set up as a supervised

regressor in the last layer of the DBN, and the output

feature of the RBM is received as the input feature vector

of BP network. The first step can only ensure the param-

eters in each RBM layer reach optimal, rather than the

whole DBN network. Thus BP network is used to fine-tune

the DBN network by propagating the errors from top to

bottom.

Data Perturbation

The points that can be extracted from the nautical charts

are limited. For each water depth point, the features

extracted from remote sensing images are not much,

mainly the reflection of each band. Deep learning needs a

large number of training features for a better performance.

What’s more, due to the turbidity and chlorophyll con-

centration, the water quality may be not clear enough,

which leads to the inaccuracy of reflectance information

gotten from the image. The reflectance after perturbation

may be more close to true data, and can be a supplement of

deep learning input data. In our experiment, [- 0.01, 0.01]

to [- 0.05, 0.05] are utilized as perturbation intervals. For

each band, the process of data perturbation is as follows:

(taken [- 0.01, 0.01] as an example)

R0
i ¼ Ri � 1þ rand bð Þð Þ; b 2 �0:01; 0:01½ �; ð5Þ

where Ri denotes the original reflectance of band i, R
0
i is the

reflectance of band i after data perturbation, and rand bð Þ

Fig. 2 The structure of classical DBN
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means generating a parameter from - 0.01 to 0.01

randomly.

The research data contain four bands. For each band, the

original data are calculated by the above equation for three

times. The data after processing for each time have minor

differences since the stochastic parameter varies in the

specified perturbation interval. They are added to the

original four bands reflectance in turn. In the end, one

depth point has 17 featured bands. Among these bands, one

is bathymetry, four bands are reflectance data, and others

are reflectance data after perturbation.

The Proposed DBN-DP

A DBN with Data Perturbation (DBN-DP) method for

bathymetry is proposed in order to combine the advantages

of deep learning and data perturbation. After preprocess-

ing, water depth with reflectance data and reflectance data

after perturbation are input into the two-layer DBN model.

Then, inversion accuracy of the proposed framework is

analyzed compared to other three classical methods. The

bathymetric maps are derived by those approaches in the

end. The Overall architecture of the proposed DBN-DP

method is shown in Fig. 3.

Results and Discussion of Bathymetric
Mapping in Xinji Island

Experiments

In the DBN-DP framework, control points are first used to

train the network, and then the depth of check points is

estimated utilizing the trained network. The training loss in

the training process can be seen in Fig. 4.

In order to test whether the proposed method is stable,

the perturbation rates of input data are changed, ranging

from 0 to 5%. Figure 5 shows that as the perturbation rate

increases, RMSE of bathymetry is dropping and R2 is

climbing slightly, which indicates the good anti-noise

property of DBN-DP method. It is clear that the best result

emerges when the perturbation rate reaches to 5%.

Visualization of the Estimated Bathymetry

Bathymetry maps of the study sites were generated through

the Kriging interpolation, Stumpf, BP, DBN, and DBN-DP

methods (Fig. 6). Kriging interpolation is considered as a

traditional bathymetry algorithm, which is in close corre-

lation with the known water depth points. Through all of

the inversion results, they show coherent spatial patterns:

relative shallow regions (0–10 m) are located in the near-

shore areas, whereas most regions where depth is[ 10 m

Fig. 3 Overall architecture of the proposed DBN-DP method

Fig. 4 Change of loss
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are at a distance of 2 km from the seashore. The bathy-

metry results using DBN and DBN-DP are close to the

Kriging interpolation results, except for some overestima-

tion nearshore. Because of the chlorophyll and turbidity

related to wave breaking, some minor and irregular stripes

in orange are distributed in the inversion maps. Stumpf

model performs poorly in deep water, and BP model gen-

erates wrong results near the seashore.

Accuracy Assessment for DBN-DP Bathymetry
Mapping

To analyze the accuracy of inversion, the estimated water

depth is plotted versus in-situ water depth (Fig. 7). In

comparison with other methods, the DBN-DP-derived

depth results are related to in-situ water depth best in a

varying of depth. It is clear that DBN-DP is most effective

with 0.80 R2 and 0.9 m median absolute error (MedAE). A

majority of points follow the 1:1 line, except for some

points in the range [8–15 m]. DBN model without data

perturbation has the second concentrated patterns between

in-situ water and estimated water. For Stumpf and BP

algorithm, the derived bathymetry always overestimates or

underestimates the real bathymetry, especially for Stumpf-

derived results (0.38 R2 and 2.5 m MedAE). Another

Fig. 5 Accuracy curves of different perturbation rate

Fig. 6 Bathymetry maps of different methods
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phenomenon observed is that the points are more sparsely

distributed when the depth is between 8 to 15 m for all

methods.

For more analysis of four experiment results, the mean

absolute error (MAE), mean relative error (MRE), root

mean square error (RMSE), positive bias, and negative bias

were computed. Table 2 and Fig. 8 illustrate the best per-

formance of DBN-DP, which has the least RMSE (1.53 m).

For Stumpf, BP, DBN, and DBN-DP, the MAE and MRE

are getting lower in turn, from 2.3 to 1.2 m MAE and

27.9% to 12.8% MRE. The positive bias is relative to all

the positive errors. In the same way, the negative bias is

about negative errors. Such error indicators can avoid

negative and positive errors that counterbalance each other,

rather than compute bias of all check points.

Fig. 7 Comparison of the estimated depths of check points versus the in-situ depths

Table 2 Statistical analysis of

different models
Model MAE (m) MRE (%) RMSE (m) Positive bias (m) Negative bias (m)

Stumpf 2.3 27.9 2.68 2.4 - 2.1

BP 2.0 21.8 2.49 1.7 - 2.2

DBN 1.4 15.4 1.68 1.4 - 1.3

DBN-DP 1.2 12.8 1.53 1.0 - 1.5
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Analysis on Different Water Depth Intervals

To analyze the detailed error distribution pattern, the

bathymetry results are collected in different water depth

intervals. To avoid that not enough points are in some

intervals, all of the control points and check points are

considered. Table 3 shows that: As the water depth goes

up, the MAE first decreases from 1.7 to 1.1 m and then

increases to 2.0 m in the end, whereas MRE drops from

54.0% to only 11.5%. In the 0–5 m interval, DBN-DP

method performs not well as BP and DBN models. But in

other ranges, both of the MAE and MRE of DBN-DP are

less, whose MAE is 0 to 1.2 m and MRE is 0.3 to 17.9%

lower than other three methods.

International Standard Compatibility

The International Hydrographic Organization (IHO) S-57

standard defines category of zone of confidence (CAT-

ZOC) levels, which contains required accuracy in different

depth ranges (Chénier et al. 2018). If the estimated depths

are assigned the CATZOC levels, the depths can be

incorporated into Canadian Hydrographic Service

navigational products. In our experiment, it is also regarded

as a standard of assessing the derived depth. The

table demonstrates the absolute error of 21 check points

and is separated into range [0–10 m] and range [10–20 m],

with dot-dash line representing the standard CATZOC

level. From Table 4 and Fig. 9, it is concluded that most of

the estimated bathymetry meets the CATZOC A2&B level,

except for 3 points in range [0–10 m] and 2 points above

10 m. All of the deep water depths satisfy the CATZOC C

level.

Discussion on the Visualization of the Water
Depths

To further evaluate the reliability of our proposed archi-

tecture, we illustrated the bathymetry values by five

methods along two continuous transects in different

directions. In Fig. 10, DBN-DP has the closest trend with

Kriging results compared to other methods, whereas

Stumpf model always underestimates the real depth. The

profiles from BP and DBN-DP method diverge from the

actual geomorphological profile in a similar way. For P2,

Fig. 8 Mean absolute and relative errors in bathymetry

Table 3 Error distribution of derived bathymetry versus in-situ depth

with 5 m intervals

Model Index Water depth intervals

0–5 m 5–10 m 10–15 m 15–20 m

Stumpf MAE 2.9 2.3 1.7 3.1

MRE (%) 76.8 33.0 14.0 17.7

BP MAE 1.4 1.7 2.4 2.0

MRE (%) 41.0 24.8 21.4 12.3

DBN MAE 1.5 1.3 1.6 2.1

MRE (%) 49.4 18.2 13.9 12.1

DBN-DP MAE 1.7 1.1 1.6 2.0

MRE (%) 54.0 15.1 13.6 11.5

Table 4 Required accuracies for depth ranges for IHO CATZOC

level

CATZOC level Depth range(m) Required accuracy (± m)

A1 0–10 0.6

10–30 0.8

A2&B 0–10 1.2

10–30 1.6

C 0–10 2.5

10–30 3.5

Fig. 9 Accuracies for each check point
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all of the four algorithms have the similar downtrends, in

which DBN-DP and Stumpf have a better performance. For

the estimated depth by DBN-DP, there is an increase at

about 1000 m and a sharp decrease at 2400 m distance.

However, for the Kriging interpolation results, this

phenomenon is not obvious. Kriging interpolation is often

unsatisfactory when only few water depth points are

available by employing second derivative smooth interpo-

lation, which is unable to reflect some minor variations of

depth.

Fig. 10 Depth transects of different method’s results, (a-c represents Kriging, Stumpf, BP, DBN, and DBN-DP, respectively)
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Influence of Filters before Retrieval

Since the noise from remote sensing sensors and sunglint

phenomenon, some inversion results may vary a lot in

some neighbor pixels. However, actual water depth varies

continuously without stepping. Therefore, different filters

are utilized on the original image, including low-pass filters

and median filters of 3*3 and 5*5 kernels. Table 5 is

computed under the basis of check points. It reports that the

image without filter has the least MRE, with the worst

MAE, RMSE and negative bias. For the image after 3*3

median filtering, the derived depth is more accurate. When

taking all the points into consideration (Fig. 11), all of the

filters seem not to be effective, especially in 0–10 m. It is

mainly because that shallow water is influenced by more

sunglint and waves. The filtering operation leads some

depth points located pixels to be smoothed by other unreal

information from neighboring pixels, which causes unre-

liable inversion results.

Research Limitations

Though the proposed method has outstanding performance,

this research encounters some limitations. First, we only

obtain several depth points from nautical charts without

field data, which are not accurate enough. Also, satellite-

derived bathymetry is influenced by many factors, such as

water quality, waves, atmospheric effects, illumination

conditions. Whether the inversion method is suitable for

other areas, and other sensors are still in need of further

experiments.

Results and Discussion of Bathymetric
Mapping in Yongxing Island

In order to further verify the availability of the DBN-DP

model, another study area is selected in Yongxing Island,

China.

Overall Accuracy Evaluation

Comparing the inversion results of Stumpf, BP, DBN and

DBN-DP model, the results are shown in Fig. 12 and

Table 6. It can be concluded that the accuracy of DBN-DP

model is the highest, with MedAE of 0.3 m, RMSE of

0.78 m and R2 of 0.95. The points extracted from the

chart are all less than 15 m, and a large number of points

are in 0–5 m depth. Due to the shallow water depth here,

MAE has more reference value than MRE. Although MRE

Table 5 Statistical analysis of

models with different filters
Model MAE MRE (%) RMSE Positive bias (m) Negative bias (m)

Without filter 1.2 12.8 1.53 1.0 - 1.5

3*3 filter 1.1 13.2 1.47 0.9 - 1.4

5*5 filter 1.1 14.2 1.50 1.4 - 0.8

3*3 median 1.1 13.4 1.27 1.2 - 0.8

5*5 median 1.1 13.9 1.46 1.4 - 0.8

Fig. 11 Error distribution of derived bathymetry using different filters with 5 m intervals
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is more than 20%, MAE is only 0.5 m, which indicates that

DBN-DP model has good inversion effect.

Analysis on Different Water Depth Intervals

In addition, the inversion error analysis is carried out for

different water depths. Since there are multiple measured

points within 0–6 m, 0–6 m is divided into two water

depths of 0–3 and 3–6 m, and the remaining 6–13 m water

depth is regarded as the same water depth interval.

According to Table 7, no matter in which water depth

interval, the error obtained by DBN-DP is the lowest,

especially in the range of 0–6 m, whose MAE is 0.3 m

(0–3 m) and 0.7 m (3–6 m). The MAE of Stumpf, BP,

DBN and DBN-DP model decrease in order from 0–3 to

3–6 m. Among them, the inversion errors of BP model with

the worst inversion results are 1.5 and 2.3 m in 0–3 and

3–6 m depth sections, respectively, which is about two

Fig. 12 Comparison of the estimated depths of check points versus the in-situ depths

Table 6 Statistical analysis of

different models
Model MAE (m) MRE (%) RMSE (m) Positive bias (m) Negative bias (m)

Stumpf 1.2 107.3 1.40 1.3 - 1.1

BP 1.6 117.8 2.17 1.4 - 1.8

DBN 0.9 53.0 1.18 0.5 - 1.3

DBN-DP 0.5 28.5 0.78 0.4 - 0.9
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times higher than that of DBN-DP. This shows that DBN-

DP model has good inversion accuracy no matter in

shallow or deep water depth. Compared with the traditional

method, the accuracy is significantly improved.

Table 7 Error statistics of different models in water inversion from

different intervals

Model Index 0–3 m 3–6 m 6–13 m

Stumpf MAE 1.0 1.4 1.2

MRE (%) 169.5 32.2 14.3

BP MAE 1.5 2.3 1.1

MRE (%) 179.2 54.7 12.6

DBN MAE 0.5 0.9 2.2

MRE (%) 76.5 20.3 23.0

DBN-DP MAE 0.3 0.7 0.9

MRE (%) 40.4 15.4 9.1

Fig. 13 Bathymetry maps of different methods

Fig. 14 Accuracies for each check point
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Analysis of the Whole Image Inversion Results

Figure 13 shows the water depth inversion effect maps of

different methods. It can be seen that each inversion result

basically reflects the overall water depth of the reef.

Nearshore water is relatively shallow. The farther the off-

shore, the deeper the water is. In terms of the overall

inversion effect, the DBN-DP model is the closest to the

interpolation results, and the inversion results of other

methods around the island are slightly lower than the

interpolation results, even with some negative values. The

inversion results obtained by BP model are all negative at

the edge of the reef, while the inversion results in the

central area of Yongxing Island are obviously higher than

the true values.

Comparing with CATZOC Standard

The measured and inversed water depth of each check

point is counted and the absolute error is calculated, as

shown in Fig. 14. It can be seen from figure that the

absolute errors of all the 21 check points meet the C

standard. The inversion errors of points shallower than 1 m

are almost 0, but the inversion results between 1–2 m are

unstable and the errors are large. There are 19 points with

measured water depth of 0–10 m, among which, except

few points, the absolute errors of measured water depth and

inversion depth are in the range of 1.6–2.5 m, and the rest

meet the A2 & B standard.

Conclusions

A lot of previous studies have demonstrated that remote

sensing can be employed in generating essential bathy-

metric information. However, theoretical model and semi-

analytical model have many undetermined parameters,

which are unable to represent the physical mechanism of

satellite-derived bathymetry, while ANN model needs too

many parameters to estimate water depth. In this paper, the

DBN-DP method with 5% perturbation rate data is pro-

posed considering the lack of features. The results of this

study demonstrate the capability of the DBN-DP method in

bathymetric mapping in Xinji Island and Yongxing Island.

The results show that bathymetry obtained by DBN-DP is

most effective with 0.80 R2 and 0.9 m MedAE, and 0.78 R2

and 0.3 m MedAE comparing with other methods. The

MAE and MRE of the estimated depths are obviously

lower, whose value are only 1.2 m and 12.8% and 0.5 m

and 28.5%, respectively. It is more accurate for greater

depths (5–20 m) than for shallow depths (0–5 m). The

bathymetric map created from the proposed method

contains much more morphology details than that from the

ordinary kriging owing to the lack of points. Consequently,

most of the estimated water depths meet the CATZOC

A2&B level, all of the deep depths satisfy the CATZOC C

level.

These findings are encouraging for employing deep

learning in bathymetry, which may become a novel

approach for bathymetric inversion in the future. The

present contribution promotes the development of SDB,

and revealed the value of the approach for environmental

management, navigation safety and coastal monitoring.

In addition, more multisource data in different areas will

be involved to further verify the robustness of the method.

The researches when turbidity increases should also be

considered in the future. However, this work needs a large

amount of in situ suspended sediments data synchronized

with satellite imagery data, which requires a large project

support. Moreover, in turbid water, less light can be

emitted from the sea surface so remote sensing technique

can only get a weak signal, which always causes poor

performance of bathymetry.
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