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Abstract
Land-use information provides a direct representation of the effect of human activities on the environment, and an accurate

and efficient land-use classification of remote sensing images is an important element of land-use and land-cover change

research. To solve the problems associated with traditional land-use classification methods (e.g., rapid increase in

dimensionality of data, inadequate feature extraction, and low running efficiency), a method that combines object-oriented

approach with deep convolutional neural network (COCNN) is presented. First, a multi-scale segmentation algorithm is

used to segment images to generate image segmentation regions with high homogeneity. Second, a typical rule set of

feature objects is constructed on the basis of the object-oriented segmentation results, and the segmentation objects are

classified and extracted to form a training sample set. Third, a convolutional neural network (CNN) model structure is

modified to improve classification performance, and the training algorithm is optimized to avoid the overfitting phe-

nomenon that occurs during training using small datasets. Ten land-use types are classified by using the remote sensing

images covering the area around Fuxian Lake as an example. By comparing the COCNN method with the method based

solely on CNN, precision and kappa index were selected to evaluate the classification accuracy of the two methods. For the

COCNN method, on the basis of the classification statistics, precision and kappa index coefficients are 96.2% and 0.96,

respectively, which are 8.98% and 0.1 higher than those of the method based solely on CNN. Experimental results show

that the COCNN method reasonably and efficiently combines object-oriented and deep learning approaches, thereby

effectively solving the problem of the inaccurate classification of typical features with better classification accuracy than

the simple use of CNN.

Keywords Land-use-type classification � Object-oriented � Convolutional neural networks � Deep learning �
Multi-scale segmentation

Introduction

Land-use and land-cover change (LUCC), which is closely

related to global climate change and changes in ecosystems

and biodiversity, reflects the effects of human activities and

climate change on the ecological environment of the

Earth’s surface (Blasi et al. 2008; Yang et al. 2014). Since

the 1990s, the Food and Agriculture Organization, Inter-

national Geosphere-Biosphere Project, International Insti-

tute for Applied Systems Analysis, and other research

institutions have launched a series of LUCC-related pro-

jects (Sands and Leimbach 2003). The international com-

munity attaches importance to placing LUCC as the core

content of global environmental change research. Remote

sensing is an effective tool for monitoring the Earth’s
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surface and a basic element of applications that use clas-

sification and recognition technologies to investigate land-

use status (Song et al. 2012).

Numerous types of land-use classification standards

exist. These systems include several classes and account

for the complex features of land-use and land-cover types,

and these characteristics pose difficulties for accurate

classification. In the classification of remote sensing ima-

ges, determining the classification strategy first is neces-

sary, followed by selecting the appropriate classifier.

Classification strategies include supervised or unsupervised

classification, the direct use of original spectral information

or extraction of other features from spectral information,

and hard or soft classification. In particular, classification

strategies can be divided into pixel-based and object-ori-

ented classifications due to differences in the basic unit of

classification (Zheng et al. 2010). In terms of classifier

selection, the traditional approach used is the statistical

method for low-level feature extraction, including distance

(Tzeng 2006), K-nearest neighbor (Meng et al. 2007),

maximum likelihood (Bruzzone and Prieto 2001), and

logistic regression (Lee 2005) classifiers. With the rapid

development of aerospace, sensor, and computer tech-

nologies over the past decade, high-resolution remote

sensing (HRRS) images have been increasingly applied in

land-use classification (Hu et al. 2015). The diversity of

objects within a given class increases as does the similarity

of objects in different classes due to spectral confusion in

HRRS images. These properties reduce the effectiveness of

traditional classification methods based on low-level fea-

tures (Paisitkriangkrai et al. 2016). Therefore, the method

based on mid-level feature modeling has been developed

on the basis of the low-level feature method (Bosch et al.

2007). Three types of mid-level feature extraction methods

describe image semantics, namely the bag-of-visual-words

(BoVW), latent Dirichlet allocation (LDA), and machine

learning models. However, in practical applications, the

performance of BoVW-based methods relies on the

extraction of handcrafted local features (Alkhawlani et al.

2015). LDA modeling methods rely on K-means clustering

to produce a visual dictionary. Thus, the expression of mid-

level semantic features in an image is limited. The machine

learning models independently perform data expression

and feature extraction (Campsvalls 2008) and discard the

pattern of the extracted features in accordance with pre-

determined rules (Tuia et al. 2013; Lin et al. 2017); thus,

they obtain improved classification results when applied to

complex images. The commonly used machine learning

methods include sparse coding (Jiang et al. 2014), neural

networks (Yuan et al. 2009), support vector machine

(Blanzieri and Melgani 2006; Dai et al. 2007), and deep

learning (Zhang et al. 2016). The deep learning networks

are composed of multiple nonlinear mapping layers, which

represent a new method of intelligent pattern recognition

and are an important new direction in the field of remote

sensing image processing (Zhao et al. 2015).

Convolutional neural networks (CNNs) are a basic deep

learning model representing biologically inspired multi-

stage architectures composed of convolutional–pooling–

fully connected layers (Längkvist et al. 2016). A CNN uses

the low-level features contained in an image to form a

high-level feature through the multilayer abstraction

mechanism (Zhao et al. 2016), which effectively reduces

the gap between low-level image and high-level semantic

features. Research applying CNN to remote sensing images

has emerged in recent years. The Hinton team won an

overwhelming victory in the ImageNet image classification

competition and reduced the top-5 classification error rate

of 1000 images from 26.2 to 15.3% (Krizhevsky et al.

2017). Hu et al. used a CNN model to classify HRRS

images for the first time. Chen et al. adopted a CNN

classification method that incorporates pixel spectral

information and spatial information and studied the

importance of spatial information in classifying HRRS

images (Chen et al. 2016). Qi et al. (2017) presented a

Multiscale Deeply Described Correlation-based algorithm

that jointly incorporates appearance and spatial information

at multiple scales to perform land-use-type classification.

Therefore, CNN has surpassed traditional pattern recogni-

tion and machine learning algorithms and has achieved

superior performance and accuracy.

In general, the classification method based on CNN is

executed by pixel. The classification results can easily be

confused for the transitional zones between land types

because land-use types are numerous and their spatial

distribution is mixed with each other. This approach is not

conducive to the type identification of small land blocks.

To overcome these difficulties, traditional methods

increase the training set size of deep learning or increase

the model depth and the number of nodes, thereby causing

tremendous pressure on manual labeling (Lin et al. 2016).

Object-oriented classification strategies classify objects on

the basis of homogeneous multi-pixels and use spectral,

spatial, shape, and other features of images to perform type

judgments together, thereby breaking through the limita-

tions of pixel-based classification. In addition, the

improvement of training sample set construction and deep

learning method can reduce the dependence of deep

learning model on training sample size. Therefore, this

study improves from two aspects: classification strategy

and deep learning model. The major contributions of this

research are as follows:

1. The object-oriented method is combined with the deep

learning method. On the one hand, the object-oriented

method is used to construct a multi-scale sample set to
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provide high-precision training data for deep learning

model training. On the other hand, on the basis of the

object-oriented concept, the method avoids the pro-

cessing of mixed pixels in the classification process

and enhances the typicality of classification objects in

deep learning.

2. The CNN model structure is modified to improve

classification performance, and the training algorithm

is optimized to avoid the overfitting phenomenon that

occurs during training using small datasets.

The remainder of this paper is organized as follows: The

‘‘Methodology’’ section introduces the proposed frame-

work that combines object-oriented approach with deep

convolutional neural network (COCNN) for use in land-

use-type classification. The ‘‘Experiment and Results’’

section presents the experimental results and analysis. The

‘‘Conclusions’’ section offers concluding remarks and

perspectives on future work.

Methodology

The general process of remote sensing image classification

mainly consists of feature extraction and classification

based on image features. The traditional object-oriented

method establishes fuzzy rules in accordance with the

feature differences of various class objects, focusing on the

improvement of feature extraction. The object features

include color, spectral characteristics [e.g., luminance

value, normalized difference water index (NDWI), and

normalized difference vegetation index (NDVI)], and

shape–texture (e.g., boundary index, compactness, and

aspect ratio) (Chen et al. 2006; Su et al. 2007; Robertson

and King 2011). However, the feature extraction of the

object-oriented method cannot cover all feature types.

Therefore, supporting the classification and recognition of

class objects that only rely on the extracted feature infor-

mation is insufficient when the performance of the classi-

fier is not improved. Deep learning combines low-level

features to form a further abstract high-level representation,

which has strong expressive capability and outstanding

classification performance. The characteristics of a multi-

band of remote sensing images are not fully considered

because deep learning is often performed by RGB images.

In addition, deep learning requires a large number of

labels; thus, the manual identification workload is large.

Table 1 compares and analyzes the advantages and disad-

vantages of the two methods.

The advantage of combining object-oriented approach

with deep learning method includes two aspects. On the

one hand, through the object-oriented method for con-

structing the feature rule set, the land-use object can be

initially extracted, and the training sample sets required for

deep learning can be further constructed by the object. On

the other hand, the performance of deep learning is affected

by the number of features in practical application, espe-

cially when the size of the sample set is relatively small

(Mares et al. 2016). After the combination of object-ori-

ented method, large-scale spatial context information can

be considered by extracting object units, and additional

feature rules and prior knowledge can be integrated in the

deep learning process (Zeiler and Fergus 2014). In addi-

tion, the classification result can be corrected in accordance

with the feature rule set of the object-oriented method. The

optimization of feature extraction strategy is conducive to

the further improvement of the classification effect. A land-

use-type classification method (COCNN) based on the

technical characteristics of object-oriented and deep

learning approaches is proposed on the basis of the analysis

of the advantages of the two methods. This method is

explained in detail in the following section.

COCNN Land-Use-Type Classification Framework

The general flowchart of the COCNN framework (Fig. 1)

illustrates three features. First, after the preprocessing of

remote sensing images, such as image fusion, the multi-

scale segmentation algorithm is used to segment the image.

Second, on the basis of the object-oriented segmentation

results, the typical rule set of construction land, roads,

water bodies, vegetation, and other land-use types is con-

structed, and the segmentation objects are classified and

extracted to obtain training samples to form a typical object

sample set. Finally, the CNN model training is performed

in accordance with the sample set, and the multi-scale

segmentation results are further classified on the basis of

the training model.

Multi-scale Image Segmentation Based
on Object-Oriented Method

Image Preprocessing

Preprocessing of remote sensing images includes radio-

metric calibration, geometric correction, and image fusion.

The main purpose of preprocessing is to express the

information contained in the process of imaging synthesis

further to render it closest to the actual image state.

Radiation correction is used to eliminate image distortion

caused by radiation errors. Geometric correction requires

that the absolute error of the corrected position is less than

one pixel. The image fusion algorithm selects NNDiffuse

Pan Sharpening, which can effectively preserve the color,

texture, and spectral information of the image.
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Multi-scale Image Segmentation

The multi-scale object-oriented segmentation algorithm

considers an image to be a region adjacency graph con-

sisting of topological relationships between regions (Wang

and He 2011). The algorithm can segment the image in

accordance with the specified scale for ensuring that the

image segmentation region (image object) with high

homogeneity (or minimal heterogeneity) is generated,

which is suitable for the optimal separation and represen-

tation of the object (Woodcock and Strahler 1987).

The algorithm is roughly divided into two steps during

execution: (1) initial segmentation and (2) object merging.

In the initial segmentation step, starting from a single pixel,

Table 1 Advantages and disadvantages of object-oriented and deep learning methods

Classification

method

Advantages Disadvantages

Object-

oriented

approach

The limitation of cell classification method is broken by using

the ‘‘homogeneous’’ multiple pixels as the basis for

classification. Various object feature rule sets can be

established to extract land-use types by dividing different

land uses into various objects

The description of shape and texture is incomprehensive and

inaccurate, and the amount of information is insufficient to

support accurate land-use classification and identification

Deep learning

method

The high-level characteristics of different objects can be

mastered to distinguish different land use accurately and

divide the land use in accordance with the training results

The image classification model requires a large amount of data

to train. Especially for the image segmentation model, a

large number of tags are required to identify different

features, and the manual identification workload is

considerably large. The result of deep learning is often a

raster image; thus, the final result is difficult to correct

Fig. 1 Flowchart of the COCNN method
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the difference measure is calculated with the neighboring

cells, and the image segmentation is conducted in accor-

dance with the heterogeneity (Jin et al. 2018). This

heterogeneity is determined by the difference in spectrum

and geometry between objects, and the calculation for

heterogeneity follows formula (1).

f ¼ w1xþ 1� w1ð Þy: ð1Þ

In the formula, f is the heterogeneity value; w1 repre-

sents the weight, 0 B w1 B 1; x denotes the spectral

heterogeneity; and y refers to the shape heterogeneity. The

calculation of x and y follows formulas (2) and (3).

x ¼
Xn

i¼1

piri; ð2Þ

y ¼ w2uþ 1� w2ð Þv: ð3Þ

In the formula, pi is the weight of the ith image layer; ri
indicates the standard deviation of the ith image layer

spectral value; u represents the overall tightness of the

image region; v denotes the image region boundary

smoothness; and w2 stands for the weight, 0 B w2 B 1.

The calculation of u and v follows formulas (4) and (5).

x ¼ Effiffiffiffi
N

p ; ð4Þ

y ¼ E

L
: ð5Þ

In the formula, E is the actual boundary length of the

image region; N denotes the total number of pixels of the

image region; and L represents the total length of the

rectangular boundary, including the range of the image

region.

The object merging step starts with each region in the

region adjacency graph. The region pairs that satisfy the

local optimal merge condition are determined, the two

regions are merged, and the feature values of all regions

connected to the original two regions are updated. When

the adjacent two regions are merged, the heterogeneity of

the newly generated large image region object is calculated

using formula (6).

f 0 ¼ w1x
0 þ 1� w1ð Þy0: ð6Þ

In the formula, f0 is the heterogeneity value of the newly

merged large image region object; x0 and y0 represent the
spectral and shape heterogeneities of the newly merged

large image region, respectively. The calculation of x and y

follows formulas (7) and (8).

x0 ¼
Xn

i¼1

pi N
0r0i � N1ri1 þ N2ri2ð Þ

� �
; ð7Þ

y0 ¼ w2u
0 þ 1� w2ð Þv0: ð8Þ

In the formula, N0 denotes the total number of pixels in

the merged image region; ri0 refers to the standard devia-

tion of the ith layer spectral value of the merged image; N1

and N2 are the total numbers of image pixels in adjacent

regions 1 and 2 before the merge, respectively; ri1 and ri2
refer to the standard deviations of the spectral values of the

ith layer of adjacent regions 1 and 2 before the merge,

respectively. The calculation of u0 and v0 follows formulas

(4) and (5).

u0 ¼ N 0 E0
ffiffiffiffiffi
N 0

p � N1

E1ffiffiffiffiffiffi
N1

p þ N2

E2ffiffiffiffiffiffi
N2

p
� �

; ð9Þ

v0 ¼ N 0 N
0

L0
� N1

E1

L1
þ N2

E2

L2

� �
: ð10Þ

In the formula, E0 and L0 are the actual boundary length

of the merged image region and the total length of the

circumscribed rectangle boundary of the region range,

respectively; E1 and L1 denote the actual boundary length

of adjacent region 1 before the merge and the total

boundary length of region 1s circumscribed rectangle,

respectively; E2 and L2 indicate the actual boundary length

of adjacent area 2 before the merge and the total boundary

length of region 2s circumscribed rectangle, respectively.

Figure 2 shows the results of image segmentation at dif-

ferent scales.

Sample Set Construction Based on Multi-scale
Rules

The hierarchical structure of the sample classification is

established through the correspondence between the fea-

ture information of the object and the land use. Multi-scale

hierarchical segmentation is used, and different land uses

are segmented by different scales. Then, classification rules

are set in accordance with the spectral, geometric texture,

and topological features of the land-use object.

In the large-scale segmentation layer, the index of

brightness, NDWI, and NDVI are used as the basis for the

assessment (Zhu et al. 2017), and the first classes, such as

construction land, road, water body, and vegetation, are

initially extracted. On the image objects of the first classes,

the appropriate segmentation scale is selected, and the

subclasses in the first classes are segmented by considering

the shape index of the objects, such as the boundary index,

compactness, and aspect ratio. Table 2 shows the multi-

scale object rule set.

A set of typical remote sensing image features, includ-

ing cultivated land, woodland, water, roads, and buildings,

is established on the basis of the object judgment rules, by

tracking the sample boundaries under each category, and

the training sample set is obtained. Table 3 shows the

training sample set example.
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Construction of Deep CNN Model

Modeling Method

The deep CNN model is selected for deep learning by using

the sample images in the sample set as the training data.

The characteristics of the samples are automatically

obtained through deep learning, and the object-oriented

segmentation results are used to realize the automatic

classification of typical land-use types. Therefore, the

structural design of the CNN is the key issue.

A deep CNN is formed by stacking multiple basic net-

work structures. To obtain further accurate classification

results, adding additional nodes to the model is necessary.

However, the model complexity requires additional train-

ing samples for support, but the training samples that can

be used in practical applications are limited. The compar-

ison of the traditional methods in CNN training shows that

improving the learning algorithm in training is further

effective.

The important structural parameters and training

strategies are optimized to improve the classification effect

of deep CNN:

1. Rectified linear unit (ReLU) activation function accel-

erates model convergence.

The ReLU function is one of the most popular neuronal

activation functions in the deep learning field (Shang et al.

2016). In comparison with other activation functions, the

commonly used sigmoid function is a nonlinear activation

function that displays a saturation effect, thereby causing a

loss of gradient information for large and small input data

values (Chen et al. 2013). The output gradient of the sig-

moid function is not centered on zero, resulting in con-

vergence fluctuations during the gradient descent phase.

When the number of layers is relatively large, the gradient

to the front layer becomes small, and the network weight is

ineffectively updated. The tanh activation function also has

a small gradient value at saturation, leading to inefficient

training (Nambiar et al. 2014; Gulcehre et al. 2016).

The gradient constant of the ReLU function is equal to 1

when x[ 0. Thus, the problem of gradient disappearance

is alleviated during backpropagation (Zhang et al. 2017).

Moreover, the ReLU function is sparsely activated by

simple thresholding activation. In comparison with other

activation functions (e.g., sigmoid and tanh functions), the

ReLU function increases the convergence speed of CNN.

2. Use of regularization to prevent overfitting.

Regularization reduces the model complexity by

restricting the parameter’s ranges to reduce the distur-

bances caused by noisy inputs. This procedure reduces

overfitting to a certain extent (Fanany 2017). The L2 reg-

ularization is realized by modifying the cost function,

whereas the dropout technique is realized by modifying the

neural network. The key concept of the dropout technique

involves randomly suppressing neurons in the target layer

with a certain probability during every iteration of model

training (Zheng et al. 2017). This process considerably

reduces the complex mutual adaptation among neurons and

achieves the suppression of overfitting.

3. Local response normalization (LRN) layer enhance-

ment generalization.

The LRN layer mimics the side inhibition mechanism of

biological nervous systems and creates a competitive

environment for the activity of local neurons (Li et al.

2015). This behavior enhances the relatively large response

values and suppresses other neurons with small feedback,

thereby elevating the model’s generalization capability.

Furthermore, as LRN selects large feedback from the

responses of multiple convolution kernels of the nearest

Fig. 2 Multi-scale segmentation result diagram. a Original image,

b the segmentation scale is 75, the shape weight is 0.3, and the

compactness weight is 0.5, c the segmentation scale is 120, the shape

weight is 0.3, and the compactness weight is 0.5, d the segmentation

scale is 300, the shape weight is 0.3, and the compactness weight is

0.5
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neighbor, it applies to the ReLU activation function with-

out an upper bound.

CNN Model Structure

Figure 3 presents the deep CNN framework constructed in

this paper. The initial weights of the network are extracted

from the Gaussian distribution with a standard deviation of

0.01 and a mean value of 0. At the training stage, the

Table 2 Multi-scale object rule set

No. Scale Category Judgment basis Rule Remark

1 Large-scale segmentation

layer (segmentation scale of

300, shape weight of 0.3,

and compactness weight of

0.5)

Construction

land

Lightness value Lightness value[ 338 The building spectrum is bright, and

the variance is large

2 Roads Width and aspect ratio Width\ 17.8, aspect

ratio[ 12.5

It is strip-shaped and has a large

ratio of length to width

3 Water bodies NDWI NDWI[ 0.5 NDWI is used to extract the water

body information in images, and

the effect is improved

4 Vegetation NDVI NDVI[ 0 NDVI is the best indicator of

vegetation growth and coverage

5 Small-scale segmentation

layer (segmentation scale of

75, shape weight of 0.3, and

compactness weight of 0.5)

Residential

buildings

Extracted from

construction land, in

accordance with

shape rules

Boundary

index[ 1.0,

homogeneity

index\ 12

Consider the relationship between

the internal parent and child

objects, the boundary index of the

object, the lightness value, and the

homogeneity

6 Industrial land Extracted from

construction land, in

accordance with

shape rules and

spectral value index

Boundary

index[ 0.8,

lightness

value\ 398

7 Other

construction

land

Extracted from

construction land,

except residential

building and

industrial land

– –

8 Cultivated

land

Extracted from

vegetation, in

accordance with

shape rules

Boundary

index[ 1.5,

homogeneity

index\ 12

Consider the relationship between

the internal parent and child

objects, the boundary index of the

object, the ecological index, and

the homogeneity

9 Garden plots Extracted from

vegetation, based on

spectral value index

and NDVI

0.30\NDVI\ 0.45,

homogeneity

index[ 24

10 Grassland 0.15\NDVI\ 0.30,

homogeneity

index[ 24

11 Forest land NDVI[ 0.45,

homogeneity

index[ 32

12 Bare land Extracted from

vegetation, except

cultivated land,

garden plot,

grassland, and forest

land

– –
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sliding step length is 1, and a gradient descent is performed

with a constant learning rate of 0.0005. The core compo-

nent of the deep CNN is composed of 7 convolutional

layers (Conv1–Conv7), 1 pool layer (pooling1), and 7 LRN

layers (norm1–norm7).

Four of the important parameters and functions in the

deep CNN-based model are described as follows: (1) size

and number of the local receptive fields and activation

functions. The convolution kernels are 3 9 3, 5 9 5, or

7 9 7 pixel blocks. Convolutional layers 1–7 have 8, 16,

32, 64, 128, 256, and 256 kernels. Different sizes and

numbers of convolution kernels are used to investigate the

effects of the characteristic sampling density on the model

performance. After the convolution operation, the ReLU

activation function is used. (2) Initial weight regularization.

The L2 regularization is added to the initialization

parameters of each layer in the network. (3) Fully con-

nected layer with dropout. The model consists of two fully

connected layers, each of which has 1024 outputs. The

dropout technique is applied to the FC1–2 layer to control

overfitting given that the fully connected layer FC1–2 is

densely connected. The optimal dropout probability is

Table 3 Training sample set example

Category Sample example Category Sample example

Residential 
buildings Grassland

Industrial 
land

Forest
land

Other 
construction 
land

Bare land

Cultivated 
land Roads

Garden plots Water 
bodies

Fig. 3 Structure of the deep CNN
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optimized within the range of 0.5–0.9. (4) Loss function of

the classification layer. The softmax loss function con-

structs the corresponding classifier in the classification

layer. Each node in the output of the CNN represents the

probability that the input information belongs to a certain

class I as follows:

P Y ¼ ijx;w; bð Þ ¼ softmax
i

wxþ bð Þ ¼ ewixþbi

P
j e

wjxþbi
; ð11Þ

where w is the weight parameter in the last layer and

b denotes the corresponding bias parameter.

Experiment and Results

Experimental Data and Environment

Experimental data containing the optical remote sensing

image, a high-quality land-use classification vector layer,

and the classified field information are derived from the

land-cover classification results of the National Geoinfor-

mation Survey. In particular, the remote sensing image has

a scale of 1:10,000, measures 8386 9 5772 pixels, and has

a pixel resolution of 1 m. The image (Fig. 4) shows the

area surrounding Fuxian Lake in Yunnan Province, China.

On the basis of the classification system of the National

Geoinformation Survey, the land-use types shown in the

image are divided into ten classes: residential building,

industrial land, other construction lands, cultivated land,

garden plots, grassland, forest land, bare land, roads, and

water bodies. The sample set is constructed on the basis of

multi-scale rules, and a part of it is selected as test data.

Table 4 shows the data volume of the sample and test sets

for different land-use types.

The indexes for evaluating the experimental results

include precision (P) and kappa index (K). P and K are

calculated using formulas (11) and (12) (Wang et al. 2012),

in which nst refers to the same quantity between annotation

result s and classification result t, nt denotes the quantity of

results of the classification result t, r represents the number

of rows in the table, xii is the quantity of type combinations

on the diagonal part of the table, xi? indicates the number

of observations in line I, x?i refers to the number of

observations in column I, and N stands for the number of

cells in the table.

P s; tð Þ ¼ nst

nt
; ð12Þ

K ¼ N
Pr

i¼1 xii �
Pr

i¼1 xiþ � xþið Þ
N2 �

Pr
i¼1 xiþ � xþið Þ : ð13Þ

The experiment uses Windows Server 2012 R2 operat-

ing system, with a NVIDIA Tesla K80 for GPU accelera-

tion. Other major hardware elements include an Intel

(R) Xeon (R) CPU E5-2630 processor and 128 GB of

memory. The deep CNN model is developed on the basis of

the TensorFlow open-source framework. The main ver-

sions of the software are CUDA 8.0, cuDNN 6.0, and

tensorflow_gpu_1.2.0.

Fig. 4 Remote sensing image of

the study area
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Setting of the Experiment

In this experiment, the COCNN method is compared with

the method based solely on CNN. For the CNN method, the

land-use classification of images is based solely on the

deep CNN model. The window size of 30 9 30 is selected

to extract spatial information in the images for land-use-

type classification. Then, the entire image is scanned by

moving the window.

The experimental results are compared from two per-

spectives. On the one hand, under the condition that the

structure and parameters of the deep CNN model remain

unchanged, the difference of classification accuracy

between the COCNN method and the method based solely

on CNN is compared. On the other hand, on the basis of the

joint object-oriented method, the structure and parameters

of the deep CNN model are adjusted, and the classification

effects under different structural and parameter conditions

are compared.

The baseline parameter configuration for COCNN

(Table 5) assumes different frame selections and parameter

settings that affect the classification accuracy. Comparative

experiments are conducted to change some parameters

while keeping the remaining settings unchanged. Model

training uses 100 elements of the training data for each

iteration, and 1500 training iterations are performed. The

network state is tested 100 times per iteration.

Results and Analysis

Influence of Classification Strategies on Classification
Results

The classification results of the images are obtained, and

the accuracy is evaluated on the basis of the COCNN

method. The land-use map of the area surrounding Fuxian

Lake (Fig. 5) contains ten land-use classes with class-

specific confusion matrixes (Table 6). The P and K coeffi-

cients of the land-use classes are 96.2% and 0.96, respec-

tively. The water body type has the highest producer’s

accuracy (99.5%), whereas the industrial land type has a

relatively low value of 91.2%.

When based solely on the CNN method, the P and K of

the classification results are 87.22% and 0.86, respectively.

Thus, the classification accuracy (Table 7) of the CNN

method is lower than that of the COCNN method. In

addition to the slight decrease in the accuracy of water

bodies, the classification accuracy of other land-use types

has been remarkably reduced. Combined with the obser-

vation of land-use map, the classification results based on

COCNN classification method are relatively complete, and

few faults are found in large-scale plaques, such as vege-

tation and construction land. In addition, COCNN is useful

for solving the problems of the incomplete extraction of

linear features and the small plots of crops. The accuracy of

land-use information extracted based on CNN methods is

slightly insufficient, and several plaques with inaccurate

classification types are found. Moreover, the classification

results are relatively fragmented; thus, the classified plots

have evident spatial heterogeneity. The errors are a con-

sequence of errors among land-use types with the same

Table 4 Data volume of the

datasets
Scene Sample set Test set Scene Sample set Test set

Cultivated land 863 216 Garden plots 806 202

Forest land 807 202 Grassland 738 185

Residential buildings 826 207 Roads 835 209

Other construction lands 854 214 Industrial land 773 194

Bare land 772 193 Water bodies 782 196

Table 5 Basic parameter settings for COCNN

Configuration item Parameter Configuration item Parameter

Size of the convolution kernels 3 9 3 Number of convolution kernels (Conv1–Conv7) 8–16–32–64–128–256–256

Activation function ReLu Pool method 1-max pooling

Learning rate 0.00005 Dropout 0.5

LRN-n/2 4 LRN-k 1.0

LRN-a 0.001/9.0 LRN-b 0.75
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natural attributes. For example, when the residential

building type displays a classification error, the inaccu-

rately selected classification type is often another con-

struction land. Research results show that the COCNN

method not only fully uses the spectral information of

remote sensing images but also considers the spatial dis-

tribution characteristics and correlation of geographic

objects. On the one hand, noise generated due to hetero-

geneity and spectral differences in pixel classification is

effectively avoided. On the other hand, a multi-feature

sample set is constructed by correlation rules, which can

assist the deep learning effect of CNN.

Influence of Deep CNN Structure on Classification Results

1. Influence of network parameters on different convo-

lution kernel parameters.

The convolution kernel is regarded as the most sensitive

element of the CNN and is responsible for directly

extracting the lowest-level features from the original input

image. The effects of the size and number of convolution

Fig. 5 Detailed land-use map of the area surrounding Fuxian Lake. a-1, b-1, c-1, and d-1 Classification of regions A, B, C, and D based on

COCNN, respectively. a-2, b-2, c-2, and d-2 Classification of regions A, B, C, and D based solely on CNN, respectively
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kernels on the recognition accuracy of COCNN (Fig. 6)

show that the model performance increases as the convo-

lution kernel size decreases. When the convolution kernel

size is 3 9 3, the verification accuracy reaches its highest

value. When the convolution kernel size is large, the

mixing of information from coarse-grained features (e.g.,

edge features) occurs, and excessive detail is lost from the

information that passed to the convolution kernel of the

high layers because the distinction between similar land-

use types often depends on the description of local textures.

When the fixed convolution kernel size is 3 9 3, the

experiment verifies that models with smaller numbers of

convolution kernels and greater numbers of layers display

higher classification effectiveness than models with greater

numbers of convolution kernels and smaller numbers of

layers. The seven-layer model with 8, 16, 32, 64, 128, 256,

and 256 convolution kernels is more accurate than the four-

layer model with 64, 128, 256, and 512 convolution ker-

nels. The CNN network requires a sufficient number of

low-level features to ensure the capability to fit the data to

overcome the data complexity caused by factors, such as

the variety of land types, because the dataset covers a

relatively small number of species and samples. Therefore,

increasing the depth of the CNN improves the network

performance.

In the CNN, the feature map of this layer is a different

combination of the feature maps extracted by the previous

layer. Thus, the output data of the previous layer are the

Table 6 Confusion matrix of

the land-use-type classification

based on COCNN

Classification results Total Precision (%)

CL GP FL GL RB R OC IL BL W

Standard results

CL 213 0 0 2 0 0 1 0 0 0 216 98.61

GP 0 186 7 4 0 0 0 0 0 5 202 92.08

FL 0 1 199 2 0 0 0 0 0 0 202 98.51

GL 2 0 0 181 0 0 0 1 0 1 185 97.84

RB 0 0 0 0 203 2 2 0 0 0 207 98.07

R 0 0 0 0 4 200 5 0 0 0 209 95.69

OC 12 0 0 2 0 0 197 2 1 0 214 92.06

IL 0 0 4 9 0 0 2 177 2 0 194 91.24

BL 0 0 0 0 0 0 2 1 190 0 193 98.45

W 0 0 0 1 0 0 0 0 0 195 196 99.49

Total 227 187 210 201 207 202 209 181 193 201 2018 96.18

CL cultivated land, GP garden plots, FL forest land, GL grassland, RB residential building, R roads, OC

other construction lands, IL industrial land, BL bare land, W water bodies

Table 7 Confusion matrix of

the land-use-type classification

based solely on CNN

Classification results Total Precision (%)

CL GP FL GL RB R OC IL BL W

Standard results

CL 194 7 0 3 0 0 10 2 0 0 216 89.81

GP 4 167 16 12 0 0 3 0 0 5 202 82.67

FL 6 3 179 14 0 0 0 0 0 0 202 88.61

GL 5 5 7 165 0 2 0 1 0 0 185 89.19

RB 0 0 0 0 184 8 11 0 4 0 207 88.89

R 0 0 0 9 4 181 12 1 2 0 209 86.60

OC 16 0 0 2 12 6 171 4 3 0 214 79.90

IL 0 0 8 14 6 0 7 156 3 0 194 80.41

BL 1 0 0 0 0 4 6 3 177 2 193 91.71

W 4 0 0 2 0 0 0 0 4 186 196 94.90

Total 230 182 210 221 206 201 220 167 193 193 2018 87.22

CL cultivated land, GP garden plots, FL forest land, GL grassland, RB residential building, R roads, OC

other construction lands, IL industrial land, BL bare land, W water bodies
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input data of this layer. To further verify that no redun-

dancy exists in the convolution result for each layer, the

entire convolution kernel is visualized (Fig. 7). No repeti-

tive or random convolution kernel is found after comparing

the visualization results. Thus, the convolution kernel is

effectively trained on all cases.

2. Influence of network parameters on the use of regu-

larization and dropout to suppress overfitting.

In COCNN, regularization and dropout suppress over-

fitting in model training, and the effectiveness of the two

methods was tested separately. The model without L2

regularization displays the effects of overfitting when

trained 900 times. The L2 regularization term has no effect

on the updating of bias b in each layer of the model but

affects the updating of weight w (Fig. 8). When w is pos-

itive, the updated w decreases, and when w is negative, the

updated w becomes large. The effect of L2 regularization is

to bring w closer to 0. Thus, the weights in the network approach 0. This behavior is equivalent to reducing the

weight of the network and changing the complexity of the

network, thereby avoiding overfitting.

The effects of the dropout probability on model per-

formance show that the accuracy of model classification

reaches its peak when the dropout probability is 0.50

(Fig. 9). When the dropout value is large and insufficient

training data are used, excessive amounts of feature

information extracted from the model are retained, result-

ing in overfitting. As the dropout value decreases, the

model performance also decreases. This outcome is a

consequence of excessive deleted neurons, resulting in

insufficient trained subnetwork and leading to reductions in

the capability of the model to fit the data. Then, the model

experiences difficulties in effectively establishing mapping

relationships between the image data and land-use types.

By combining the effects of regularization and dropout,

overfitting avoidance is limited by relying on regularization

Fig. 6 Effects of different sizes (a) and numbers (b) of convolution kernels on model performance

Fig. 7 Visualization result of convolution kernel

Fig. 8 Effects of L2 regularization on model performance
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or dropout alone; improved effectiveness is achieved when

regularization and dropout are combined.

Conclusions

To realize the accurate recognition of land-use types based

on remote sensing images, a method that uses COCNN is

proposed. The COCNN method constructs a set of typical

feature samples obtained by the general rule set on the

basis of the multi-scale segmentation of images. Then,

sample training and feature extraction are further per-

formed by the deep learning method. Finally, the sample

characteristics after learning are applied to the segmenta-

tion results to complete the land-use classification of

remote sensing images. For the classification statistics, the

P and K coefficients are 96.2% and 0.96, respectively. For

the influence of deep CNN structure, increasing the depth

of the CNN improves the network performance. In addi-

tion, overfitting avoidance is limited by relying on regu-

larization or dropout alone; improved effectiveness is

achieved when regularization and dropout are combined.

Experimental results show that the COCNN method rea-

sonably and efficiently combines object-oriented and deep

learning approaches and can comprehensively utilize the

spectral, geometric, and texture information of image

objects. This method not only can fully use the correlation

between neighboring pixels, to obtain the small spatial

heterogeneity of the classification results, but also has

strong anti-noise capability, which effectively reduces the

phenomenon of pixel spectral confusion. However, the

existing research remains imperfect in the general rule set

construction and deep learning structure design and

requires further improvement.
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