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Abstract
This study was carried out to identify and compare spatial variation of some soil physical and chemical properties in the

Jadwal Al_Amir Project/Babylon/Iraq. Soil properties including soil texture fractions (sand, silt, clay), electrolytic con-

ductivity (ECe), calcium carbonate minerals content (CaCO3), and organic matter content (O.M.) were measured by

collecting soil samples from (0–30 cm) soil depths at 150 sampling sites. Soil properties were analyzed using both classical

and geostatistical methods that included descriptive statistics, semivariograms, cross-semivariograms spatial kriged and co-

kriged prediction maps and interpolation. Results indicated that moderate to strong spatial variability existed across the

study area for soil properties considered in this study. Strong spatial dependency of soil properties was related to structural

intrinsic factors such as parent material and mineralogy. Furthermore, cross-semivariograms exhibited a strong spatial

interdependency between clay content with sqrtECe, CaCO3 minerals content, and log O.M. content. These results indi-

cated that cokriging improved predictions for clay content with soil properties studied and considered to be an accurate and

adequate procedure for spatial interpolation and evaluation of soil properties considered in this study.
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Introduction

Spatial variability of soil physical and chemical properties

within or among agricultural fields is inherent in nature due

to geologic and pedologic soil forming factors, but some of

the variability may be induced by tillage and other man-

agement practices. These factors interact with each other

across spatial and temporal scales, and are further modified

locally by erosion and deposition processes (Iqbal et al.

2005). Geostatistics have proved useful for assessing spa-

tial variability of soil properties and have increasingly been

utilized by soil scientists and agricultural engineers in

recent years (Webster and Oliver 2001). Semivariograms

and cross-semivariograms have been used to characterize

and model spatial variance of data to assess how data

points are related with separation distances while kriging

uses modeled variance to estimate values between samples

(Journel and Huijbregts 1978).

Despite the importance of soil texture and its relative

ease of determination using conventional methods, soil

maps are produced at large scales to adequately represent

their spatial distribution. Quantitative information on soil

surface texture would be extremely useful for modeling,

planning, and managing the soils (Scull et al. 2005). Duf-

fera et al. (2007) report some soil properties including

particle size distribution (soil texture) shows horizontal

spatial structure and captured by soil map units i.e. soil

texture maps.

The objectives of this study were to determine the

degree of spatial variability of some soil physical and

chemical properties, variance structure, and model the

sampling interval of Jadwal Al_Amir Project/Babylon/Iraq.

Materials and Methods

Description of the Study Area

This study was conducted within Jadwal Al_Amir Project

that was located in Hilla/Babylon province, 100 km (62
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mi) south of Baghdad, rising 35 m above sea level. The

study area was about 940 ha of the Project which was

located between 44�26050.66100 to 44�28043.93700 of East-

ern longitude and 32�20052.07400 to 32�25012.3600 Northern

latitude (Fig. 1).

The total area of the Project is about 450,000 ha which

is considered to have a desert climate. During the year,

there is virtually no rainfall. This climate is considered to

be BWh according to the Köppen–Geiger climate classifi-

cation. Temperatures in the summer can reach as high as

50 �C, the average annual temperature is 23.1 �C, and

winters are generally mild. The rainfall here averages

114 mm.1

Soil Sampling and Laboratory Analysis

Soil samples were randomly taken from 150 locations in

May 2016. The locations of sampling points were identified

by global positioning system (GPS) showed in Fig. 1 and

samples were taken at depths of 0–30 cm. Soil samples

were oven dried to a constant weight, analyzed for particle

size distribution, electrolytic conductivity (ECe), calcium

carbonate minerals content (CaCO3), and organic matter

content (O. M.). Soil texture was determined using the

hydrometer method (Gee and Bauder 1986). The ECe

values of samples were determined by EC meter with a

glass electrode (Page et al. 1982). Calcium carbonate

minerals content was determined using the method

described by Loeppert and Suareze (1996). Organic matter

content was determined using method described by Nelson

and Sommers (1996).

The data were collected from the Ministry of Water

Resources/National Center for Water Resources Manage-

ment for characterization of the standard physical and

chemical properties of the soils of the Project area.

Statistical Analysis and Interpolation

The data analyses were conducted in two stages: (a) dis-

tribution was analyzed by classical statistics (minimum,

maximum, mean, median, skewness, kurtosis, standard

deviation, and coefficient of variations); (b) geostatistical

parameters were calculated for each variable as a result of

corresponding semivariogram and cross-semivariogram

analysis.

Fig. 1 Map of the study area showing 150 soil sampling locations at Jadwal Al_Amir Project, Babylon, Iraq

1 Iraqi Meteorological Organization and Seismology.
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Skewness is the most common form of departure from

normality. If a variable has positive skewness, the confi-

dence limits on the variogram are wider than they would

otherwise be and consequently, the variances are less

reliable. A logarithmic transformation is considered where

the coefficient of skewness is greater than 1 and a square-

root transformation applied if it is between 0.5 and 1 (Bahri

et al. 1993; Webster and Oliver 2001). Exploratory statis-

tical analyses were performed by IBM� SPSS� Statistics

v.23.0 Software.

Geostatistical analyses, including fitting semivariogram

model and ordinary kriging procedure were carried out

using ArcGIS (v.10.4.1 Software 2015) to assess the degree

of spatial variability of each soil property used in this

study. Semivariograms are a key tool in regionalized

variables theory and are formed by three basic parameters:

nugget, sill, and range which describe the spatial structure

as: c(h) = C0 ? C.

Semivariogram is computed as half the average squared

difference between the components of data pairs (Webster

and Oliver 2007). The function is expressed as:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

½ZðxiÞ � Zðxi þ hÞ�2 ð1Þ

where c(h) is the semivariance for the distance interval

class h, N(h) is the number of sample pairs separated by lag

distance (separation distance between sample positions),

Z(xi) is a measured variable at spatial location i, Z(xi
? h) is a measured variable at spatial location i ? h.

Table 1 Descriptive statistics for selected soil physical and chemical properties (n = 150) for surface soil horizons (0–30 cm)

Soil property Statistical parameter

Min. Max. Mean Median Skewness Kurtosis Standard deviation

SD

Coefficient of variation

CV (%)a

Sand (g kg-1) 175.00 712.00 450.70 449.50 0.10 2.20 160.40 35.59

Silt (g kg-1) 135.00 630.00 360.30 358.00 0.04 1.80 150.70 41.83

Clay (g kg-1) 23.00 440.00 177.30 179.00 0.40 2.61 120.17 67.77

ECeb (dS m-1) 1.30 420.00 127.06 63.40 0.87 2.40 135.23 106.43

CaCO3 (g kg-1) 99.70 250.40 179.10 180.50 0.50 3.28 37.10 20.71

O.M.c (g kg-1) 1.95 12.50 9.20 10.30 2.20 7.70 2.80 30.43

aCV is the coefficient of variation
bCalculations is based on square-root-transformed data
cCalculations is based on log-transformed data

Fig. 2 Isotropic variograms and models for the physical soil properties: a sand fraction, b silt fraction, c clay fraction
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In this study, the Spherical, Gaussian, Circular, and

Stable, models were selected. The spherical model defined

in Eqs. 2 and 3 provided the best fit for the experimental

semivariance of soil textural fractions, silt, and sqrtECe.

Table 2 Semivariogram models and parameters for the soil properties

Soil properties Model Model

R2
Range a

(m)

Nugget

(C0)

Sill

(C0 ? C)

Nugget/sill ratio C0/

(C0 ? C) %

Spatial dependency

level

Sandg (kg-1) Stable 0.80 396 0.15 0.33 45.45 Moderate

Silt (g kg-1) Spherical 0.82 420.00 1.80 2.72 66.17 Moderate

Clayg (kg-1) Gaussian 0.78 480.00 0.28 0.40 70.00 Moderate

ECea (dS m-1) Spherical 0.87 384.00 0.00 0.679 0.00 Strong

CaCO3

(g kg-1)

Circular 0.77 516.00 0.06 0.80 7.50 Strong

O.M.b (g kg-1) Circular 0.79 576.00 0.49 0.98 50 Moderate

aAnalyses is based on square-root-transformed data
bAnalyses is based on log-transformed data

Fig. 3 Isotropic variograms and models for the chemical soil properties: a sqrtECe, b CaCO3 minerals content, c log O.M. content

Fig. 4 Cross-semivariogram of

Clay 9 sqrtECe
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cðhÞ ¼ C0 þ C
3

2

h

a

� �
� 1

2

h

a

� �3
" #

h� a ð2Þ

and

cðhÞ ¼ C0 þ C h[ a ð3Þ

The Gaussian model is similar to the exponential model

but assumes a gradual rise for the y-intercept (Journel and

Huijbregts 1978).

cðhÞ ¼ C0 þ C 1 � exp � h2

a2

� �� �
h� 0 ð4Þ

The circular model defined in Eqs. 5, 6, and 7 provided

the best fit for the experimental semivariance of CaCO3

minerals, and log O.M.

cðhÞ ¼ C0 þ C 1 � 2

p
cos�1 h

a

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � h2

a2

r" #
0\h� a

ð5Þ
cðhÞ ¼ C0 þ C h[ a ð6Þ
cð0Þ ¼ 0 ð7Þ

The stable model defined in Eq. 8 provided the best fit

for the experimental semivariance of sand fraction.

cðhÞ ¼ C0 þ C 1 � exp � 3hw

aw

� �� �
0\w� 2 ð8Þ

Cross-semivariances were also calculated to examine a

spatial relationship between two variables at the same

location and then variables are said to be co-regionalized or

interrelated (Heisel et al. 1999). The cross-dependency

Table 3 Cross-semivariogram model and parameters for combination of soil properties

Soil properties combination Model Nugget, C0 Sill, C0 ? C Nugget ratio, C0/C0 ? C (%) Range a (m) RSSa R2

Clay 9 ECe Gaussian - 0.001 - 0.0103 9.71 144 1.06*10-9 0.99

Clay 9 CaCO3 Gaussian 0.001 0.00913 10.95 180 5.29*10-7 0.90

Clay 9 O.M. Gaussian - 0.00011 - 0.00080 13.75 216 4.70*10-7 0.95

aRSS is the residual sums of squares for the theoretical cross-semivariogram models

Fig. 5 Cross-semivariogram of

Clay 9 CaCO3 Minerals

Fig. 6 Cross-semivariogram of

Clay 9 log O.M.
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between two variables u and v has a cross-semivariogram

expressed as:

ĉuvðhÞ ¼
1

2N hð Þ
XN hð Þ

i¼1

zu xi þ hð Þ � zu xið Þf g � zv xi þ hð Þ � zv xið Þf g½ �

ð9Þ

where ĉuvðhÞ is cross-semivariance between u and v vari-

ables for the interval distance class, h is the lag distance,

N(h) is the total number of pairs for lag interval h, zu xið Þ
and zu xi þ hð Þ are the measured values of variable zu, zv xið Þ
and zv xi þ hð Þ are the measured values of variable zv at

points xi and xi þ h; respectively (Journel and Huijbregts

1978). Maps of ordinary co-kriged predictions from fitted

cross-semivariograms were produced using GS? software.

Fig. 7 Ordinary kriged map for

sand fraction at Jadwal Al_Amir

Project, Babylon, Iraq

Fig. 8 Area_Percent of sand fraction at Jadwal Al_Amir Project,

Babylon, Iraq
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Results and Discussion

Descriptive Statistics

Descriptive statistics for soil properties selected in this

study are given in Table 1. The CV values of measured and

estimated soil properties ranged between 20.71% for

CaCO3 minerals and 106.43% for sqrtECe. The variability

of soil properties within the study area was classified as

medium (15–75%) to high ([ 75%) based on the CV val-

ues according to the groupings described by Dahiya et al.

(1984). This indicates that sqrtECe exhibit high variability

while the remaining soil properties quantified in this study

exhibit medium variability (15–75%) within the study area.

sqrtECe was higher in the study area which faced with a lot

of salinity related problems.

Fig. 9 Ordinary kriged map for

silt fraction at Jadwal Al_Amir

Project, Babylon, Iraq

Fig. 10 Area_Percent of silt fraction at Jadwal Al_Amir Project,

Babylon, Iraq
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Geostatistical Methods

Semivariogram Analysis

Anisotropic semivariograms did not show any differences

in spatial dependency based on direction and therefore

isotropic semivariograms were chosen. The geostatistical

analysis indicated different spatial distribution models and

spatial dependency levels for the soil properties. Spherical,

Gaussian, Circular, and Stable, models were obtained as

the best fit to the experimental results (Figs. 2 and 3). The

R2 values in Table 2 show that models fit the experimental

semivariogram data for all soil properties. The nugget

effect, which represents random variation caused mainly by

the undetectable experimental error and field variation

within the minimum sampling space (Bo et al. 2003; Aşkın

Fig. 11 Ordinary kriged map

for clay fraction at Jadwal

Al_Amir Project, Babylon, Iraq

Fig. 12 Area_Percent of clay fraction at Jadwal Al_Amir Project,

Babylon, Iraq
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and Kızılkaya 2006; Ersahin and Brohi 2006) was higher in

silt, clay fractions and O.M. content than in the other soil

properties (Table 2).

Generally, strong spatial dependency of soil properties is

related to structural intrinsic factors such as parent material

and mineralogy, and weak spatial dependency is related to

random extrinsic factors such as plowing, fertilization and

other soil management practices (Zheng et al. 2009;

Muhaimeed et al. 2013).

Cross-Semivariogram Analysis

The isotropic cross-semivariograms of clay fraction with

sqrtECe, CaCO3 minerals, and log O.M. are shown in

Figs. 4, 5 and 6. Cross-semivariograms were calculated to

explore and determine spatial interrelations using co-re-

gionalized models between clay fraction and other mea-

sured soil properties. Among different theoretical cross-

semivariogram models tested, Gaussian model was best

fitted to the experimental values of clay fraction with

Fig. 13 Ordinary kriged map

for sqrtECe at Jadwal Al_Amir

Project, Babylon, Iraq

Fig. 14 Area_Percent of sqrtECe at Jadwal Al_Amir Project, Baby-

lon, Iraq
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sqrtECe, CaCO3 minerals, and logO.M., respectively. The

spatial interrelations coefficients of Cross-semivariogram

model are presented in Table 3. The R2 and the RSS for

theoretical cross-semivariogram model to fit the experi-

mental values between clay fraction with sqrtECe, CaCO3

minerals, and log O.M., are given in Table 3. The R2 and

RSS values in Table 3 show that Gaussian model fit the

experimental cross-semivariance data exceptionally well in

all cases used in this study.

Using the criteria suggested by Cambardella et al.

(1994) to evaluate the spatial interrelation between two

related soil properties, the cross-semivariograms exhibited

a strong negative spatial interdependency between clay

fraction with sqrtECe, log O.M. and a strong positive

spatial interdependency for clay separates with CaCO3

minerals. Table 3 gives the structural correlation coeffi-

cients from Gaussian model of co-regionalization for clay

fraction with sqrtECe, CaCO3 minerals, and log O.M. The

Fig. 15 Ordinary kriged map

for CaCO3 minerals content at

Jadwal Al_Amir Project,

Babylon, Iraq

Fig. 16 Area_Percent of CaCO3 minerals content at Jadwal Al_Amir

Project, Babylon, Iraq
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cross-semivariograms were negative for clay fraction with

sqrtECe, and log O.M. indicating that values of the two

variables tend to vary in opposite directions, while the

cross-semivariogram was positive for clay fraction with

CaCO3 minerals indicating that values of the two variables

tend to vary jointly or dependently (McBratney and Web-

ster 1983).

Ordinary Kriged Maps

The spatial distribution of sand content follows the sedi-

ments carried by the Tigris and the Euphrates rivers.

Besides some material of aeolian origin, blown out of the

desert is accumulated and mixed with fluvial deposits

(Figs. 7 and 8). The spatial distribution map of silt content

indicated that higher values were located in the south-

western corner of the study area due mainly to the effect of

physiographic, geological, and pedological processes

(Figs. 9 and 10). The spatial prediction map of clay content

shows that higher values were located in the north-eastern

corner and gradually decreased toward south-western cor-

ner of the study area (Figs. 11 and 12). This type of dis-

tribution may be due to the effect of pedogenic processes

and to some extent to geomorphic processed (Muhaimeed

et al. 2014). Figures 13 and 14 shows spatial distribution

patterns of soil sqrtECe within the study area follows

semiarid conditions, and topographical feature. These

variations of soil sqrtECe may be related to the application

of waters containing soluble salts, weathering of primary

and secondary minerals in soils.

Fig. 17 Ordinary kriged map

for log O.M. content at Jadwal

Al_Amir Project, Babylon, Iraq
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The spatial distribution map of CaCO3 minerals content

shows that higher values were located in the north-eastern

and south-western parts of the study area (Figs. 15 and 16).

The spatial distribution map of soil log O.M. follows dif-

ferences in tillage treatments and other management

practices (Figs. 17 and 18).

Ordinary Cokriged Maps

Spatial prediction maps were produced by the ordinary

cokriging procedure using the cross-semivariogram coef-

ficients in Table 3 for selected soil properties. The spatial

distribution of clay content was associated with the spatial

distribution and variation of sqrtECe in the soil (Fig. 19).

The spatial prediction map of clay content shows a similar

scenario with high values of CaCO3 minerals (Fig. 20).

Similarly, spatial distribution of clay content was also

associated with the spatial distribution of log O.M. content

in the soil (Fig. 21) reflecting the poor natural drainage

under topographical conditions and high ground- water

table.

Perform Cross Validation Analysis The cross validation

analysis are presented in Figs. 22, 23 and 24. The standard

error predictions of the linear regression equations for

combination of primary and secondary variables: clay 9

sqrtECe, clay 9 CaCO3 minerals, and clay 9 log O.M.

Fig. 18 Area_Percent of log O.M. content at Jadwal Al_Amir

Project, Babylon, Iraq

Fig. 19 Ordinary cokriged

surface for Clay 9 sqrtECe

Fig. 20 Ordinary cokriged

surface for Clay 9 CaCO3

Minerals
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Fig. 21 Ordinary cokriged

surface for Clay 9 log O.M.

Fig. 22 Cross-validation

(CoKriging) of Clay 9 sqrtECe

Fig. 23 Cross-validation

(CoKriging) of Clay 9 CaCO3

Minerals

Fig. 24 Cross-validation

(CoKriging) of Clay 9 logO.M.
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were 0.015, 0.027, and 0.363 respectively while the stan-

dard error prediction of the linear regression equation for

clay was 1.190 using the ordinary kriging procedure

(Fig. 25).

Conclusions

The spatial variation of physical and chemical soil prop-

erties was assessed using geostatistical methods. Cross-

semivariograms exhibited a strong spatial interdependency

between clay content and soil sqrtECe, CaCO3 minerals

content, log O.M. content indicating that co-kriging

improved predictions for clay content with soil sqrtECe,

CaCO3 minerals content, log O.M. content. Thus, co-

kriging is considered to be an accurate and adequate pro-

cedure for spatial interpolation and evaluation of soil

properties considered in this study.
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link to the Creative Commons license, and indicate if changes were
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