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Abstract
In this paper, the monochrome glazed Bahlā Ware from al-Ain dated between the seventeenth and twentieth centuries (Late
Islamic Arabian Period) has been analysed aiming to reconstruct the production technology of the ceramic fabrics and glazes. The
results of the petrographic and chemical analyses suggest a unique technological tradition embedded in the culture of Late Islamic
Arabia. This tradition incorporates the production of a lead-barium glaze coated over a single type of ceramic fabric that spans for
nearly three centuries. Since this is the first evidence for the production of a lead-barium glaze in the IslamicWorld, the origins of
this technology remain uncertain, but the results of the ceramic petrography identify the Omani Peninsula as the most likely
source for the ceramic fabric. During the economic peak of al-Ain in the eighteenth century, this tradition shows signs of
technological diversity visible in the appearance of new fabrics and glazes. Considering the wide distribution of Bahlā Ware
in the Western Indian Ocean, understanding of the production technology and provenance of al-Ain’s ceramics has important
implications for archaeological interpretation.
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Introduction

Scientific data presented in this paper are obtained in a pilot
project designed to set the stage for the extensive research on
ceramic production and technology in Late Islamic Arabia.
The material under study is the monochrome class of Bahlā
Ware, found in consumption contexts at al-Ain dated between
the middle of the seventeenth- and the early twentieth centu-
ries. The focus here is particularly on the lead-barium glaze
that has been identified for the first time in the context of
Islamic ceramics. Considering the lack of production debris

that can be linkedwith this ceramic class, the reconstruction of
production practices starts with an in-depth analysis of con-
sumed pottery.

Bahlā Ware, the Oases of al-Ain
and the regional context

Bahlā Ware constitutes a class of monochrome glazed ce-
ramics dominated by open bowl forms. It was first identified
by Andrew Williamson as part of his survey of the Mīnāb
Plain, the land behind the great Late Islamic Iranian emporium
of Hormuz, published posthumously by Seth Priestman
(2005), pp. 269–70, 2013, pp. 631–32). Williamson thought
it was produced in the town of Khunj, in the hinterland of
Bandar Lengeh, in southern Iran (Fig. 1). However,
Priestman notes that no wasters were found among the sherds
collected by Williamson, implying that Khunj is unlikely to
have been the production centre. Conversely, this class is
widely found in South East Arabia and it has alternatively
been suggested that it was a product of the well-known kilns
of Bahlā, a large oasis town in central Oman, which remained
in use until the 1970s (Whitcomb 1975, p. 129; Priestman
2008, pp. 277–78, Plate 12). This identification seems
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supported by a quantified study of the Late Islamic assemblage
in the oases of al-Ain, further north along the same plain where-
in Bahlā is situated, where this class represents as much as 48%
of the glazed assemblage (Power 2015, p. 29, Table 26).

If the production centre in South East Arabia can be
established, Bahlā Ware becomes a key marker of Omani
trade in the early modern period. It is widely found at Late
Islamic sites in the Arabian Gulf and western Indian Ocean
between the sixteenth and twentieth centuries. Well-published
instances in the UAE and Oman include Ra s al-Khaimah (de
Cardi et al. 1994, p. 63; Kennet 2004, pp. 54–55), al-Ain
(Power and Sheehan 2011, 2012; Power 2015), and Ṣuḥār
(Costa and Wilkinson 1987). It is commonly found in Qatar,
at Zubara and al-Ruwaydah (Petersen et al. 2010, p. 48), Ra’s
Abaruk (Garlake 1978a, p. 167) and al-Huwaylah (Garlake
1978b, p. 174), and also in Bahrain, at the Bu Maher Fort
(Kennet 2004, p. 54; Carter et al. 2011, pp. 90–91).
Importantly, it has also been found at sites in East Africa,
including Gedi (de Cardi and Doe 1971, pp. 266–67) and
Fort Jesus (Kirkman 1974).

The present study focuses on a sample of BahlāWare from
excavations at the Bin Ātī House in Qaṭṭāra Oasis, one of
seven palm plantations which make up the historic Buraimi
Oasis (Power and Sheehan 2012), today split by an interna-
tional border into the towns of al-Ain (UAE) and Buraimi

(Oman). The oases of al-Ain occupy a strategic crossroads
in the northern Omani Peninsula. They lie on a north-south
axis between Ra s al-Khaimah and the Iranian Plateau beyond,
on the one hand, and the Dhāhira Plain extending south to
central Oman and the great oasis town of Bahlā on the other.
To the east, the Wādī al-Jizī cuts through the Ḥajar Mountains
to gain access to the Indian Ocean networks via the port of
Ṣuḥār, whilst the road west crosses the tip of the Rub al-Khālī
to reach the pearling towns of Abu Dhabi and Dubai.

Excavations at the Bin Ātī House revealed three archaeo-
logical horizons (HRZ) associated with the Late Islamic oc-
cupation (Table 1). HRZ 9.1 (c.1650–1720) witnessed the
construction of a large mudbrick tower house, probably con-
temporary with the creation of the adjacent palm plantation
(Power and Sheehan 2012, p. 299, Fig. 6), which further in-
cluded a date-press (madbasa). HRZ 9.2 (c. 1720–1790)
marks an expansion of settlement and construction of a second
house near the original tower; the quantity and quality of ce-
ramic and coin finds suggest that this phase represents the
peak of occupation. HRZ 10 (c. 1870–1920) constitutes a
partial and perhaps seasonal reoccupation following a period
of abandonment.Whilst the presence of other ceramic imports
fluctuated over time, sometimes quite dramatically, it is strik-
ing that BahlāWare remains a consistent and slowly growing
component of the assemblage.

Fig. 1 The map showing locations of major sites of al-Ain, Bahlā, Khunj and other archaeological sites discussed in the paper
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Materials and methodology

Sampling

The sampling strategy followed in this paper has been de-
signed to explore long-term patterns in the technology. For
this purpose, 44 samples, out of 288 Bahlā Ware potsherds
documented at Bin ‘Ātī House, were selected for petro-
graphic examination (Table 1). Drawing on the results of
ceramic petrography, a number of sub-samples were sub-
jected to chemical analyses both of the ceramic fabrics and
the glazes as well as lead isotope analysis of the glazes.
The aim was to investigate the compositional patterns, de-
tecting potential variations between the glazes applied over
fabr ics wi th the same or di fferent pet rographic
characteristics.

Samples belong to open bowls (40) and jars (4), reflecting
the relative abundance of these types in the original assem-
blage. All vessels are wheel-made and coated with glaze on
the external (jars) or both (bowls) sides. The colour of the
glazes ranges between brown, yellow and green—all three
were included in the sampling (Fig. 2).

Thin section ceramic petrography

Ceramic petrography was used for the petrological and textur-
al characterisation of 44 samples. Thin sections of ceramics
were observed with polarising microscopes LEICA DM750P
and LEICA DM2500P in transmitted plain polarised (PPL)
and cross polarised light (XPL). Fabric groups were defined
by the petrology of their main inclusions, their distribution and
texture (Whitbread 1989, 1995, pp. 365–96).

Elemental analysis of fabrics and analysis of glazes

Further research on the relations between fabrics was car-
ried out by means of wavelength-dispersive X-ray fluores-
cence analysis (WDXRF), on a BRUKER S8 TIGER with
a 4-kW Rh X-ray tube at the Fitch Laboratory of the British
School at Athens. A calibration dedicated to the analysis of
ancient ceramics was used for quantification, measuring in
total 26 elements (Georgakopoulou et al. 2017). In total, 16
samples of the Bahlā Ware were analysed, all prepared as
glass beads.

For the glaze analysis of 17 representative samples, a
scanning electron microscope (SEM: JEOL JSM 6610LV)
with an attached energy dispersive spectrometer (EDS:
Oxford Instruments X-maxN 50 operated with the Aztec
software) was used. Cross-sections of the samples were
mounted in resin and polished to ¼ μm. The Bahlā glazes
are often heterogeneous, and thus the analysis included bulk
measurements and separate measurements of the glassy ma-
trix as well as individual inclusions. The bulk composition
measurements included the glaze with randomly spread in-
clusions, excluding bubbles and pores to the extent that this
was possible. The reported results represent the average
values for 5 areas, standardised at approximately 100 ×
120 μm using × 800 magnification. For comparison, the
analysis of the glaze matrix, avoiding the inclusions, is in-
cluded. An average of 3–5 scans of an arbitrary size is re-
ported, depending on the glaze texture. Furthermore, the
composition of the various inclusions was measured with
EDS spot analysis. The analyses were run in high vacuum
conditions, at an accelerated voltage of 20 kV, working dis-
tance 10 mm, process time 5, and acquisition time 60 s
livetime. A cobalt standard was measured periodically to
monitor the beam current and the spot size was adjusted
around 59 to achieve 40% deadtime on the cobalt metal.
The performance of the instrument was monitored using
the Corning Glass Standard C (Brill 1999, p. 542).
Precision, estimated as relative standard deviation, was
found to be within 3% for major elements and deteriorated
as concentration approaches the detection limits of the EDS
at around 0.1%. The relative difference of the mean to the
certified value (δ%) is within 5% for most elements, with
the exception of barium and lead where it is within 10% and
cobalt whose composition approached the detection limits
of the instrument and the difference is 13%.

Lead isotope analysis of glazes

Lead isotope analysis was performed on 5 samples of glazes to
investigate the provenance of the lead-rich component. For
this purpose, a small amount of glaze (c. 150 mg) was scraped
off as a powder. The isotopic measurements were carried out
at Frankfurt University, under the supervision of Dr. S. Klein,
using a multicollector-inductively coupled plasma-mass spec-
trometer (MC-ICP-MS) Neptun™ Finnigan MAT (for details
of the methodology see Klein et al. 2009).

Table 1 The stratigraphic and
chronological context of the
Bahla samples from al-Ain
(see Power 2015)

Code Archaeological horizon Chronology Number of selected samples

B1-22 HRZ 9.1 c. 1650–1720 10

B23-272 HRZ 9.2 c. 1720–1790 28

B273-288 HRZ 10 c. 1870–1920 6
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Results

The results of ceramic petrography

The results of ceramic petrography show that Bahlā Ware
from al-Ain can be classified into a single fabric group, with
two related samples and two petrographic loners (Appendix
A). The ceramics are fine, with more than 90% of the inclu-
sions occurring in the fine fraction.

Out of 44 analysed samples, 40 can be classified into the
Limestone and Serpentinite fabric group (LS), defined by the
presence of these two rocks set in a calcareous matrix
(Appendix A; Fig. 3). The fabric is also characterised by
detritic minerals consistent with an igneous geology of mafic
or ultramafic rocks, such as clinopyroxene, plagioclase and
olivine. This indicates that the raw clay was collected from a
sedimentary environment where those minerals are deposited.
The internal variability in the abundance of limestone,
serpentinite andminerals associated with igneous rocks makes
this fabric to some extent heterogenous.

The remaining four samples are petrographically diverse
(Appendix A). All four samples have a bimodal distribu-
tion of inclusions, which indicates a different preparation
of paste recipes compared to the LS fabric group. Apart
from this common technological trait, the samples show a
range of petrographic differences. Samples B132 and B252
contain rare inclusions of igneous rock/s, serpentinized in
B252 (Fig. 4(a, b). Although these two samples have com-
mon inclusions in the coarse fraction, which makes them to
some extent related, their relative quantity varies, making
the degree of their relation uncertain. They also show a
petrological association with the LS fabric group, consid-
ering the igneous nature of the inclusions in coarse frac-
tion, but the different distribution of those inclusions
(unimodal vs bimodal) is evident. B60 and B106 are de-
scribed as petrographic loners because they contain even
less inclusions that can indicate petrographic relations be-
tween them and the rest of the assemblage. The petrology
of B106 is consistent with the LS fabric group, but the
scarcity of inclusions in the coarse fraction prevent further

Fig. 2 Reconstruction of representative vessels of Bahla Ware from al-Ain, coated with green, brown and yellow monochrome glazes
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interpretation (Fig. 4(c). The same applies to B60, which is
poor in inclusions in both the coarse and the fine fractions
(Fig. 4(d).

Overall, the petrology of all four samples is in the same
geological range with the LS fabric group, indicating exploi-
tation of similar secondary clays. All analysed samples show
well-controlled firing conditions as no colour differences can
be observed in individual sherds. The equivalent firing tem-
perature, based on the optical activity of the clay matrix, can
be estimated to c. 800–850 °C.

The chemical composition of ceramics

The results of WDXRF analysis are given in Table 2. Prior to
pulverising the samples, the glaze layer was removed using a
slow-speed saw with a thin diamond-coated blade and the

external surfaces of the sherds were subsequently further
cleaned with a tungsten-carbide drill. Still, the presence of
significant contents of lead (Table 2) in the results suggests
that part of the glaze layer was present in the pulverised sam-
ple. This will have affected a number of other elements in
unpredictable ways as the glaze contamination is likely to be
variable and the glaze compositions were also shown to be
relatively heterogeneous. These elements are Ba, as will be
shown below the glazes are Pb/Ba rich, as well as Cu present
as a colourant in some cases. These three elements (Pb, Ba and
Cu) are thus disregarded in the elemental grouping of ce-
ramics. FeO is also present as a colourant in the glaze, but as
this is a major element in the ceramic body, it is assumed that
the traces of glaze contamination would not affect the overall
iron content very much. The Th Lαmeasured by theWDXRF
partially overlaps the Pb Lβ. Although this is taken into

Fig. 4 Samples B132 (a), B252
(b), B60 (c) and B106 (d) that
differ from the LS fabric group.
Inclusions of igneous origin are
visible on images a and b whilst
images c and d show only
inclusions of fine quartz. All
images are given in XPL

Fig. 3 Limestone Serpentinite
fabric group (LS). Sample B32 in
PPL (left) and XPL (right) with
inclusions of quartz, limestone
and serpentinite set in a
calcareous matrix

Archaeol Anthropol Sci (2019) 11:4697–4709 4701
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account with an overlap correction in the Th calibration
(Georgakopoulou et al. 2017), the lead contents in the Bahlā
ceramics far exceed the standards used in the WDXRF cali-
bration, and the correlation of Pb to Th values noted in the
elemental results (Table 2), suggests the thorium contents are
not reliable. They were thus disregarded as well and so was
P2O5 that is associated with the burial contamination of ar-
chaeological ceramics (Freestone et al. 1985).

The cluster analysis performed on the raw chemical data
additionally supports the heterogeneous character of Bahlā
Ware, as the results of ceramic petrography suggest. Relations
between the analysed samples are presented on the dendrogram
(Fig. 5). One cluster emerges from the dendrogram (C1),
consisting of samples of the LS fabric group and the petro-
graphic loner B106. Slight compositional differences between
the samples of C1, primarily in the CaO content (Table 2), are
illustrated on the dendrogram. Excluding B114 and B195, the
samples of C1 are calcareous, with the CaO content ranging
between 8.3 and 17.4 wt%. However, similarities of other com-
ponents suggest they should be seen as one group with varying
CaO values. B114 and B195 are low-calcareous samples, with
correspondingly higher contents of SiO2, Al2O3 and Fe2O3. Sr,
which is geochemically associated with Ca, is also lower,
whilst Cr and Ni, associated with the serpentinitic component
are increased. Furthermore, the value of Zn in B195 is affected
by the glaze contamination being exceptionally high here and
should thus be disregarded. It is thus clear that the two samples
are rightly considered part of the same cluster, with the chem-
ical distinctions noted here being a result of relative proportions
of the different components.

The remaining three samples (B60, B132 and B252) can be
described as outliers (Table 2; Fig. 5). Differences in major,
minor and trace elements illuminate compositional differences
compared to the samples of C1.

The chemical composition of glazes

The chemical characterisation of the glazes determined
through SEM-EDS shows that most samples of the LS fabric
group are coated with a lead-barium glaze (Table 3). This is a
glaze of heterogenous texture, as illustrated on the SEM pho-
tomicrographs (Fig. 6). The thickness of the glaze layer ranges
between 80 and 200μm.Quartz inclusions of various sizes are
randomly scattered through the glaze, sometimes causing
cracks in the texture (A on Fig. 6). Non-dissolved fragments
of barium sulphate or baryte (BaSO4) could be detected in the
form of bright inclusions, ranging in size from small
(20x20μm) rounded particles to large (100x100μm) sub-
angular lumps (B on Fig. 6). The thickness of the ceramic-
glaze interface varies significantly, and in the case of BaO-rich
glazes (B106) cannot be defined because the entire glaze layer
is largely crystalline. The glaze is characterised by several
crystalline phases of various compositions. The most abun-
dant are Ca-rich pyroxenes, averaging 19.5at% Si, 8.8at%
Ca, 6.8% atMg and 4.0% atFe, with minor amounts of Na,
Al, K, Ba and Pb; some of these most likely also measured
from the surrounding glaze. The composition of these crys-
tals ranges between that of diopside (CaMgSi2O6) and
hedenbergite (CaFeSi2O6) and they form at the ceramic-
glaze interface and/or float freely in the glaze (C on Fig.
6). Another crystalline phase, appearing brighter than the
matrix in backscatter mode (D on Fig. 6) shows higher
contents of Ba (4.2 at%), as well as Si (18.8at%), Fe
(7.3at%), Al (4.4at%), and Mg, K and Ca at around
1at%. Their extremely small size precludes their individual
analysis, as the surrounding matrix is also incorporated, so
a direct identification of the mineralogy of these crystals is
not attempted here. Furthermore, iron-rich clusters are oc-
casionally present in the glaze.

Fig. 5 Cluster dendrogram
resulting from the cluster analysis
performed on all samples
included in the WDXRF analysis,
using raw chemical compositions.
Excluded oxides and elements are
P2O5, Cu, Ba, Pb ad Th
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Table 3 The chemical composition of glazes determined through the SEM-EDS analysis. All results are normalised to 100 wt%. ‘–‘indicates below
detection limits. LS stands for the Limestone-Serpentine fabric group and RLS for related to Limestone-Serpentine fabric group

Sample FG Colour Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO FeO CuO ZnO SnO2 BaO PbO

B1 bulk 1.1 3.0 4.7 44.7 0.3 2.2 7.2 – – 12.0 – 15.4 9.0

B1 matrix LS Yellow 1.1 1.2 2.7 45.2 1.9 3.6 12.1 0.2 14.4 17.7

B3 bulk 1.4 1.3 3.0 45.3 – 3.3 3.9 – 9.8 – – – 10.2 21.8

B3 matrix LS Yellow 1.4 1.0 2.9 47.5 3.7 3.1 10.3 9.0 21.1

B8 bulk 1.3 2.3 3.0 43.5 – 1.4 6.3 – – 9.8 0.2 – – 11.1 20.8

B8 matrix LS Brown 1.5 0.5 3.2 40.0 1.5 3.7 10.1 14.0 25.6

B16 bulk 1.1 2.1 1.8 36.2 0.2 1.5 4.0 – – 9.3 0.8 – – 8.2 34.8

B16 matrix LS Brown 0.9 1.4 1.6 35.7 1.4 2.5 9.5 0.5 7.7 38.9

B20 bulk 1.3 1.3 1.8 33.7 – 1.7 4.4 – 10.4 – – – 6.4 39.0

B20 matrix LS Brown 0.9 1.2 1.5 34.1 1.4 2.7 9.0 5.7 43.5

B25 bulk 1.5 2.0 2.4 36.3 – 1.9 6.6 – – 8.0 – – – 6.7 34.5

B25 matrix LS Brown 1.6 0.5 2.3 34.1 2.1 4.3 7.7 7.4 40.2

B32 bulk 1.1 1.0 2.4 46.4 – 2.3 3.4 – – 9.5 0.2 – – 9.2 24.5

B32 matrix LS Yellow 1.4 0.9 1.4 43.4 2.9 2.9 11.7 9.8 25.7

B34 bulk 1.3 1.3 1.3 46.2 – 3.1 3.4 – – 11.6 – – – 10.5 21.4

B34 matrix LS Yellow 1.5 1.0 1.2 44.2 3.2 2.7 12.0 11.2 23.0

B106 bulk LS Yellow 0.8 2.9 5.7 48.7 – 2.9 8.3 – – 13.5 – – – 12.4 4.5

B114 bulk 1.1 2.3 4.8 41.8 – 1.5 3.1 – 5.3 – – – 4.3 35.9

B114 matrix LS Yellow 1.1 1.3 4.3 39.9 1.4 1.5 5.6 4.4 40.6

B150 bulk 1.4 2.3 2.6 40.0 – 1.4 6.3 – – 9.2 – – – 12.0 24.7

B150 matrix LS Brown 1.4 0.6 2.7 36.5 1.5 3.7 8.8 14.0 30.8

B279 bulk 1.2 1.1 2.9 39.2 – 2.2 2.5 – 11.4 – – – 5.0 34.5

B279 matrix LS Yellow 1.2 0.7 2.5 38.2 2.2 1.7 8.8 4.9 39.7

B281 bulk 0.4 2.1 3.6 44.1 0.3 0.6 4.8 – – 13.4 – – – 29.5 1.0

B281 matrix LS Yellow 0.4 1.4 3.8 44.8 0.6 3.6 12.1 32.2 1.1

B287 bulk 0.7 2.0 1.9 40.0 1.0 4.3 – 8.1 – – – 10.1 31.9

B287 matrix LS Yellow 0.6 1.3 1.6 39.9 0.8 3.5 8.1 12.2 32.0

B195 bulk 0.6 1.2 2.2 33.7 – 0.4 1.8 – – 1.3 0.8 3.4 – 0.6 54.0

B195 matrix LS Green 0.5 0.8 1.2 32.6 0.4 1.3 1.3 1.5 3.7 0.5 56.2

B252 bulk 0.6 1.2 0.9 33.5 – 0.8 1.4 0.3 0.4 5.5 – – 0.8 – 54.8

B252 matrix RLS Yellow 0.6 1.2 0.8 33.1 0.7 1.4 0.3 0.4 5.2 0.5 55.9

B132 bulk 0.6 0.9 4.1 32.9 – 0.9 4.0 0.2 – 4.7 0.3 – – – 51.5

B132 matrix RLS Yellow 0.6 0.6 4.6 33.9 1.2 3.0 0.2 3.7 0.2 52.3

Fig. 6 SEM photomicrographs of
lead-barium glazes detected on
samples B3 (left) and B22 (right),
taken in the BEC mode. Visible
inclusions are quartz (A), baryte
(B), Ca-rich pyroxenes (C), and
probably Ba-rich pyroxenes (D)
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The chemical composition of the glaze shows a negative
correlation between PbO (1–39%) and BaO (4.3–29.5%),
implying that the two are mineralogically associated
(Table 3). Furthermore, the glaze contains 33.7–57.4%
SiO2, 2.5–8.3% CaO, 1.8–5.7% Al2O3, 1–3% MgO, 0.4–
1.5% Na2O and 0.6–3.3% K2O. The content of FeO is high
(5.3–13.5%), suggesting it was deliberately added as a
colourant. The CuO value is < 1%, which indicates it is
probably an impurity associated with the lead minerals
rather than a deliberately added colourant in the yellow
and brown glazes.

An exception in the LS fabric group is B195 that contains a
glaze of lead-zinc-barium type, whose chemical composition
is characterised by 54% PbO, 3.4% ZnO, 0.6% BaO, 33.7%
SiO2, 2.2% Al2O3, 1.8% CaO, 1.2% MgO and 1% Na2O +
K2O (Table 3). Compared to the group of lead-barium glazes,
B195 has significantly less BaO, which does not fit the corre-
lation with PbO noted in the lead-barium glazes. This result
might indicate the use of different raw materials. The texture
is, on the other hand, similar to the lead-barium group, con-
taining non-dissolved fragments of quartz as well as Ca-rich
pyroxenes in the interface and glaze (Fig. 7).

Interestingly, the samples B132 and B252 that do not be-
long to the LS fabric group are coated with a high-lead glaze
that contains no traces of BaO (Table 3). Both samples contain
over 50% of PbO and around 33% of SiO2, but differ in the
contents of Al2O3 and CaO. Furthermore, SnO2 (0.8%) is
detected in B252, visible as bright crystallites in the glaze
(Fig. 7(c).

Lead isotope analyses of the glazes

Five glaze samples from the LS fabric group were analysed
for their lead isotope ratios; one was B195, the lead-zinc-
barium glaze, whilst the other four were all typical lead-
barium glaze samples (Table 4). The results show relative
standard deviations between 0.22% for the 208Pb/206Pb ra-
tio to 0.45% for 206Pb/204Pb. Ore deposits of uniform geo-
logical and geochemical history are reported to have a

spread of lead isotope ratios up to a maximum of 0.3%
(Gale and Stos-Gale 1992) or even 0.6% (Pernicka et al.
1990, p. 283). In principle thus, the lead for all five sam-
ples could have been sourced from the same deposit.
Sample B195 is, however, clearly separated from the other
four (Fig. 8) which together with its different chemistry,
probably indicates a different source.

Discussion

Ceramic traditions of Late Islamic Arabia

The scientific assessment of Bahlā Ware consumed in al-
Ain offers evidence for continuity of a technological tradi-
tion that spans between the mid-seventeenth and the early
twentieth centuries. This tradition is defined by the clear
correlation between the LS fabric group and the lead-
barium glaze, showing standardisation in all segments of
the chaînes opératoires. The transfer of knowledge and
skills embedded in this tradition is telling of the cultural
importance of Bahlā Ware for the communities settled in
South East Arabia.

The technological diversity of Bahlā Ware is document-
ed only in the eighteenth century (HRZ 9.2) at the Bin ‘Ātī
site. Although modest in number, the samples different to
the LS fabric group indicate the presence of diverse tech-
nological practices, for both ceramics and glazes, that were
used for manufacturing morphologically similar pots. The
exploitation of similar secondary clays for the preparation
of technologically different pastes coated with equally dif-
ferent glazes indicate the emergence of new workshops
with distinctive practices.

Lead-barium glaze in the Islamic world

In the broad spectra of Islamic glazes and glasses in the Near
East (e.g. Brill 2001; Freestone 2006; Tite 2011; Henderson
2013), the lead-barium glaze of Bahlā Ware has no parallels.

Fig. 7 SEM photomicrographs of lead-barium-zinc glaze of sample B195 (a) and high-lead glazes of samples B132 (b) and B252 (c) taken in BEC.
Visible inclusions on images a and b are identified as quartz whilst image c contains inclusions of SnO2

Archaeol Anthropol Sci (2019) 11:4697–4709 4705



In fact, this type of glass is considered to be a Chinese
innovation (Fuxi 2009, p. 20; Henderson 2013, p. 123;
Henderson et al. 2018), and unknown outside of East
Asia (Cui et al. 2011, p. 1671; Rehren and Freestone
2015, p. 234). Therefore, Bahlā Ware offers the first evi-
dence for the production of lead-barium glaze in the
Islamic World. In the absence of relevant analogies, the
emergence and development of this glaze technology re-
main unclear. In the geographically close Iran, the
seventeenth-century tiles of the Safavid period have glazes
of the alkaline and lead types without traces of barium
(Holakooei et al. 2014). The seventeenth-century Mughal
tiles in India are coated with alkali glazes (Gill and Rehren
2011). Therefore, the lead-barium glaze of Bahlā Ware
stands out from other contemporary traditions in the
Islamic world.

The presented results enable a preliminary reconstruction
of the lead-barium glaze technology and methods of applica-
tion. The clear correlation between PbO and BaO determined
through SEM-EDS supports their mineral association in na-
ture. Baryte commonly occurs with lead sulphides such as
galena. For the assessment of the original glaze composition
and methods of application, the contents of PbO, BaO and
CuO, oxides clearly coming from the glaze, were excluded
from the analyses of the ceramic fabrics and glazes, and the

remaining compositions were recalculated and normalised to
100% (see Tite et al. 1998, pp. 249–250). The data presented
in Table 5 show consistent differences in the compositions of
bodies and glazes, for example, a significantly increased Si/Al
ratio in the glaze, suggesting that the glaze was applied as a
lead/barium-silica mixture. Since the glaze contains large
pieces of non-dissolved baryte and quartz, it is more likely
that they were applied as a suspension directly on the body.
Experiments conducted on high-lead glazes suggest a high
firing temperature (950 °C and above) and slow cooling rate
(20 °C/h) for glazes showing an extended crystalline layer
(Molera et al. 2001, pp. 1121–1122), which is the case with
the Bahlā glazes. However, the reaction occurring between
lead and baryte in glazes remains understudied, which pre-
cludes firm conclusions on the firing temperature. The spar-
kling look of the glaze, noticed by several scholars (Hansman
1985, p. 52; Kennet 2004, p. 42; Carter 2011, p. 37), could be
explained by the presence of crystalline phases formed during
devitrification. Finally, iron oxide was used as a colourant,
which means that the colour gradient depends on the firing
conditions.

It is challenging to explain the reasons for the use of
sulphidic minerals in glaze preparation, as these are known
for their poor fluxing properties (Brill et al. 1991b, p. 34). The
role of deliberately added barium-bearing material in the early
Chinese glasses was to achieve a jade-colour opacity (Brill
et al. 1991b, p. 34; Cui et al. 2011, p. 1675), which was not
needed in the case of the monochrome glazed Bahlā Ware.
Also, it appears that PbO and BaO were part of the same
naturally mixed batch and their amounts could not be con-
trolled. A deliberate choice of the lead-barium compound as
a raw material is indisputable, though. The lead isotope ratios
dated to all three archaeological horizons in al-Ain suggest the
exploitation of a single source for the lead-barium material.
This continuity would not exist without a strong cultural as-
sociation of craftsmen with this technological choice.

Table 4 Lead isotope ratios of Bahla Ware from al-Ain

Samples 206Pb/204Pb 207Pb/206Pb 208Pb/206Pb

B1 18.11690 0.86542 2.11393

B25 18.11119 0.86502 2.11283

B32 18.11895 0.86525 2.11371

B195 18.30110 0.85831 2.10357

B281 18.13577 0.86529 2.11465

RSD (%) 0.45 0.36 0.22
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Fig. 8 The binary plot shows lead isotopes measured in five glazes of
Bahla Ware (Table 4), compared with lead-barium glass from China (Cui
et al. 2011), Pb ores from Sardinia (Stos-Gale et al. 1996; Gale 2011),

glazes from Fustat (Wolf et al. 2003), Pb ores and glazes from Iran
(Pernicka et al. 2012) and Pb ores from the Arabian Shield (Stacey
et al. 1980; Stacey and Stoeser 1983)
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Ceramic provenance of the LS fabric group

An efficient provenance study of archaeological pottery re-
quires a holistic approach, including testing potential clay
sources and their comparison with archaeological pottery
(Tite 2001). In this case, designed to be a pilot study, large-
scale testing of clays was not feasible. Therefore, this prelim-
inary provenance study relies on a comparison between the
petrographic data and geological maps of Oman (Bechennec
et al. 1986a, 1986b) and Iran (Spaargaren 1991).

The petrographic results point to an environment rich in
limestone and serpentinite used for clay exploitation. The
presence of limestone and rounded and sub-rounded quartz
in the calcareous matrix suggest the formation of rocks by
accumulation in a sedimentary basin, where detritic minerals
associated with igneous rocks were deposited. Both petro-
graphic and chemical compositional variations, such as the
CaO variability, documented in the LS fabric group could be
explained with this geological setting.

The petrology of the inclusions is consistent with the geo-
logical composition of the ophiolitic mountains in Oman
(Lippard et al. 1986, p. 62), and more specifically with that
of wadis that intersect rock formations (Hanna 1995). In semi-
arid environments, alluvial fans are formed during a move-
ment of materials from upper to lower elevations, especially
during humid seasons (Rapp and Hill 2006, pp. 63–64). The
town of Bahlā, one of the potential production centres, lies on
one of these wadis surrounded by the ophiolitic mountains
(Bechennec et al. 1986a). Alluvial terraces, located just 5–
7 km north of the modern town, contain abundant olistoliths

of dolomite and biolithoclastic limestone, breccia and lime-
stone with chert nodules, sandstone with calcareous matrix,
serpentinized harzburgite and basalts (Bechennec et al.
1986b), and therefore could be a potential source of raw ma-
terial. The historical and ethnographic importance of Bahlā for
the regional ceramic production would support this possibility
(Whitcomb 1975, p. 129). However, the absence of archaeo-
logically documented production debris in the town obscures
a more accurate identification.

With more certainty, it is possible to discard Khunj in Iran
as a production centre for the BahlāWare consumed in al-Ain.
Khunj is located in the anticline Fars domain of the Zagros
Fold Belt, a region with sedimentary geology (Spaargaren
1991) and lies far beyond the ophiolitic zone (Momenzadehs
2004; Ghorbani 2013, pp. 47–50). Some other areas of Central
Iran (High Zagros) are rich in ophiolites and geologically
match the composition observed in the Bahlā Ware, but there
is no archaeological evidence to suggest production of it there.

Glaze provenance of the LS fabric group

Although lead isotope analysis has been used for provenance
determination of lead glasses for several decades (Brill and
Wampler 1967), the method only recently started being used
for the study of Islamic glazes (Wolf et al. 2003; Mason et al.
2011). The scarcity of comparable datasets for lead ores in the
Middle East sets a limitation for absolute provenance attribu-
tion. This is especially relevant for this research; where the
main subject of interest is the lead-barium mineralisation.

Table 5 Chemical compositions
(SEM-EDS) of bodies and glazes
excluding CuO, BaO and PbO in
the latter and, normalised to
100 wt%. ‘–‘indicates below
detection limits

Samples Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 FeO

B1 glaze 1.5 3.9 6.3 59.5 0.4 2.9 9.6 – 16.0

B1 body 1.2 5.9 12.5 59.5 – 2.3 10.5 0.7 7.0

B8 glaze 2.0 3.4 4.5 64.2 – 2.1 9.3 – 14.5

B8 body 2.3 6.0 13.9 57.0 – 1.9 12.4 0.4 4.8

B16 glaze 1.9 3.7 3.2 64.5 0.4 2.7 7.0 – 16.5

B16 body 1.3 5.8 12.4 59.2 – 2.1 11.4 0.7 6.5

B20 glaze 2.4 2.5 3.4 61.8 – 3.0 8.0 – 19.0

B20 body 1.3 6.5 12.8 59.6 – 2.2 10.3 0.7 6.1

B25 glaze 2.6 3.4 4.1 61.9 – 3.2 11.2 – 13.6

B25 body 1.1 6.3 11.1 56.3 – 2.0 15.9 0.8 6.1

B34 glaze 1.9 1.9 1.9 67.8 – 4.6 4.9 – 17.0

B34 body 1.3 6.3 12.1 55.5 – 2.3 14.4 0.7 6.2

B150 glaze 2.2 3.6 4.2 63.2 – 2.2 10.0 – 14.6

B150 body 1.0 7.0 11.8 54.1 – 2.0 16.0 0.6 6.5

B281 glaze 0.6 3.0 5.2 63.5 0.5 0.9 6.9 – 19.3

B281 body 1.2 8.0 12.1 54.7 0.3 2.2 14.3 0.7 6.5

B287 glaze 1.2 3.4 3.2 69.0 – 1.8 7.5 – 13.9

B287 body 1.2 6.3 12.8 61.8 – 2.2 8.5 0.6 6.5
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Oman is rich in copper ores (Begemann et al. 2010), but lead-
barium sources are not known. Extensive lead-barium
mineralisation occurs in Central Iran and Alborz, always in as-
sociation with zinc-lead ores (Ghorbani 2013, p. 169). However,
the available isotope ratios for representativeminerals in the zinc-
lead deposits from Sanadaj-Sirjan, Urumeih-Dokhtar and the
Zagros zones (Ehya et al. 2010; Mirnejad et al. 2011) do not
match the Bahlā glazes (Fig. 8). Even more distant are lead ores,
lead slags and litharge from the Central Iranian Plateau (Pernicka
et al. 2012, p. 670). The same is true for lead ores in the Saudi
Arabia shield (Stacey et al. 1980; Stacey and Stoeser 1983).

An overview of lead isotope ratios from distant China, which
is usually associated with lead-barium glass and glaze production
(Brill et al. 1991a; Cui et al. 2011), does not offer amatchwith the
glazes from al-Ain (Fig. 8). The closest association can be made
with the ores of galena, pyrite and baryte from Sardinia (Stos-
Gale et al. 1996; Gale 2011). Similarly, close ratios are reported
for three glazed samples fromMamluk’s Fustat dated to the four-
teenth century (Wolf et al. 2003, p. 411). However, this proximity
in lead isotope ratios does not provide an adequate framework for
an archaeological interpretation of the provenance of BahlāWare,
and may well be a consequence of random isotopic overlap
(Henderson et al. 2005). In short, the absolute provenance of
the lead-rich components of these glazes remains unknown.

Conclusion

This pilot project examines technological patterns of BahlāWare
consumed in al-Ain between the mid-seventeenth and the early
twentieth centuries in order to shed more light on the production
and provenance of glazed ceramics in Late Islamic Arabia. The
petrographic data presented here, together with those deriving
from the archaeological investigations, indicate that BahlāWare
is more likely to be the product of workshops located in Oman,
possibly Bahlā itself, than Iran. This productionwas standardised
and consisted of technological choices that were carefully trans-
mitted from one generation of potters to the next over the course
of three centuries. The peculiar aspect of this production refers to
the glaze recipe, made of a lead/barium and silicamixture.Whilst
the source of the lead-rich raw materials remains unclear due to
the lack of comparable data, it is certain that the use of a mixed
lead-barium mineral was a deliberate choice. The continuity in
the exploitation of a single source, as the lead isotopes demon-
strate, supports this conclusion. The chronological concentration
of technological variability in the eighteenth century suggests the
introduction of different workshops and technological solutions
for the production of this ware, potentially related to increased
regional demand. Further work will clarify whether this diversity
is restricted to the eighteenth century or al-Ain only got access to
multiple production networks in this period of economic peak.

A better grasp on the origins and technology of the lead-
barium glaze in the Islamic World has to be sought within the

regional context of Arabia and the Gulf. Further work is re-
quired into other assemblages dated to the Late Islamic period,
including other classes besides Bahlā, as well as a holistic
approach towards the question of production centres.
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