
ORIGINAL PAPER

Archaeological collagen: Why worry about
collagen diagenesis?

R. C. Dobberstein & M. J. Collins & O. E. Craig &

G. Taylor & K. E. H. Penkman & S. Ritz-Timme

Received: 5 November 2008 /Accepted: 5 February 2009 /Published online: 26 February 2009
# Springer-Verlag 2009

Abstract DNA appears to decay by random chain scission
resulting in a predictable range of fragment lengths. Collagen
decay has also been modelled in this same way, although it has
become increasingly evident that collagen decay does not
follow this same pattern. Radiocarbon and stable isotope
analysis now use ultra-filtration to isolate large fragments
(>30% of original polymer length) even in Pleistocene bone.
How then does collagen decay? This study contrasts experi-
mentally degraded samples with collagen extracted from
forensic, archaeological and fossil bone. In experimentally
degraded bone, values for amino acid and elemental (C:N)
composition, bulk δ 13C, δ 15N, and aspartic acid racemisation
(AAR) changed very little until 99% of the collagen was lost,
suggesting that the collagen triple helix and polypeptide chains
remained remarkably intact. This suggestionwas demonstrated
directly by examining the integrity of individual polypeptide
chains using cyanogen bromide (CNBr) cleavage followed by
SDS-PAGE electrophoresis. In ancient samples, AAR values
remain remarkably stable and the pattern of CNBr-cleavage
was only replaced with a smear of smaller polypeptides in the
oldest (Pleistocene) bones investigated. Smearing may reflect
both modification of the methionine resides (the sites of CNBr-
cleavage) and/or partial hydrolysis of the collagen molecule.
The findings reveal why it is not usually necessary to worry
about collagen diagenesis; it is mostly intact. However,

evidence of partial deterioration of the oldest bone samples
suggests that alternative purification strategies may increase
yields in some samples.

Keywords Bone collagen diagenesis . Amino acid
racemisation . δ 13C . δ 15C

Introduction

It is logical that information about collagen degradation
may enhance the interpretation of palaeo-chemical data
(Grupe and Turban-Just 1998), but we are not aware of any
investigations, which have considered the contrary, namely
why it has not been necessary to understand collagen
diagenesis? Polymer hydrolysis is usually assumed to be
random, as is apparently the case for both gelatine (Saban et
al. 1992) and DNA (Poinar et al. 2006; Deagle et al. 2006),
and this assumption underlies models developed for bone
collagen diagenesis (e.g. Rudakova and Zaikov 1987; Riley
and Collins 1994; Collins et al. 1995); all the evidence
suggests that these models are wrong.

For example, random chain scission predicts a rapid
decline in modal peptide length, but radiocarbon laborato-
ries (Brown et al. 1988; Ramsey et al. 2004; Higham et al.
2006) routinely date the >30 kDa gelatine fraction (>30%
of initial polymer length) which clearly persists in bone of
considerable antiquity. It is instructive to contrast the
relative ease of ‘collagen’ purification with the difficulties
encountered when 14C dating of the second most abundant
bone protein, osteocalcin (Aije et al. 1990, 1991, 1992;
Burky et al. 1998).

Bone amino acid profiles are surprisingly consistent (and
collagen like) and retain unstable amino acids such as
methionine (Jope 1980) until levels are very low (Hare
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1980; Masters 1987). Bulk characteristics of the insoluble
fractions such as C:N ratio (2.8–3.1; DeNiro 1985; van
Klinken 1999) and aspartic acid racemisation (D/L 0.06–
0.1) (e.g. Matsu’ura and Ueta 1980; Kimber and Hare
1992) are consistent over long time scales. The degree of
aspartic acid racemisation in Neanderthal bone (Serre et al.
2004) is exceeded in modern coral skeletons in less than a
decade (Goodfriend et al. 1992).

Tuross et al. (1980) developed an elegant approach to
assess the state of preservation using electrophoretical
separation of cyanogen bromide (CNBr) digests—a method
commonly used in collagen analysis (Volpin and Veis 1973;
Fietzek et al. 1972; Van der Rest and Fietzek 1982; Knott et
al. 1997)—to provide a ‘fingerprint’ of the molecular
integrity of ancient collagen.Methionine is prone to oxidation,
consequently retention of a clean CNBr-fingerprint monitors
both hydrolysis (fragment size) and oxidation (cleavage sites).
In humans, there are only twelve Met residues within the type
I collagen sequence—7 of 1,057 in α 1(I) and 5 of 1,040 in
α 2(I)—and therefore only 14 cleavage products (CNBr-
peptides) will result, 8 from α 1(I) and 6 from the α 2(I); a
tractable number to fingerprint. Finally, the localisation of
individual CNBr-peptides in the α 1(I)- and α 2(I)-chains and
their primary structure are well established (Piez and Reddi
1984) and quite conserved, the largest fragment assuming no
missed cleavages being 31 kDa. Consequently any changes
in the fingerprint pattern can be interpreted in terms of
targeted decomposition.

Tuross et al. (1980) observed excellent preservation of the
CNBr-fingerprint in bones from high latitudes but smears (of
variable molecular weight) as predicted by the polymer
degradation model from bones from a 500-year-old Moa bone
(New Zealand, cave), La Brea Tar Pit and an Egyptian
mummy. Using a similar approach Schaedler et al. (1992)
observed some intact CNBr-fragments in a single Pleistocene
mammoth from high altitude in central Utah.

In this paper, we use CNBr digestion to assess the integrity
of the collagen molecule in both artificially heated and in
ancient bone. We explore the change in amino acid compo-
sition using HPLC and elemental (C:N) analysis. We explore
the relationship between isotopic ratios of collagen carbon and
nitrogen with the extent of deterioration. Finally we examine
the stability of aspartic acid racemisation, a method used for
both dating and the prediction of DNA survival.

Material and methods

Experimental heat degradation of bone samples

For simulating bone collagen degradation, equally sized
human and bovine bone pieces were heated in sealed tubes
under water at 90°C in a heating cabinet.

Preparation of bone samples for artificial digenesis

Human bone (diaphysis, femur compact bone, mature
adults) samples were taken routinely in the course of post-
mortem examinations (following ethical committee approval).
Bovine femurs were obtained from a local butcher. Remaining
soft tissue was removed mechanically, the diaphysis was cut
into halves longitudinally, spongiosa and outer compact bone
were removed using a milling cutter. The remaining pure
compact bone was cut into small pieces of approximately
0.75 cm side-length.

Washing steps

Bone pieces were washed overnight in 15% NaCl-solution
containing protease inhibitors (66 g 6-amino-n-hexanic acid,
3.9 g benzamidine HCl, 625 mg N-ethylmaleimide, 522 mg
phenylmethylsulfonyl fluoride dissolved in 1 L of distilled
water; Takagi and Veis 1984), lipids were extracted using
ethanol/ether (v/v 3:1) for 15 min and the bones were again
washed in 2% SDS-solution containing protease inhibitor for
1 h. All washing steps were conducted at 4°C on a rocking
table and followed by 4–5 rinses with double distilled water.
After lyophilisation the samples were stored at −20°C.

Heating

Washed bone pieces were heated in sealed Pyrex glass vials
under wet conditions (10 ml distilled water g−1 bone) at 90°C
for a maximum duration of 32 days. Sub-samples, including
5 ml of the supernatant (leached fraction [LE]) were taken
after 1, 2, 4, 8, 12, 16, 20, 26 and 32 days of incubation.
After heating, the vials were cooled, decanted and lyophi-
lised for subsequent preparative steps. As a reference, an
unheated sample of bovine femur (0 days) compact bone was
analysed following the same protocols.

Archaeological bone samples

In total, 89 archaeological bone samples were analysed. The
age (obtained from radiocarbon and stratigraphic dating),
origin, and description of each sample are summarised in
Table 1. Ancient bone samples were cleaned using a
Dremel drill with a dentist’s diamond and tungsten carbide
rotary tools. The preparation of the archaeological bones is
identical to that just described in the preceding section.

Demineralisation, preparation of a total bone fraction (TB),
“collagenous” protein fraction (CF) and leached fraction (LE)

Dry artificially degraded and archaeological bone samples
were powdered using a hydraulic press and a mixer mill (PO
Weber, Remshalden, Germany; Retsch, Hahn, Germany). An

32 Archaeol Anthropol Sci (2009) 1:31–42



aliquot of powder was hydrolysed directly (TB) for amino
acid racemisation analysis. Remaining bone powder was
demineralised overnight in 1 M HCl (10 ml HCl per 500 mg
bone powder). The acid insoluble collagenous fraction (CF)
was separated and washed until neutral pH and subsequently
lyophilised. The collagen yield was estimated from the dry
weight of the CF per dry weight of total tissue. A leached
fraction (LE) was obtained lyophilising of 5 ml of aqueous
supernatant.

Elemental, δ13C and δ15N analyses

Elemental analysis (C:N) is commonly used as a screening
method for collagen purified for radiocarbon dating and
stable isotope analysis. The ratio is surprisingly stable (van
Klinken 1999) but tends to increase in bones yielding low
levels of collagen. We suspect that C:N ratio stability is
another atypical characteristic of collagen diagenesis and
therefore we contrasted the relationship between the
integrity of collagen as estimated by CNBr against this
measure. Additionally, we measured the δ13C and δ15N to
identify any variability against the diagenetic parameters.

Collagen residues were gelatinised with 1 mM HCl at
65°C for 24 h and the resulting solution was centrifuged to

remove insoluble material and lyophilised for analysis by
elemental analyser isotope ratio mass spectrometry (EA-
IRMS). Each sample was weighed (ca. 500 μg) in duplicate
into tin capsules which were analysed using ANCA-SL
elemental analyser linked to a PDZ Europa 20/20 mass
spectrometer (PDZ Europa Ltd, Crewe, UK). Measure-
ments were made in relation to a reference (albumin) with
known %C and %N and traceable to international V-PDB
and AIR standards. The analytical precision of isotopic
determinations based on repeated measurements was better
than 0.2‰ in both cases.

Estimating the bulk parameters from amino acid
compositional data

We contrasted bulk measurements (C:N, δ13C and δ15N)
with values estimated using amino acid composition data.
In our analysis, His, Lys and Arg were not reliably
estimated and the imino acids Pro, Hyp, were not measured
at all. Therefore, in order to obtain C:N and isotope
estimates, the proportion of these ‘missing’ amino acids
was estimated relative to measured glycine using ratios in
published collagen compositions (Vaughn 1975 cited in
Howland et al. 2003). To estimate atomic C:N ratios, the

Table 1 Characterization of the archaeological material

Age [years] Origin Sample description Number of
specimens

Collagen yield
[% dry weight]

500 Northern Germany, Schleswig-Holstein,
Hemmingstedt

Human femurs, war grave
in marshy soil

4 18.9–22.3

400–700 Northern Germany, Schleswig-Holstein, Flensburg Human femurs from burial 14 5.5–24.2

1,700 Southern Germany, Rheinland-Pfalz, Trier Human femurs from burial 27 3.5–27.7

1,700 Italy, Grumentum Human femurs from burial 4 3.7–8.3

2,480–6,380 Eastern Germany, Sachsen-Anhalt, Braunsdorf,
Merseburg/Querfurt; Derenburg, Wernigerode;
Eilsleben, Bördekreis; Freyburg,
Burgenlandkreis; Halle-Beesen; Queis,
Quennstedt, Questzdölsdorf, Stedten,
Saalkreis; Unseburg, Aschersleben;
Westerhausen, Quedlinburg

Diverse human, bovid,
equid remains

20 1.8–15.4

∼30,000 Great Britain Bos primingenius, Os cornu 1 17.9

∼200,000 Great Britain Mammuthus primigenius,
scapula

1 18.5

235–49,360 North America: Boyer River Reserve, Fort
Vermilion, AB Can; Cloverbar Pit, Edmonton,
AB Can; Gallelli Pit, Calgary, AB Can;
Panther R., Banff NP, AB Can; Ikpikpuk R.,
North Slope, AK USA; Natural trap cave,
WY USA

Bison bison, various
skeletal fragments

18 5.2–20.0

Siberia, permafrost: Kolyma lowland,
Duvanny Yar, Siberia Rus

Central Asia: Tong He, China; Yanjiagang site,
Harbin, China
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total number of C and N atoms was estimated from the
amino acid compositional data (His, Lys, Arg, Pro and Hyp
all estimated). To estimate isotope shifts, the δ13C compo-
sition of individual amino acids was averaged from
published data on collagen (Howland et al. 2003; Fogel
and Tuross 2003; Tripp et al. 2006; Jim et al. 2006) as δ13C
relative to (Asp, Gly, Ala, Phe). Testing these data against
the dataset of Corr et al. (2005) revealed that this crude
approach gave only a modest correlation with bulk collagen
δ13C (estimate 0.89 observed, R2=0.88, n=26). δ15N
composition data was taken from Tripp et al. (2006).

Preparation and separation of CNBr-peptides

CNBr-cleavage

CNBr-cleavage of purified collagen, was conducted using
a combination of methods from Scott and Veis (1976)
and Rossi et al. (1996). In brief, 40 mg of CF was
suspended in 10–15 mg ml−1 of a solution consisting of
10% 2-mercaptoethanol in 10 mMNH4HCO3 for 4 h at 45°C
to reduce oxidised methionine residues. The supernatant was
removed following centrifugation and the samples were
lyophilised. The samples were then suspended in 4 ml of
nitrogen flushed 70% formic acid with 200 mg CNBr, which
was then incubated at 26°C for 4 h with continuous stirring.
The reaction was stopped by lyophilisation and aliquots
taken for electrophoretic analysis.

Separation of the CNBr-peptides by SDS gel
electrophoresis

CNBr-peptides were separated by SDS-PAGE (Laemmli
1970) on 12.5% polyacrylamide gels overnight (17 h,
starting at constant current of 8 mA, and a variable voltage
of about 40 V) using a Protean II XI cell (Biorad, Munich,
Germany). Gels were stained with Coomassie blue for 1 h
and differentiated until the bands were clearly visible.

Crude molecular weight separation by gel filtration

CNBr-cleaved collagen was dissolved in 0.1 N acetic
acid, and crudely filtered over paper (type 581/2;
Schleicher & Schuell, Dassel, Germany). Gel-filtration-
columns (PD-10, Sephadex G25-M, Amersham Bioscien-
ces, Munich, Germany) were prepared following the
manufacturer’s instructions. 1 ml of the CNBr-peptide
solution was loaded onto each column and eluted with
15 ml of 0.1 N acetic acid. Fractions of 1 ml volume
each were collected, the relative concentration of peptides
was monitored as extinction at a wavelength of λ=
220 nm and λ=280 nm respectively. SDS-PAGE was used
to control the success of the gel filtration; an aliquot of

100 µl from each PD-10-fraction was loaded onto a 12%
acrylamide gel (mini cell, Biorad, Munich, Germany) and
run using standard conditions (200 V, 60 mA).

Analysis of racemisation in crude extracts
and CNBr-fragments from experimentally aged
and archaeological bone

It has previously been argued that aspartic acid racemisation
(AAR) is retarded in the collagen triple helix (van Duin and
Collins 1998). Aspartic acid racemisation therefore served as
a marker for the extent of helical integrity in the individual
CNBr-fragments. Standard hydrolysis conditions for age
estimation in a forensic context, of 6 h at 100°C, were
chosen to minimize the induced racemisation of aspartic acid
during hydrolysis (Ritz et al. 1993, 1994, 1996).

During preparative hydrolysis asparagine undergoes
rapid irreversible deamination to aspartic acid (Hill 1965).
It is therefore not possible to distinguish between the amino
acid and its amide derivative; these are therefore reported
together as Asx.

Analysis by RP-HPLC

A total of 900 µl of the column-eluted fractions (i.e. the
total after 100 µl had been taken for SDS-PAGE-analysis,
above) were lyophilised for AAR analysis. Lyophilisates of
the eluted peptides were hydrolysed in 6 N HCl at 100°C
for precisely 6 h, and dried in vacuo. Hydrolysates were re-
dissolved in 0.01 N HCl, containing 0.03 mM L-h-arginine
as an internal standard, and 0.77 mM NaN3 to inhibit
bacterial growth. Samples were analysed on a Agilent 1100
Series HPLC (Agilent Technol., Germany) consisting of a
programmable injector unit, quaternary pump and fluores-
cence detector following a slightly modified online-
derivatisation protocol of Kaufmann and Manley (1998).
Samples were derivatised with iso-butyryl-L-cysteine
(IBLC) and o-phthaldialdehyde (OPA) in a potassium
borate buffer system (1 M, pH 10.4) and separated on a
C18-column (Hypersil BDS, 5 µm, 250x4 mm, Thermo
Hypersil-Keystone, Thermo-Finnigan Corp., Waltham,
USA). General detector settings were chosen as described
by Kaufman and Manley (1998) unless otherwise stated.
Amino acid derivatives were excited at a wavelength of
230 nm, the fluorescence-emission was detected at 445 nm.
During the analysis a gradient of the eluents A (95-48%), B
(5– 50%) and C (0–2%) within 95 min was programmed,
followed by a post-run consisting of flushing the column
with 95% B + 5% C for 15 min and equilibration for
another 5 min with 95% A + 5% B for 5 min (A: 23 mM
sodium acetate, 1.5 mM sodium azide, pH 6.00; B:
methanol, HPLC-grade; C: acetonitrile, HPLC-grade). A
flow rate of 0.56–0.6 ml min−1 was used during analysis
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and post-run. AAR is expressed as the D/L value [%] of the
D- and L-enantiomers of an amino acid. All samples were
analysed at least in duplicate.

Analysis by GC

The extent of aspartic acid racemisation was determined as
described by Ritz et al. (1993) and Ritz-Timme (1999),
taking into account defined quality standards (Ritz-Timme
et al. 2000). Briefly, the dried samples were hydrolysed in
6 N HCl at 100°C for 6 h. Hydrochloric acid and water
were removed in a vacuum and the dry hydrolysate was
esterified with isopropanol/sulfuric acid (10:1) for 1 h at
110°C. After alkaline extraction with dichloromethane,
acetylation was performed with trifluoroacetic anhydride
(TFAA) at 60°C for 15 min. Amino acids were now present
as TFA-isopropylesters. The ratio of D-aspartic acid to L-
aspartic acid was determined after separation of the amino
acids by gas chromatography (GC9, Shimadzu, Duisburg,
Germany) on a chiral capillary column (Chirasil-L-Val,
Varian, Middelburg, The Netherlands) using a flame
ionisation detector, with hydrogen as carrier gas. The
samples were analysed at least in duplicate. The extent of
AAR was calculated as described above.

Results

Experimentally aged human bone

Collagen loss

The pattern of collagen loss was sigmoidal as previously
reported by Rudakova and Zaikov (1987) and Okada et al.
(1992; Fig. 1a); a pattern which lead to the original
proposition of the polymer models of collagen degradation,
which emphasised random cleavage and stabilisation by
intra-helical hydrogen bonding (Collins et al. 1995). The C:
N ratio (Fig. 1b), the δ13C (Fig. 1c) and δ15N isotope values
(Fig. 1d) of the insoluble fraction within the bone pattern all
remain surprisingly constant, until this fraction represent
less than 1% of the total bone mass (Fig. 2). Shifts were
consistent with computed values based upon amino acid
compositions (Fig. 2) for all but low collagen (< 1%) bone.

Using the predicted change in composition of amino
acids between ‘high’ and ‘low’ collagen bone (Fig 2.), it is
possible to compute changes in the C:N ratio and, using
published isotope data of individual collagen amino acids,
estimate the impact on isotopic composition. This exercise
reveals that although the relatively small shift observed in
δ13C (−2.6‰) can be explained (Fig. 1c), changes in amino
acid composition alone cannot account for the elevated C:N
ratio in low collagen bone. Without knowing the isotopic

composition of the additional C source, it is difficult to
interpret this data further. In the case of δ15N, the lack of
published data coupled with the unknown isotopic effects
of deamidation hampers interpretation.

Amino acid racemisation

The pattern of racemisation also mirrors the loss of collagen
(Fig. 1a). The extremely rapid initial racemisation of the
telopeptide (1) is captured only by the high intercept at the
onset of the experiment (see Waite and Collins 2000).
Following this, there was a gradual increase in racemisation
(2) rising slowly as the bulk of collagen is lost. Once total
collagen was below 1%, racemisation shifted along with the
other bulk measurements (3). Curiously, by the end of the
experiment the value had not reached equilibrium (D/L of
1) instead values reached a plateau with a D/L ratio of 0.53
(4), indicating that approximately 30% of the remaining D-
Asp residues are in non-racemisable positions (Fig. 1a).

Electrophoretic pattern of CNBr-fragments
from experimentally aged bovine bone samples

In a second experiment (compact bone of a 4-year-old
cow), a similar pattern of decay is observed (Fig. 3), but the
rate of weight loss is considerably faster (>1% in 8 days,
rather than 23 days). Remarkably, the CNBr-digest pattern
is maintained until day 8 (0.09% collagen in bone). Beyond
this point, not only is the CNBr-banding lost, the amino
acid profile also no longer resembles collagen being
relatively depleted in glycine (data not shown).

AAR in CNBr-fragments of different molecular weights
in experimentally aged bovine bones

After column separation of the CNBr-peptides according to
their molecular weights, a high-molecular-weight- component
(MW > ca. 3.5 kDa, fractions 1–4 in Fig. 4a) was well
separated from a low-molecular-weight-component (fractions
>6 in Fig. 4a), as demonstrated by the electrophoretic pattern
of these peptides in SDS-PAGE electrophoresis (Fig. 4b).
Racemisation analysis revealed an approximate doubling in
values of D-Ser in fraction 6 and slight elevation of D-Asx-
levels in fraction 6, which upon heating increased differen-
tially in this and later eluting fractions (Fig. 5).

Archaeological bone

AAR in crude extracts of archaeological bone

Amino acid racemisation of archaeological bones ranged
from 2%to 11% D-Asx and there is no clear trend with
chronological age (Fig. 6). The oldest samples >40 ka
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exhibit low D-Asx ratios (ca. 5%) and high collagen yields
(Fig. 6 insert). This is because these bones originate from
high latitudes, predominantly permafrost sites. In order to
correct for differences in the temperature of the burial
environment we calculate the time required for the same
degree of collagen degradation at 10°C (assuming an
activation energy of 173 kJ mol−1 for loss of collagen from

bone), this we term thermal age (Smith et al. 2003).
Thermal age normalizes the age samples from different
latitudes based upon the using a predetermined activation
energy for molecular degradation. When, however, the
thermal ages are plotted (estimated using for collagen
degradation) a clearer trend emerges, but, nevertheless,
values are increasingly scattered with thermal age
(Fig. 6a). The collagenous fraction (CF) appears to rise
by approximately 0.5% within the first 300 years, but in
the next 10 ka it plateaus out at about 2.5% higher than
the youngest samples. The AAR values of the total bone
fraction (TB) scatter on a higher level compared to the
CF-values.

Electrophoretic pattern of CNBr-fragments
from archaeological bone samples

Archaeological bones from the last millennia (Fig. 7a)
displayed almost no evidence of collagen deterioration, the
CNBr-peptide patterns being nearly identical to that of
modern bone irrespective of total collagen yield (Fig. 7b). If
a wider range of human and animal bone was examined
again in most cases the CNBr-pattern was retained
(Fig. 7b). There was no correlation between collagen
integrity (as revealed by CNBr-fragment patterns), with
either yield or absolute age. However, if age is recalculated
to account for the temperature history of a site (ignoring, in
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the case of high latitude permafrost sites, Pleistocene
temperature fluctuations) there was a correlation between
this thermal age and the extent of deterioration. In bones
with thermal ages of >10ka@10°C collagen deterioration was
observed in SDS-PAGE electrophoresis as background
smears (e.g. 30 and 200 ka samples in Fig. 7b), consisting
of peptides of variable molecular weights, similar to those
previously reported from Tuross et al. (1980). Bones with
thermal ages of ∼8ka@10°C showed a combination of
smearing with some bands still present as observed by
Schaedler et al. (1992) in a Columbian mammoth. Two
poorly dated Pleistocene fossils from the British Isles (an
auroch and a mammoth, unprovenanced, possibly ∼30 ka
and ∼200 ka respectively) failed to exhibit clearly visible
CNBr-peptide bands.

AAR in CNBr-fragments of different molecular weights
in archaeological bones

In the light of the findings from experimentally degraded
collagen (see section AAR in CNBr-fragments of different

molecular weights in experimentally aged bovine bones),
ancient bones were separated into in two high-molecular-
weight-fractions (fractions 2 and 3; data for fraction 3 is
not reported but were similar to fraction 2) and three
low-molecular-weight-fractions (fractions 6–8) for de-
tailed AAR analysis. Unlike the CF fraction of total
bone, the high-molecular-weight CNBr-fractions 2 and 3
exhibited relatively constant AAR values for Asx and Ser
(similar data in fraction 3, not shown). In contrast, the
low molecular weight fractions (<3.5 kD) displayed a
very high range of D-Asx and D-Ser values from 4% up
to 16%, but with no clear age dependency either with
absolute or thermal age (Fig. 8, fraction 6–8). Interesting-
ly in the low molecular weight fragments there is a sharp
decline in D-Asx and D-Ser values from ca. 8ka@10°C

onwards.
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Discussion

The limited analysis of ancient bone collagen has focussed
mainly upon (1) amino acid composition, which appears to
change very little (e.g. Hare 1980; Masters 1987) until amino
acid compositions are very low, and (2) racemisation, which
appears to be highly variable (Weiner et al. 1980; Taylor et
al. 1989; Kimber and Hare 1992; Ritz-Timme and Collins
2002), but is lower in high molecular weight fractions. One
notable exception to this was the biochemical character-
isation conducted by Tuross et al. (1980) and Armstrong et
al. (1983), which employed cleavage with CNBr-and pepsin
followed by resolution on SDS-PAGE.

Artificial degradation of bones revealed a sigmodial
pattern of collagen loss, as previously reported (Rudakova
and Zaikov 1987; Okada et al. 1992; Fig. 1a). However the
models which have been used to explain this sigmoidal
pattern would imply selective loss of unstable amino
acids from the charge rich clusters. This is not what is
observed in any of the bulk properties of the sample.
The amino acid composition, C:N ratio, and both bulk

isotope estimates (δ13C and δ15N) remained remarkably
stable until collagen values fell to less than 1% of the total
weight of the bone. The extent of racemisation (already
elevated above the intercept by rapid initial racemisation
of the telopeptides) rose slowly but steadily, this is more
clearly seen in the human collagen sample, which took
longer to gelatinise than the bovine collagen (cf. Figs. 1a
and 3), probably because of an age-dependent higher
amount of cross-linking between the collagen fibrils.

When only 1% of collagen remains the measured
parameters change very rapidly. In the case of the
human bone, two samples in this transition state are
observed (23 and 25 days, 0.8% and 0.3% by weight
collagen). In the case of cattle bone, the change is so
rapid, that this state is not observed. This shift can be
explained with a mixing model between a dominant
pool (collagen) and a much smaller pool of different
composition. This pool has not been characterised but
may include collagen fragments and non-collagenous
bone proteins in addition to non-proteinaceous compo-
nents such as lipids.
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The overall conclusion to be drawn for this bulk data is
that atomic, isotopic and isomeric measurements commonly
made on archaeological bone collagen are generally reliable
when the insoluble protein levels in bone are >1% and
amino acid composition is stable.

The typical CNBr-peptide pattern (Fig. 3) persists to
protein levels below 1% of total bone weight. This result
indicates that, contra to the polymer degradation model
(Collins et al. 1995) hydrolysis is not a random process.
Instead, the acid insoluble bone collagen fraction is either
present as intact alpha-chains, or absent.

The presence of so much evidence from other proteins so
far investigated—predominately from the intra-crystalline
fraction of invertebrate biominerals (Weiner et al. 1980;
Wehmiller 1993; Johnson and Miller 1997; Collins and
Riley 2000), suggest that they should decay in a manner
approximating to random chain cleavage, this is not the
case for bone collagen. Intact collagen does explain why
such crude gelatinisation methods and the use of 30 kDa

ultrafiltration is appropriate for most ancient collagen
purification as intact collagen is typically present.

The results do, however, suggest that, in bones with
thermal ages of >8ka@10°C, collagen deterioration may be
more complex. These samples display evidence of smearing
of variable molecular weight material, as it would be
predicted by this model, and which Tuross et al. (1980)
observed in three samples (Cave Moa, Tar Pit Smilodon,
Egyptian Mummy). One explanation could be that Met has
undergone oxidative damage (methionine sulfoxide, can be
reversed by 2-mercaptoethanol used in this study, but the
second stage of oxidation, methionine sulfone, cannot), and
hence CNBr is no longer an effective method for cleavage.
The use of mercaptoethanol to reduce the methionine
sulfoxide prior to cleavage may explain those comparative-
ly better CNBr-cleavage patterns we observed when
compared to those of Tuross et al. (1980) and Schaedler
et al. (1992). It may also be the case that the random
hydrolysis of the polymer model does become a more
significant factor in older samples, as the smears in the
Pleistocene samples were of low molecular weight. Another
explanation may be that in older samples there is a greater
tendency for cross-linking to modify chain length and result
in poor electrophoresis. In concert with hydrolysis, cross-
linking may produce the smear observed in these two
fossils, but this hypothesis remains to be tested. The
presence of low-molecular weight smears in fossil samples
was not observed in the artificial diagenesis experiments,
revealing that the process of diagenesis is not perfectly
modelled. The findings suggest that potentially different
strategies are required for collagen purification in samples
with thermal ages >8ka@10°C.

Asx racemisation is a useful probe for the presence of
the collagen triple helix in collagen due to the ability of the
helix to suppress succinimide formation (van Duin and
Collins 1998). For a further refinement of the search for fast
racemising Asx-residues within the collagen molecule, we
applied separated CNBr-peptides of different molecular
weight to AAR.

Separation of a number of >10ka@10°C (i.e. CNBr-
sensible) samples into high and low molecular weight
fractions revealed levels observed in the high molecular
weight fraction not different than those from preparations of
modern collagen (Fig. 8a, b–d), suggesting that the helix
remains essentially intact. Similar low levels of racemisa-
tion in the insoluble fraction of bone collagen have been
reported previously (cf. Matsu’ura and Ueta 1980; Kimber
and Hare 1992). Intriguingly, one sample (a wild horse
from the Neolithic site) had almost double the levels of
AAR of all other samples; it is tempting to speculate that
this unusually high value is evidence of cooking, since
none of the human samples have such high values. Within
intact collagen the only residues free to undergo racemisa-
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Fig. 7 a Examples of typical CNBr-peptide patterns (SDS-PAGE-
electrophoresis) for young archaeological specimens, up to 1,700 years
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assessed by collagen yield or AAR) the CNBr-fragment patterns were
remarkably consistent. Age of the collagen samples is given in ka

Archaeol Anthropol Sci (2009) 1:31–42 39



tion are in the telopeptides. These are present in low
molecular weight CNBr-products, which is presumably
why during artificial ageing the low molecular weight
fraction has higher rates of AAR (Fig. 8).

Plotting the net racemisation of the CF against burial
and thermal age reveals that only the thermal age
displays a trend, and only a weak one. The CF values
corrected for thermal age rise to a plateau of approxi-
mately 5% D-Asp. These values are higher than those
observed in the high molecular weight CF fraction,
because there is no induced racemisation during the
preparation of the CF. Correcting for a 1%-induced
racemisation during hydrolysis, this indicates that approx-
imately 8% of the Asx residues in the CF are undergoing
racemisation in the insoluble residue. The speed of this
initial rapid rate of racemisation is difficult to assess
accurately, but it appears to plateau at <0.3ka@10°C. This
rate is faster than would be predicted based upon the rates
of racemisation of the equivalent CF fraction in dentine at
37°C (0.0003 year−1; Ritz et al. 1993), which assuming an
activation energy of 94 kJ mol−1 (Collins et al. 1999)
should not plateau until ∼5ka@10°C. One partial reason for
this is the in vivo contribution to this racemisation of this
fraction, as has been reported from both, dentine (loc. cit.,)

and bone (Ritz et al. 1994), but the rapid rise may be a
consequence of the burial environment.

Low racemisation-rates in the CF of archaeological
samples are contrasted with high D-Asx in the leached
fraction from the experimental investigation (data not
shown). These results are consistent with the model
produced by Collins et al. (1999) in which degradation
releases fast-racemising soluble components (gelatine),
which diffuse out of the bone.

Levels in the total bone are higher than the CF, and these
are principally attributed to residual degraded collagen and
other bone and allochthonous proteins. NCF has very high
and variable levels of racemisation. This effect has been
frequently observed (e.g. Matsu’ura and Ueta 1980; Kimber
and Hare 1992). Total bone AAR is therefore a reflection
not of collagen content or state of preservation but rather
the amount of retained soluble protein (Collins et al. 1999).
Given the observed pattern of racemisation, it is surprising
that AAR in bone has ever proved a good predictor of bone
age (e.g. Csapó et al. 1994).

The separation of CNBr-peptides by electrophoresis
serves as a sensitive method to identify intact collagen
from ancient bone and possibly other hard tissues. As long
as a typical CNBr-peptide pattern can be detected, a high
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level of molecular integrity of the remaining collagen can
be assumed even in low collagen bones.

Conclusions

The ubiquity of archaeological bone collagen, and its
suitability for radiogenic and stable isotopic analysis tends
to obscure the unusual pattern of digenesis. Osteocalcin, an
other abundant bone protein (1–2 mg g−1 bone dry weight)
has a highly variable pattern of survival, the mineral
binding and hydrophobic domains surviving better than
the N-terminus (Smith et al. 2005). Collagen by contrast
has a stable amino acid profile and C:N ratio until
collagen yields fall below 1%. One explanation for this
is that the polypeptide remains intact (as evident in the
electrophoretic pattern of collagenous CNBr-fragments)
even in low collagen archaeological bone. Interestingly,
we also observe a different pattern (a smear) in fossil
samples, similar to patterns previously reported. The
disjunction between these two patterns requires further
investigation as it may suggest an alternative pathway of
survival of ancient (as opposed to archaeological) collagen.
If this is the case, perhaps it may shed light on claims for
‘exceptional’ preservation of collagen in fossil bones
(Palmqvist et al. 2003; Asara et al. 2007).
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