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Abstract
Background Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical 
cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further atten-
tion from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mecha-
nisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood.
Data sources A comprehensive literature review was conducted for pertinent publications by reviewers independently using 
the PubMed, Embase, and Wanfang databases. Searched keywords included “COVID-19 in children”, “severe pediatric 
COVID-19”, and “critical illness in children with COVID-19”.
Results Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvac-
cinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while 
various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are 
implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregu-
lation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome 
in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 
exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite 
the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are 
lacking and current management recommendations are largely adapted from adult guidelines.
Conclusions Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe 
COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the 
immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately 
address them in pediatric-specific clinical practice guidelines.
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Introduction

Contrary to most recognized respiratory pathogens, 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative pathogen of COVID-19, typically 
leads to milder disease in pediatric cases than in adult 
patients[1, 2], but young children, particularly infants, may 
still be prone to contract the virus[3, 4], and a small number 
may develop severe or even critical illnesses [5, 6]. Children 
with severe COVID-19 may develop serious complications 
such as acute respiratory distress syndrome, myocarditis, 

acute renal failure, cardiogenic or septic shock, and multio-
rgan failure, and mortality can occur in extreme cases [7]. 
A nationwide surveillance study conducted in the United 
States during the peak of the pandemic recorded a COVID-
19-related hospitalization rate of 48.2 per 100,000 popula-
tion for children under 18 years of age from October 2020 to 
September 2021, of whom 26.4% required ICU admission, 
6.2% required invasive mechanical ventilation, and 0.7% 
died while hospitalized [8]. The epidemiology of pediatric 
COVID-19 has also evolved substantially since the advent 
of successful vaccines, with new cases aggregating mostly 
in unvaccinated children or subgroups of children who 
are ineligible for immunization [9]. The picture is further 
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complicated by the emergence of multisystem inflammatory 
syndrome in children (MIS-C), a distinctive post-infectious 
entity that accounted for a significant proportion of pedi-
atric ICU admissions linked to COVID-19, and highlights 
the profound involvement of host immune response in the 
pathogenesis of severe pediatric COVID-19 and the asso-
ciated conditions [10–13]. This review, therefore, aims to 
provide a holistic dissection of the diseases of interest with 
focuses on both the clinical and immunological standpoints.

Clinical approaches to severe pediatric 
COVID‑19

Risk factors for developing severe COVID‑19 
in children and red flags for deterioration

The symptomology of clinically evident acute COVID-19 in 
children is similar to that in adults, which mostly involves 
the respiratory tract, with the most common presenting 
complaints being fever, coughs, coryzal symptoms includ-
ing nasal congestion and rhinorrhea, and dyspnea, which 
may be accompanied by headaches, myalgia, generalized 
malaise, and possibly gastrointestinal symptoms such 
as nausea, vomiting, decreased oral intake, and diarrhea 
[14–16]. Identification and close monitoring of children at 
risk of severe COVID-19 represent a concrete first step in 
clinical assessment. The risk factors with the highest relative 
risks for severe COVID-19 in children are chronic lung dis-
eases, obesity, diabetes, cardiovascular disease, neurological 
comorbidities including seizure disorders, and prematurity 
(among children below 2 years of age) [1, 17, 18], many 
of which are linked to endothelial impairment and a pro-
inflammatory state [19], and odds of critical care admission 
and mortality increase in a step-wise manner with increased 
number of comorbidities [20].

Meanwhile, it is important to clarify the vaccination status 
in light of the well-rounded protective effects it offers against 
disease transmission, progression, and complications. For 
instance, a recent meta-analysis of 51 studies revealed that 2 
doses of mRNA vaccines are 75.3% and 78% effective against 
COVID-19-associated hospitalizations and MIS-C, respec-
tively, in children between the age of 5 and 11 years [21]. 
However, waning protection with the emergence of novel 
variants (e.g., Omicron)[22] and elapsed time since the last 
administered dose [23], especially for those aged 5–11 years 
as opposed to older children or adolescents [24, 25], need to 
be taken into consideration. It is worth noting that immu-
nocompromised children, even if appropriately vaccinated 
as per the modified schedule, are still deemed at high risk 
of progression to severe COVID-19 due to lower response 
rates to vaccinations and vulnerability to SARS-CoV-2 
pathogenicity [26].

Any clinical, biochemical, and radiological signs indi-
cating deterioration, especially in at-risk children, should 
be promptly acknowledged and actioned upon, which 
include (1) increased respiratory rate; (2) poor responsive-
ness, drowsiness, and convulsions; (3) lymphopenia and/or 
thrombocytopenia; (4) hypo/hyperglycemia and/or hyper-
lactatemia; (5) markedly elevated inflammatory markers 
such as procalcitonin, C-reactive protein, and ferritin; (6) 
significant transaminitis and creatine kinase elevation; (7) 
pronounced abnormalities in coagulation function param-
eters; and (8) changes in head imaging such as cerebral 
edema or significant progression of pulmonary lesions on 
chest imaging [27].

Clinical characteristics of severe and critical 
pediatric COVID‑19

Case definition

The case definition for severe pediatric COVID-19 may 
have slight variations across studies and guidelines, but it 
typically requires (1) a form of diagnostic certainty with a 
positive RT-PCR result for SARS-CoV-2 nucleic acids as 
the gold standard; (2) hospitalization as a result of COVID-
19 related symptoms, thereby excluding cases managed in 
the outpatient setting; and (3) ICU admission, invasive 
mechanical ventilation, or circulatory support as the key 
indicators of disease severity, albeit inevitably limited by 
disparities in intervention thresholds between different 
centers and patient subgroups [1, 20]. Besides, deviations 
in respiratory and oxygenation indices have been used to 
delineate severe disease, including a blood oxygen satura-
tion level  (SpO2) of < 94% on room air under atmospheric 
pressure at sea level [27, 28] and significant elevations in 
age-adjusted respiratory rate [27], while conditions sug-
gestive of other organ system dysfunctions are also proxy 
measures [10, 29].

Respiratory

The rate of viral pneumonia is determined to be 24% among 
children hospitalized with a COVID-19 diagnosis by a multi-
center study in the US [30]. Necrotizing pneumonia (NP) is 
a disastrous complication of severe pediatric COVID-19, 
which stemmed from aggressive bacterial superinfections 
causing lung tissue liquefaction and cavitation, with the most 
common causative organisms being Staphylococcus aureus, 
Streptococcus pneumoniae, and Mycoplasma pneumoniae 
[31]. Specifically, Akuamoah-Boateng et al. reported the 
case of a 13-year-old boy with COVID-19 and convincing 
laboratory and radiologic features of NP presumably caused 
by Prevotella oris, which was not detected by the blood 
cultures prior to antimicrobial administration but returned 
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positive on PCR of the surgical drainage sample of concur-
rent subdural empyemas [32]; and Brisca et al. reported a 
case of NP in a 4-month-old infant with of COVID-19 and 
concurrent central venous catheter-associated methicillin-
susceptible Staphylococcus aureus bacteremia [33]. NP in 
both cases eventually resolved with appropriate level of res-
piratory support and multimodal pharmacotherapy.

Physicians should also be kept aware of COVID-
19-related croup [34] that has shown increased 
incidences with Omicron variants [35, 36], mani-
fests as vocal hoarseness, stridor, wheezing, or lung 
rales [34, 37, 38], and in critical cases may require 
endotracheal intubation and cardiopulmonary resusci-
tation, although COVID-19-associated croup is treated 
similarly to other viral causes of croup and respiratory 
distress is generally uncommon [39].

Additionally, a scrutinization of the Overcoming COVID-
19 registry data has shown that acute respiratory distress 
syndrome (ARDS) was seen in approximately 10% of 
hospitalized children with severe acute COVID-19 and  
MIS-C [10], compared to 33% in admitted adults [40]. 
Despite lower incidences compared to adults, COVID-
19-related pediatric ARDS required mechanical ventilation 
in most cases [41, 42], and the strategy of low tidal volume 
and limiting plateau pressure for lung protection has been 
routinely implemented [41, 43–45]. ARDS was also found 
to be independently associated with lower probability of dis-
charge from PICU and hospital in a multivariable analysis of 
time to discharge [41], which reflects its protracted disease 
course and risk of lethality.

Cardiovascular

Cardiogenic shock [46], pericarditis [47], and myo-
cardial injury [48–50] have all been reported in acute 
SARS-CoV-2 infection in children, and evidence of per-
sistent cardiac injury could be detected 3–6 months on 
cardiac magnetic resonance imaging after severe pedi-
atric COVID-19 [51]. However, a large proportion of 
COVID-19-related cardiovascular involvement in pedi-
atric patients may be driven by indirect, non-cardiac 
insults, especially MIS-C [52]. 93% of the 283 children 
with MIS-C in a multicenter European study had myocar-
dial injury, as reflected by elevated troponin levels [53], 
while reduced ejection fraction can be seen in approxi-
mately 30% of MIS-C patients [10, 53]. Even though 
SARS-CoV-2 RNA was detected with myocarditis on 
post-mortem cardiac biopsy of an 11-year-old child who 
died of MIS-C, suggesting direct viral invasion could be 
the inciting and perpetrating event in this particular case 
[54], a systemic inflammatory response is likely the prin-
cipal driving force for myocarditis in most MIS-C cases 

[53, 55], which is known for its multiorgan manifesta-
tions (Fig. 1) and will be discussed in further details in 
connection with an evaluation of its elusive pathogenesis.

Neurologic

Non-specific neurologic symptoms are relatively com-
mon in children with COVID-19, whereas serious neuro-
logic manifestations are much more infrequent, with an 
estimated prevalence of 3.8% among pediatric patients 
admitted to hospital with COVID-19 [56]. A significant 
proportion of them may be broadly categorized as neuro-
immune disorders, among which numerous cases of acute 
disseminated encephalomyelitis [57–61], a demyelinating 
disease affecting the central nervous system, as well as 
Guillain–Barré syndrome [62, 63] have been reported. 
On the other hand, direct viral invasion of the central 
nervous system (CNS) by SARS-CoV-2 is rare but has 
been described [64], and disruption of the blood–brain 
barrier and host immunity secondary to COVID-19 may 
predispose patients to lethal CNS co-infections, includ-
ing opportunistic ones by Mycobacterium Tuberculo-
sis [61]. Furthermore, cytokine storm and systematic 
inflammation may be the driving force of life-threatening 
neurologic conditions seen in severe pediatric COVID-19 
such as acute necrotizing encephalopathy, a para-infec-
tious condition most commonly precipitated by viruses 
of the Orthomyxoviridae family that is characterized by 
multifocal symmetrical lesions, especially in bilateral 
thalami [65, 66], and acute fulminant cerebral edema, 
which can happen in previously healthy children, causing 
brain herniation and death within 24–48 hours of fore-
telling seizures [67, 68]. Moreover, a well-conducted US 
study utilizing surveillance data showed that 47% of the 
pediatric patients hospitalized with COVID-19-related 
illnesses who developed life-threatening neurologic con-
ditions met the diagnostic criteria for MIS-C [11].

Pathogenic and immunologic determinants 
of disease severity

SARS‑CoV‑2 cellular binding and entry

Like SARS-CoV, SARS-CoV-2 utilizes its spike (S) gly-
coprotein to facilitate entry into target cells via interac-
tion with the angiotensin converting enzyme II (ACE2). 
The S1 subunit of the S protein binds to ACE2, which 
activates an accompanying host protease, most commonly 
transmembrane serine protease 2 (TMPRSS2), releasing 
the S2 subunit from the S1-S2 complex [69–72]. The S2 
subunit then enables fusion of the viral envelope with the 
cellular membrane and consequently endocytosis of the 



310 World Journal of Pediatrics (2024) 20:307–324

viral components [73] (Fig. 2). SARS-CoV-2 cellular tro-
pism is therefore largely determined by co-expression of 
ACE2 and TMPRSS2, which is present in cells from mul-
tiple tissue origins, including nasal secretory and ciliated 
cells [74], alveolar epithelial type II cells (AT2s) [75], 
enterocytes of the small and large intestines [76, 77], 
proximal tubular cells of the kidney [78], cardiomyo-
cytes [79], and vascular endothelial cells [78, 80–82], 
suggesting clinical manifestations in the respective organ 
systems may be at least partially attributed to direct cel-
lular invasion and damage. Though still debated, many 
have argued that relatively lower expression and dis-
tinct distribution pattern of these entry factors in infants 
and children may confer protection against severe 
disease [83–86].

Innate immunity as the first line of defense 
that arbitrates the course of disease

SARS-CoV-2 is encountered by a cascade of innate 
immune responses in vivo, which are crucial determi-
nants of disease course in children [87–90]. Apart from 
ACE2 binding, the S protein, along with other viral 
constituents, may act as pathogen-associated molecular 
patterns (PAMPs) to activate pattern recognition recep-
tors (PRRs), which drives the production of an array of 
cytokines that govern responses following the viral infec-
tion. Specifically, SARS-CoV-2 proteins, single-stranded 
genomic RNA, and double-stranded RNA (dsRNA) rep-
lication intermediates are sensed by various subtypes of 
toll-like receptor (TLRs) [91–94], and cytosolic RNA by 

Fig. 1  Potentially life-threatening manifestations of severe pediatric 
COVID-19 and organ systems implicated in MIS-C. The MIS-C diag-
nostic criteria are adapted from the Centers of Disease Control and 
Prevention of the United States. pCOVID-19 pediatric COVID-19, 

CRP C-reactive protein, ESR erythrocyte sedimentation rate, LDH 
lactate dehydrogenase, IL-6 interleukin 6, NEUT neutrophils, LYM 
lymphocytes, RT-PCR reverse transcription polymerase chain reaction
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the retinoic acid-inducible gene-I (RIG-I)-like receptors 
(RLRs) such as RIG-I and melanoma differentiation-
associated gene 5 (MDA-5) [95], which ultimately evoke 
potent interferon (IFN) responses.

Induction of type I IFNs and, to a lesser extent, type III 
IFNs constitutes the backbone of innate immunity against 
SARS-CoV-2, which exerts its far-reaching effects via 
the JAK/STAT signaling pathway to ultimately mobilize 

Fig. 2  ACE-2-TMPRSS2-mediated SARS-CoV-2 cell entry and 
type 1 interferon pathway. SARS-CoV-2-associated molecules are 
recognized by a wide range of PRRs located in different compart-
ments, including TLR2, 4 and 6 on the plasma membrane, TLR3, 
7 and 8 in endosomes, and RIG-1 and MDA-5 in the cytoplasm, 
each with its respective ligands. Ligand binding causes TLRs to 
dimerize and instigate the downstream signaling pathways in an 
MyD88-dependent or TRIF-dependent manner. Activation of 
TLR2, 4, 7, and 8 recruits the canonical adaptor protein MyD88, 
which sequentially mobilizes the IRAK complex, TRAF6, and 
TAK1. TAK1 is then capable of initiating the IKK-NFκB and the 
MAPK-AP1 pathways, stimulating production of various proin-
flammatory cytokines. In addition, activation of TLR7 or TLR8 
also triggers IRAK, TRAF6, TRAF3, and IKKα-dependent phos-
phorylation and thus activation of IRF7. Contrarily, TRAF3 may 
be activated by TRIF recruitment following TLR3 and TLR4 
activation, or MAVS recruitment secondary to RIG-1 or MDA5 
activation. TRAF3 in turn gives rise to TBK1 and IKKε activa-
tion that potentiates IRF3. Both IRF3 and IRF7 act as transcrip-
tion factors that promote T1IFN gene expression. T1IFNs bind 
to the heterodimeric IFNAR1/IFNAR2 receptor complex, which 
triggers the receptor-associated kinases TYK2 and JAK1 to phos-
phorylate STAT1 and STAT2 proteins. The phosphorylated STAT1 

and STAT2 combine with IRF9 to form the ISGF3, which binds 
to IRSE in the nucleus to upregulate transcription of ISGs, exert-
ing multitudinous antiviral effects. PPRs pattern recognition 
receptors, ACE2 angiotensin-converting enzyme 2, TMPRSS2 
transmembrane serine protease 2, (+)/(–)ssRNA positive-/neg-
ative-sense single-stranded ribonucleic acid, S spike protein, N 
nucleocapsid protein, M membrane protein, E envelop protein, 
Nsps non-structural proteins, dsRNA double-stranded ribonucleic 
acid, TLR toll-like receptor, RIG-1 retinoic acid-inducible gene 
I, MDA5 melanoma differentiation-associated protein 5, MyD88 
myeloid differentiation primary response factor 88, IRAKs inter-
leukin-1 receptor-associated kinases, TRIF toll-interleukin-1 
receptor-domain-containing adaptor-inducing interferon-β, MAVS 
mitochondrial antiviral signaling protein, TRAF tumor necro-
sis factor receptor-associated factor, TAK1 transforming growth 
factor-β activated kinase 1, IKK inhibitor of nuclear factor-κB 
(IκB) kinase, TBK1 TANK-binding kinase 1, IRF interferon reg-
ulatory factor, NF-κB nuclear factor kappa B, MAPK mitogen-
activated protein kinase, AP-1 activator protein 1, T1IFNs type 
1 interferons, IFNAR interferon-alpha receptor, TYK2 tyrosine 
kinase 2, JAK1 Janus kinase, STAT  signal transducer and activator 
of transcription, ISGF3 interferon-stimulated gene factor 3, ISRE 
interferon-sensitive response element
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hundreds of IFN-stimulated genes (ISGs) with a myriad of 
direct and indirect (i.e., via recruitment of immune cells) 
anti-viral functions [96, 97] (Fig. 2). Age-associated features 
such as more robust mucosal IFN response [89, 98], more 
preformed cytosolic PRRs in cells populating the upper air-
ways [99] and more efficient RIG-1 signaling [100] in the 
pediatric population are believed to correlate with milder 
presentation of COVID-19, whereas severe disease could 
result from blunted type 1 IFN responses [101, 102] as a 
consequence of in-born defects in type 1 IFN-mediated 
immunity [103–107], presence of IFN-neutralizing autoan-
tibodies [108–110], and a multitude of inhibitory factors 
employed by SARS-CoV-2 such as its structural and non-
structural proteins and the way it replicates inside enclosed 
membranes to evade host immune detection [96, 111–113].

Strikingly, around 10% of children hospitalized for 
COVID-19 pneumonia were found to have complete reces-
sive deficiencies in one of the four type 1 IFN immunity-
related molecules [107]. Inappropriate type I/III IFN 
responses failing to facilitate viral clearance at the point 
of initial contact, most commonly the upper airway, can 
precipitate paradoxical hyper-inflammation with delayed 
but sustained release of type I IFNs down the stream and 
may be accompanied by unchecked upregulation of pro-
inflammatory cytokines that, in turn, mediate the deleteri-
ous pulmonary and systemic inflammation seen in severe 
and critical illnesses [73, 88, 96, 98, 102, 111, 114, 115].  
Consequently, the therapeutic values of exogenous IFN for-
mulations for COVID-19 are subject to the timing of admin-
istration. Available clinical trials found no added benefits 
of IFN beta-1a in hospitalized adults [116, 117], while out-
patients were protected from emergency department visits 
and hospital admissions with a dose of pegylated interferon 
lambda administered within 7 days of symptom onset [118]. 
Relevant pediatric data are scarce.

Raging hyper‑inflammation signifies severe 
COVID‑19

Dysregulated host inflammatory response gains pathogenic 
dominance over the viral burden itself with COVID-19 dis-
ease progression, as evidenced by otherwise no clear cor-
relation between viral load and disease severity, including 
in the pediatric population [119–121]. In severe/critical 
COVID-19, complex and intertwined concurrent immuno-
pathological proceedings (Fig. 3) ensue as a result of viral 
dissemination under the circumstances of waning innate 
immunity. AT2s, which are made susceptible due to the 
aforementioned dual ACE2/TMPRSS2 positivity, and other 
cells succumbing to viral invasion release PAMPs as well 
as danger-associated molecular patterns (DAMPs), which 
are hallmarks of cellular stress that elicit various forms of 
programmed cell death (RCD) [122, 123]. Inflammasomes 

are micrometer-level multiprotein signaling complexes that 
form in the cytoplasm via combining particular nucleotide-
binding and oligomerization domain(NOD)-like recep-
tors, a subtype of PRRs, with the respective adaptor mol-
ecules, secondary to priming and activation by PAMPs and  
DAMPs [124]. Inappropriate activation of inflammasomes 
has been demonstrated to play indispensable roles in link-
ing different compartments of immunity and orchestrating 
the hyper-inflammatory reaction to SARS-CoV-2, with the 
decisive endpoint being the caspase-mediated interleukin-1b 
and interleukin-18 release through cell membrane-spanning 
pores formed by gasdermin-D oligomerization [125–128] 
(Fig. 3). Markers of inflammasome activation were indeed 
found elevated proportionately to disease severity in the sera 
of critically ill COVID-19 patients [126]. Pyroptosis, a form 
of inflammatory caspase-dependent RCD evident in as many 
as 6% of the monocytes in the peripheral blood of COVID-
19 patients [129], is another well-recognized eventuality 
in the context of porous plasma membrane [130] leading 
to release of large intracellular molecules such as lactate 
dehydrogenase, which is pathognomonic for pyroptosis 
and a laboratory parameter of prognostic value in clinical  
practice [131, 132], as well as further outpouring of inflam-
matory cytokines and DAMPs, such as high mobility group 
box 1 [133]. The self-propagating vicious cycle of hyper-
inflammation and cell death is thus established and culmi-
nates in dire clinical consequences. Systemically, severe 
COVID-19 can elicit a cytokine profile somewhat similar 
to that of the cytokine storms secondary to other etiolo-
gies [134–136]. Synergism of cytokines such as TNF-α and 
IFN-γ [137] has been demonstrated to be capable of induc-
ing inflammatory cell death and thus may inflict tissue dam-
age directly to end-organs and perpetuate the vicious cycle.

Features of pediatric adaptive responses 
in COVID‑19

The traits of cellular and humoral immunity specific to 
children may become apparent when challenged with 
SARS-CoV-2. Mobilization of T and B cell pathways 
synchronized with the innate defense in the upper airway 
in children, thereby preventing severe disease develop-
ment from viral dissemination [138]. Lymphopenia is 
a much-feared consequence and indicator of poor prog-
nosis consistently seen in hospitalized, ICU-admitted, 
and non-surviving COVID-19 patients [139–141], 
albeit less common in children [15], that may be partly 
attributed to the plethora of pro-inflammatory cytokines 
[88, 142, 143]. Nevertheless, adults were found to have 
stronger  CD4+ and  CD8+ T cell responses in the acute 
infective phase, which were proposedly a compen-
sation for the inferior innate responses and, indeed, 
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Fig. 3  Hyperinflammation and immunothrombosis in severe 
COVID-19. Virus-related factors like the N protein and potassium 
efflux and calcium influx set off by envelope and ORF3a “viroporin” 
proteins, and host-related factors such as extracellular ATP, com-
plement C5a, ROS, and phagocytosis of antibody-opsonized viral 
particles into otherwise  ACE2− monocytes have all been proposed 
to trigger assembly of inflammasomes, most notably NLRP3, in 
myeloid-derived immune cells and pulmonary cells. Inflammasome 
activation recruits the caspase-1 canonically, which proteolytically 
potentiates pro-IL-1β and/or pro-IL-18 and concomitantly cleaves 
GSDMD into NT and CT fragments. GSDMD-NT oligomerization 
and translocation to plasma membrane create pores through which 
activated IL-1β and IL-18 can directly enter the extracellular space, 
mediating hyperinflammation, and simultaneously trigger pyroptosis, 
leading to LDH and HMGB1 release, among other pro-inflammatory 
DAMPs. Meanwhile, endothelial dysfunction in the hyperinflam-
matory milieu initiates immunothrombosis. Adhesion molecules are 
markers of activated endothelial cells over-expressed in COVID-19 
that exhibit strong anchoring effects on monocytes and neutrophils, 
the former of which reciprocate with active TFs that directly insti-
tute the extrinsic coagulation pathway. Conversely, neutrophils may 
be prompted by direct SARS-CoV-2 entry, SAR-CoV-2-induced 

ROS generation, complement activation, and/or a self-sustaining 
loop of IL-8 production to undergo NETosis, defined by the release 
of large extracellular web-like structures termed NETs, which 
may also be triggered by the inflammasome/GSDMD pathway in 
COVID-19. NETs consist of decondensed chromatin embellished 
with histones and proteins that act as a scaffold for erythrocyte and 
platelet settling and fibrin deposition, while its constituents exert a 
range of pro-thrombotic effects with varying mechanisms. Further-
more, circulating platelets adopt a hyperactive state in the context of 
SARS-CoV-2 infection. Platelets recruited in response to NETs and 
other stimuli such as vWF on the activated endothelial cells in turn 
amplify NETosis via secretion of chemokines such as PF4, and may 
induce further expression of TF by monocytes and complementarily 
augment monocytic secretion of inflammatory cytokines. N protein 
nucleocapsid protein, ORF3a open reading frame 3a, ATP adenosine 
triphosphate, ROS reactive oxygen species, NLRP3 NOD-like recep-
tor containing pyrin domain 3, IL-1β interleukin-1β, IL-18 interleu-
kin-18, GSDMD gasdermin-D, NT N-terminal, CT C-terminal, LDH 
lactate dehydrogenase, HMGB1 high mobility group box 1, DAMPs 
damage-associated molecular patterns, TF transcription factor, IL-8 
interleukin-8, NETs neutrophil extracellular traps, vWF von Wille-
brand Factor, PF4 platelet factor 4
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did not lead to favorable outcomes [98, 144, 145]. 
By the same token, some studies have shown that 
SARS-CoV-2 invokes a less vigorous antibody 
response in children that was restricted to S pro-
tein-specific IgG production, as opposed to anti-
S IgM, IgG, and IgA as well as antibody forma-
tion against other viral proteins in adults [146–148].  
Otherwise, there have been mixed results regarding the 
neutralizing activity of SARS-CoV-2-specific immuno-
globulins derived from children [144, 149, 150], although 
they are generally longer lasting than their adult counter-
parts, offering protection from re-infection for months and 
beyond [147, 149, 151, 152].

Devastating cross‑talk of the inflammatory 
and coagulation pathways

In the lungs, the highly inflammatory alveolar microen-
vironment is the harbinger of alveolar epithelial injury 
and dysfunction, supported by transcriptomic evidence 
of AT2 and AT1 exhaustion and demise in fatal COVID-
19 [153–155]. The resultant denudation of the alveolar 
basement membrane and exposure of the underlying 
endothelial cells to the detrimental cocktail of hypoxia, 
viral content, apoptotic and necrotic debris, immune cells, 
cytokines, and chemokines trigger their activation, trans-
formation to a leaky state due to cytoskeleton and intercel-
lular junction alterations [156], and potentially direct cell 
death that, in combination with the increased epithelial 
permeability, precipitates leukocyte extravasation and 
accumulation of the proteinaceous edema characteristic 
of ARDS [73, 157].

In the meantime, loss of the usual quiescent endothelial 
cell phenotype under the influence of cytokine overdrive 
ignites the sophisticated and incompletely understood inter-
play between the immune and hemostatic mediators in an 
attempt to limit the spread of the pathogen that ultimately 
leads to the micro- and macro-thrombus formation fre-
quently observed in severe/critical COVID-19 [158–161], 
as alveolar capillary microthrombi are found to be close to 
10 times as prevalent in patients who died of COVID as in 
those who died of ARDS following H1N1 influenza [162].  
The injurious positive feedback loop of immunothrombo-
sis, which may notably involve NETosis [163, 164] (Fig. 3), 
eventually gives rise to the formation of the pathogno-
monic alveolar hyaline membranes in ARDS [157, 165]. 
The fibrin-rich exudates may significantly compromise the 
alveolar-capillary interface for gas exchange, resulting in the 
profound refractory hypoxemia seen in respiratory failure 
secondary to severe/critical COVID-19 [73, 165].

Similarly, there are evidently increased incidences of 
pulmonary emboli [166, 167], thrombosis, and angiopathy 

of the microvasculature that may contribute to multi-organ 
failure [168, 169], and extrapulmonary arterial and venous 
thromboembolic phenomena in adults [170, 171], and to 
a lesser degree, in children and adolescents with COVID-
19, where nine (2.1%) of the 426 hospitalized pediatric 
patients with symptoms developed thrombotic events 
across seven children’s hospitals in the US [172]. There-
fore, thrombo-inflammatory markers such as D-dimer are 
the most common abnormal laboratory findings in adult 
and pediatric COVID-19 [173], and may be predictive of 
disease course [174, 175].

MIS‑C, a riddle unresolved

Since the emergence of SARS-CoV-2, surges in MIS-C 
cases appear to aggregate 3–6 weeks following peak inci-
dences of COVID-19 cases in a heavily affected locale and 
whose symptomology bears resemblance to but is distinct 
from Kawasaki disease (KD), toxic shock syndrome (TSS), 
and macrophage activation syndrome (MAS) [176–178] 
(Fig. 1). MIS-C may share clinical features of KD including 
sustained high fevers, conjunctivitis, diffuse non-vesicular 
erythematous rash, and dry and cracked lips, but clearly 
diverges from KD in that it (1) is more frequently reported 
in older children of non-Asian descent with an average age 
of 9 years, no apparent gender bias, and an overall mortality 
rate of 2%, and increased age may be associated with risks 
of ICU admissions [12, 13], which are required for up to 
65%–70% of all cases[179–181]; (2) has a markedly high 
rate of gastrointestinal (GI) tract (80%) and neurological 
involvement [11, 182], and cardiac manifestations as dis-
cussed but less likelihood of developing severe or persistent 
coronary artery aneurysms [10, 53, 55, 183, 184]; and (3) 
is notably associated with ferritinemia in severe disease and 
thrombocytopenia [185, 186].

Although there are commonalities of shock, multi-
organ failure, endothelial damage and coagulopathy, 
neutrophilia, lymphocytopenia, elevated inflammatory 
markers between severe/critical pediatric COVID-19 and 
MIS-C, the latter is less likely to have primary respira-
tory implications and mostly arise in otherwise healthy 
children and adolescents devoid of major pre-existing 
co-morbidities who have already seroconverted with 
IgG predominance at time of MIS-C diagnosis and mild 
to no symptoms on initial infection or exposure [187]. 
MIS-C also carries distinguishing cytokine signatures 
including enrichment of the type II interferon (IFN-γ) 
and the downstream effector molecules [115, 188–192]  
that may explain its homogeneous features with MAS. 
Admittedly, the immunological landscape of MIS-C appears 
rather complex and only partially defined, and there has not 
been a unifying pathophysiological blueprint to account for 
the manifold stigmata of MIS-C, but much progress has been 
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made in delineating the nuances in immunophenotypes that 
may shed light on their similarities and differences to other 
systemic inflammatory syndromes.

Given the overlaps between MIS-C with TSS, which has 
bacterial superantigens as the unequivocal trigger [193], and 
detection of SARS-CoV-2 in various organs on autopsy of 
patients who died of MIS-C [194], it is reasonable to hypoth-
esize that SARS-CoV-2 proteins may possess superantigenic 
properties that set off the hyper-inflammatory response in 
MIS-C, where computational analysis has indeed identified 
a sequence motif exclusive to SARS-CoV-2 S protein capa-
ble of T cell activation that shows striking structural simi-
larity to a segment of the staphylococcal enterotoxin B, the 
culprit responsible for TSS [195, 196]. The definitive reser-
voir of superantigens in MIS-C, however, has not yet been 
found, given the varied nasopharyngeal RT-PCR positivity 
status in MIS-C cases [197]. In accordance with the promi-
nent gastrointestinal complaints in MIS-C, persistence of 
SARS-CoV-2 in the GI tract [198, 199] and subsequently 
the compromise to the intestinal barrier integrity have been 
posited as a potential route of antigenic entry and dissemina-
tion, as evidenced by elevation of enterocyte damage [200]  
and intestinal permeability [201] and inflammation [202] mak-
ers in MIS-C children, although studies have yielded conflict-
ing results on whether antigenemia is present in most cases 
of MIS-C [115, 201, 203]. Moreover, numerous groups have 
unanimously demonstrated a phenomenon typical of superan-
tigenic stimulation where, similar to TSS, MIS-C is charac-
terized by extensive polyclonal proliferation of a specific T 
cell receptor (TCR) β-chain variable domain subset, namely 
TRBV11-2 in MIS-C [115, 200, 201, 204–207], and de-esca-
lation of the expansion appears to coincide with abatement in 
inflammatory cytokine levels and clinical improvement with 
therapy, especially after glucocorticoid administration [115, 
205], further supporting the potential roles of TRBV11-2-ex-
pressing T cells in pathogenesis. On the contrary, many stud-
ies have detected autoantibodies against endothelial, cardiac, 
gastrointestinal, and immune antigens [207–210] in MIS-C as 
the alternative pathogenic mediators that may provoke damage 
to the respective organ systems, although intravenous immu-
noglobulin therapies may be a confounding factor [115, 211].

In addition, several genetic predispositions have been 
identified for MIS-C including the specific combination of 
HLA class I alleles A02, B35, C04 that is associated with 
TRBV11-2 expansion [115, 204], albeit not supported by find-
ings of many groups [200, 205, 206] possibly due to differ-
ing ethnic compositions of the study populations, as well as 
flaws in down-regulators of inflammation such as an autosomal 
recessive defect in the OAS-Rnase L pathway, which normally 
disposes of the cytosolic dsRNA that can stimulate produc-
tion of pro-inflammatory cytokines [212], and nonsynonymous 
mutations in XIAP, CYBB and SOCS1 genes [213]. Ongoing 
immune profiling efforts are underway to advance mechanistic 

understanding of this perplexing disease entity, as with many 
other inflammatory conditions, through which more univer-
sally applicable insights may also be generated into the broader 
immune system as a whole.

Management, prognosis, and long‑term 
sequelae

Fortunately, COVID-19 in the vast majority of children 
is self-limiting and would not qualify for treatment other 
than supportive care and symptomatic management until 
spontaneous resolution, and although pediatric clinical 
trial data are lacking, the number needed to treat for thera-
peutic benefits is considered to be higher in children than 
in adults [214].

Several pharmacological agents are available to reduce 
the risk of progression to severe disease in vulnerable out-
patients, should the potential benefits be deemed to out-
weigh the risks. Paxlovid, a combination medication of 
nirmatrelvir and ritonavir available in oral formulations 
that can be conveniently taken in the outpatient setting, 
has been demonstrated in the cornerstone phase III trial 
involving 1219 adults at-risk for severe disease to have 
an astonishing 89% risk reduction in COVD-19-related 
hospitalizations or deaths if administered within 3 days of 
symptom onset [215]. Paxlovid appears still highly effec-
tive in the time of Omicron preeminence [216], but has 
only been authorized by the US Food and Drug Adminis-
tration (FDA) for use in children aged 12 years or older and 
weighing 40 kg or greater, and is limited by its extensive 
interactions with other medications due to ritonavir being 
a potent CYP3A inhibitor [217]. Alternatively, remdesivir 
represents the sole FDA-authorized agent for prevention 
of disease progression in the community setting for at-risk 
and mildly to moderately symptomatic children with at 
least 28 days of age and a weight of at least 3 kg, with the 
logistical caveat of requiring intravenous dosage delivery 
on 3 consecutive days [218]. In contrast, clinical decisions 
regarding inpatient management of severe COVID-19-re-
lated diseases in children are not infrequently extrapolated 
from adult guidelines and made on a case-by-case basis 
given the scarcity of large-scale randomized controlled tri-
als in the pediatric population from which evidence-based 
recommendations can be derived [16, 219, 220].

Despite the generally favorable outcomes even in the 
critically ill children [221], the full picture of the long-
term impacts of COVID-19 on pediatric health may not 
be readily apparent at this stage given the recency of the 
pandemic. The term long COVID, sometimes also referred 
to as post-acute sequelae of COVID-19, has been coined 
as the diagnosis of exclusion to encompass the constella-
tion of complaints after the acute stage of COVID-19 has 
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settled [222]. One or more persistent symptoms are reported 
in 16.2% of children for 3 months or greater post-infection 
as estimated by a recently published meta-analysis [223]. 
Some of the most commonly reported symptoms range 
from persistent sore throat, fever, dyspnea, anosmia/ageu-
sia, muscle weakness, and coughs to various vague and 
largely non-localizing neuropsychiatric troubles, includ-
ing fatigue, mood and sleep disturbances, and mental  
dysfunction [223–226], seemingly so heterogeneous that 
categorizations in clinical phenotypes of diverse pathogen-
esis for subgroup analysis may be advisable [227]. Children 
with less than 5 years of age, underlying comorbidities, 
or admission to ICU during the acute phase of disease are 
found to be especially susceptible [228], but symptomatic 
or asymptomatic non-hospitalized patients are not precluded 
from developing the condition [223]. Of note, among the 
several pathophysiological hypotheses that have been put 
forward for long COVID are viral persistence [229], auto-
immunity [230], endothelial dysfunction with microcircu-
lation thrombosis [231, 232], and immune dysregulation 
with potential reactivation of latent viral infections such as 
Epstein-Barr virus and herpesviruses given the shared fea-
tures with myalgic encephalomyelitis/chronic fatigue syn-
drome and dysautonomia including orthostatic intolerance 
and profound fatigue [233–235]. The rather limited under-
standing of long COVID at this point in time has prompted 
well-coordinated systematic research undertakings such as 
the RECOVER initiative to comprehensively delineate the 
disease, which notably has a branch of effort dedicated to 
children and young people [236].

Expert opinion and conclusions

Various measures can be implemented at different stages to 
minimize adverse outcomes associated with severe COVID-
19 in children. Vaccination proves to be effective in reducing 
severe disease development and should be administered as 
per protocol, if not contraindicated.

Red flags for deterioration should be recognized and 
attended to without delay, especially in children with pre-
disposing comorbidities. Management of severe disease 
should generally observe a holistic approach to account for 
the multi-system manifestations, where emphases are placed 
on airway and respiratory status optimization, hemodynamic 
support, modulation of the detrimental hyperinflammatory 
response, addressing the comorbid conditions and superin-
fections if any, and preservation of organ functions.

The contrasting susceptibilities and responses to SARS-
CoV-2 and the variations in the disease course are, to a 
great extent, an attestation of the monumental differ-
ences in the ways pediatric and adult immune systems are 

programmed to resist a highly immunogenic viral threat. 
In conjunction with protective antibodies with longer lifes-
pans and lower expression of SARS-CoV-2 entry factors, a 
swiftly induced T1IFN response of the optimal magnitude 
at the mucosal surface and upper airway serves as a pow-
erful protective barrier for children against viral spread, 
consequently mitigating the risk of severe COVID-19, 
which may see indiscriminate firing of various proinflam-
matory apparatuses such as inflammasomes and NETs. 
Further research on severe pediatric COVID-19 and rel-
evant conditions such as MIS-C and long COVID remains 
of scientific and clinical significance, as it offers a novel 
viewpoint for deciphering the age-specific characteristics 
of immunity. With ongoing intermittent outbreaks, clini-
cians must remain vigilant of the telltale signs of deterio-
ration, especially in those children at risk, and rational-
ize the use of therapeutic measures for the best outcome, 
although more pediatric-specific clinical trials are required 
before recommendations with high level of evidence can 
be made, as unsuspecting application of findings in adult 
studies to pediatric patients is a fundamentally unscientific 
practice that disregards the unique qualities of pediatric 
immunity and physiology. Additionally, rapidly evolving 
SARS-CoV-2 strains and the immunological memory that 
has formed along the way will only make it more difficult 
to interpret earlier studies. In more general terms, the col-
lective knowledge gained from the COVID-19 pandemic 
serves as a methodological construct for better understand-
ing of and responding to similar communicable diseases 
with heavy pediatric disease burdens, such as influenza and 
mycoplasma pneumonia, as well as existing and emerging 
pathogens with pandemic potential.
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