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Abstract
Background Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an 
increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored 
fetal lung growth for the risk of early-life respiratory infections and asthma.
Methods Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women 
participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-
onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or 
classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model 
development and validation, study participants were randomly divided into a training and a testing group, respectively, by 
the employed algorithm.
Results Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex 
was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma 
at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as 
well as the risk of early-onset asthma. The models’ R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high 
accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel 
predictors, such as ultrasound-monitored fetal lung growth.
Conclusion Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and 
asthma.
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Introduction

Respiratory diseases such as infections and allergic asthma 
are major causes of morbidity and mortality in neonates 
and children [1–3]. Acute respiratory tract infections, 
especially those involving the upper airways, are the most 
common illnesses in young children [4, 5]. Given that they 
are usually treated in outpatient settings, the exact inci-
dence of upper respiratory tract infections is often hard 
to determine, and most epidemiological studies provide 
information collected in hospital settings and thus refer 
to the typically more severe lower respiratory tract infec-
tions [6–8]. According to the Global Burden of Diseases, 
Injury and Risk Factors Study 2015, lower respiratory tract 
infections are the third leading cause of death in children 
younger than 5 years in 195 countries worldwide, resulting 
in 12.1% of deaths in this population [1]. Epidemiological 
data highlight the predominance of viruses in childhood 
respiratory tract infections. Specifically, 90% of upper 
respiratory tract infections are of viral origin, with the 
most common pathogens being rhino- and adenovirus [4]. 
Lower respiratory tract infections are attributed to viruses 
in approximately 50% of cases, with respiratory syncytial 
virus (RSV), adenovirus, metapneumovirus, influenza, and 
parainfluenza most frequently causing the disease [4, 9, 
10].

Similarly, asthma is the most common non-communi-
cable disease in children [11, 12], with an uprecedented 
worldwide incidence of nearly 22 million childhood 
cases in 2019 [13]. The burden of childhood asthma also 
becomes evident from the rate of morbidity and mortality, 
e.g., 12,900 children died from asthma, and 5.1 million 
disability-adjusted life years were associated with asthma 
in 2019 worldwide [13]. Epidemiological studies not 
only highlight the increasing incidence of these diseases 
worldwide but also demonstrate a considerable association 
between early-life infections and the increased risk of sub-
sequently developing childhood asthma [14–18].

Fetal and early-life lung development pave the way 
for lung function and pathology later in life. Lung devel-
opment is a delicate process consisting of distinct pre-, 
peri- and postnatal events that determine lung function 
throughout life [19]. An underdeveloped lung structure and 
function, e.g., seen in premature-born children, increases 
the risk for respiratory diseases, such as early-life infec-
tions and wheezing disorders during childhood [20, 21].

Despite these intriguing epidemiological and develop-
mental insights, studies monitoring features of fetal lung 
growth and its association with postnatal respiratory health 
are missing. To close this critical gap in knowledge, we 
took advantage of the availability of highly granular data 
from a prospectively designed observational pregnancy 

study, focusing mainly on uncomplicated pregnancies 
and term-born offspring. Here, fetal lung development 
could be evaluated using scans from serially acquired 
ultrasound examinations throughout gestation and subse-
quently linked to respiratory health or diseases recorded 
during infancy and childhood. In our study, we combined 
serial monitoring of fetal lung growth trajectories with a 
machine-learning approach and developed accurate models 
to identify children at risk for respiratory diseases.

Methods

Study design

The present work was conducted within the Prenatal Identi-
fication of Children’s Health (PRINCE) study. The PRINCE 
study is a prospective longitudinal pregnancy cohort located 
at the University Medical Center Hamburg-Eppendorf, 
which started in 2011 and focuses on the impact of prenatal 
challenges on children’s health. The inclusion criteria for 
pregnant women to enrol were an age ≥ 18 years and a viable 
singleton pregnancy of 12–14 weeks of gestation. Exclu-
sion criteria included chronic infections (human immuno-
deficiency virus, hepatitis B or C), known drug or alcohol 
abuse, multiple pregnancies or pregnancies resulting from 
assisted reproductive technology. Pregnancy progression, 
health status, medication, stress perception, and anthropo-
metric data of the mother were documented during study 
visits between 12 and 14, 24 and 26, and 34 and 36 weeks 
of gestation. Transabdominal ultrasound examinations were 
also performed at these study visits. At a gestational age of 
27–29 weeks, study participants were offered the opportu-
nity for an additional ultrasound assessment as part of their 
prenatal visit at our hospital to register for giving birth.

At birth, anthropometric indices of the newborn were 
obtained. At the age of twelve months (infancy), informa-
tion on the occurrence of upper and lower respiratory tract 
infections was obtained by standardized parental question-
naires and independently confirmed by the routine child-
hood screenings of the child’s pediatrician. Specifically, 
the documented infections were common cold, pneumonia, 
tonsillitis, bronchitis and croup. The health status of the chil-
dren was followed up annually between the ages of two and 
four years. At the age of five years, a study visit of the child 
was performed by a trained pediatrician (Fig. 1a). From the 
mother/child pairs that had participated in pre- and postna-
tal study visits of the study until the children’s age of five 
years by March 2021 (n = 195), prenatal and postnatal data-
sets were available for 177 mother/child pairs. From these, 
75% (n = 133) of the total available pairs were randomly 
selected by the employed algorithm and included in the 
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current analysis as a training group to develop (train) three 
models to predict the exact number and risk of respiratory 
infections in infancy as well as the risk for early-life asthma 
manifestation on the basis of the ultrasound-monitored fetal 
lung growth trajectory, while the remaining independent par-
ticipant group (n = 44; 25% of total pairs) served as a testing 
group to conclusively validate the predictive value of the 
developed models (Fig. 1b). Mother/child pairs included in 
either cohort are referred to as study participants throughout 
the manuscript.

Study approval

The study protocol of the PRINCE study was approved by 
the Ethics Committee of the Hamburg Chamber of Physi-
cians under the registration number PV3694 and performed 
in compliance with the Declaration of Helsinki for Medi-
cal Research involving Human Subjects. Informed con-
sent forms to participate in the study were signed by all 

participants (or their parent or legal guardian in the case of 
children under 16).

Ultrasound measurements

Ultrasound examinations and measurements were per-
formed using a Voluson E8 (General Electric; GE) 
equipped with a transabdominal 3–5  MHz transducer 
(RAB 6D, GE). Measurements were conducted by two 
trained clinicians with certified advanced ultrasound 
expertise. A routine standard sonographic study, includ-
ing fetal biometry and anomaly screening, was always 
included. Based on the study design, estimated fetal 
weight was calculated using the Warsof formula in the 
first trimester and the Hadlock IV formula at the other 
two time points [22, 23]. The lung area was calculated 
by subtracting the heart area from the thorax at the four-
chamber level and averaging three replicate values at each 
time point [24]. Ultrasound examinations that precluded 

Fig. 1  Using ultrasound to monitor the progress of fetal lung growth. 
a Graphical presentation of the study timeline; b flow chart of the 
study participants in the training and testing groups; c fetal ultrasound 
pictures at the four-chamber view of the fetal heart acquired in gesta-

tional weeks (GW) 12–14, 24–26, and 34–36 (in red the thoracic and 
cardiac areas); d graph showing the lung growth index (gray area); e 
fetal lung growth trajectories for boys and girls (the thick line repre-
sents the mean trajectory for each group)
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fetal lung measurements due to fetal position or fetal 
movements affected approximately 11% of all cases and 
were excluded.

Infection and asthma risk classification

Based on the number of respiratory infections in infancy, 
two groups with distinct infection risks could be identified. 
Specifically, children who exhibited five or fewer respiratory 
infections in the first year of life were identified as being at 
low infection risk, whereas a high risk for infection char-
acterized children with a history of at least six respiratory 
infections in infancy [25]. The classification of the risk for 
early-onset asthma was based on clinical information and 
examination performed by a pediatrician at the age of five 
years. In addition to the clinical examination, the physician 
employed standardized clinical information and criteria that 
have been developed and universally applied by several popu-
lation-based birth cohort studies focusing on asthma and have 
been validated in the International Study of Asthma and Aller-
gies in Childhood project worldwide [26, 27]. Specifically, 
the current existence of an asthmatic phenotype was affirma-
tive upon fulfilment of two out of the three following crite-
ria: (1) pre-existing asthma diagnosis by a physician; (2) any 
asthma-related symptom within the last 12 months, including 
wheezing, dry cough at night and shortness of breath; and (3) 
use of asthma medication within the last 12 months [27]. As 
a complementary approach, a second classification system 
based on guidelines that have been established and validated 
by German health authorities with the special aim of iden-
tifying two- to five-year-old children with early signs of an 
asthmatic predisposition was also used [28]. Specifically, a 
high risk for early-onset asthma development was present in 
children who exhibited three asthma-typical episodes in the 
last 12 months that responded well to asthma medication and 
satisfied at least one of the following criteria: (1) existence of 
a parent or sibling suffering from asthma; (2) hospitalization 
due to obstructive respiratory symptoms; (3) clinical evidence 
of sensitization; and (4) wheezing without an underlying res-
piratory infection. Children with a positive scoring outcome 
in either one scoring approach were considered to be at high 
risk for early-onset asthma development.

Statistical analysis

General statistics

Study sample characteristics, including demographics and 
ultrasound parameters, are presented as the mean ± stand-
ard deviation. Comparison of the maternal and neonatal 
demographic parameters between the training and testing 
cohorts was performed by using the Chi-squared test or the 
Mann‒Whitney U test with a significance level of P < 0.05. 

Comparison of the number of infections per child between 
sexes was performed using the Mann‒Whitney U test. The 
data shown represent the mean ± standard error of the mean. 
The respective analysis was conducted, and plots were cre-
ated with GraphPad Prism, version 8.0 (GraphPad Software, 
Inc., La Jolla, California), R version 4.1.2 and Python script-
ing language version 3.8.

Missing fetal lung growth values and design of the fetal 
lung growth trajectory

To design the trajectory of fetal lung growth covering the 
entire prenatal period of interest for all male and female 
fetuses, values for common standardized time points, 
namely, gestational weeks 12, 23, 28 and 35, for all children 
were needed. For this reason, missing values for any stand-
ardized time points, e.g., ultrasound examination conditions 
that did not allow fetal lung area assessment (as mentioned 
above), were imputed using Poisson regression based on 
the available fetal lung area measurements for each fetus. 
The imputed data and related fetal lung growth trajectories 
were used for the calculation of the area under the curve by 
applying the linear trapezoidal rule [29]. The estimated area 
under the curve was subsequently used as a representative 
summarizing indicator for each child’s fetal lung growth tra-
jectory for further prediction analysis and risk assessment 
and is referred to as the “lung growth index” throughout the 
manuscript.

Regression analysis

A Poisson regression model with log as the link function 
was used to analyze the influence of fetal growth and fetal 
lung growth index, maternal age at birth, maternal smok-
ing during pregnancy, maternal body mass index (BMI) in 
the first trimester, mean maternal stress perception during 
pregnancy, gestational age and weight of the offspring at 
birth, child sex, and the presence of older siblings on the 
number of respiratory infections during the first year of life 
[30]. This model was further adjusted by using the natural 
logarithm of the time interval in gestational weeks between 
the minimum and the maximum available fetal lung growth 
value for each child as an offset.

Machine learning approach to predict the number 
of respiratory infections in infants

To predict the total number of respiratory infections in the 
first year of life (model I), machine learning modeling was 
used. The lung growth index during pregnancy, gestational 
age and weight of the offspring at birth, child sex, maternal 
first trimester BMI, and age at birth were the included input 
data features. Four types of regression algorithms, namely, 
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K-nearest neighbors regressor (KNNR) [31], random forest 
regressor (RFR) [32], gradient boosting regressor (GBR) 
[33], and extreme gradient boosting regressor (XGBR) [34], 
were implemented to determine the optimal strategy and pre-
diction model. All regressor models were evaluated on our 
dataset using tenfold cross validation, based on the follow-
ing metrics [35]: (1) R-squared (R2), the correlation coef-
ficient representing how well the model fits, i.e., the closer 
this value is to 1, the more perfectly the model performs; (2) 
mean squared error, demonstrating the difference between 
the actual observations and the observation values predicted 
by the model; (3) root mean squared error, measuring the 
average difference between predicted by the model and actual 
values; and (4) mean absolute error (MAE), the absolute dif-
ference between the actual value and the one predicted by 
the model, i.e., the lower the MAE, the better the model. To 
determine the impact of each input feature on the prediction, 
Shapley additive explanations (SHAP) values were used [36].

Machine learning approach to predict the risk 
for respiratory infections in infancy or asthma 
manifestation in early childhood

Machine learning approaches were again employed to 
develop an additional model predicting the risk (low or 
high) for respiratory infections in infancy (model II) and 
a third model predicting the risk for early-onset child-
hood asthma development (model III). Similar to model I 
mentioned above, the input data features included the lung 
growth index during pregnancy, gestational age and weight 
of the offspring at birth, child sex, maternal first trimester 
BMI, and age at birth. In this case, and due to our experi-
ence with the abovementioned modeling strategy, the algo-
rithm that we used for prediction was the XGBC [34]. The 
confusion matrix, accuracy, precision, recall (also known as 
true positive rate or sensitivity), f1 score, and the receiver 
operating characteristic (ROC) curve along with the area 
under the ROC curve were used to evaluate the diagnostic 
performance of each model [37, 38].

Results

Study participant demographics and characteristics

The demographics and characteristics of the study partici-
pants included in the training and testing groups are shown 
in Table 1. Apart from parity, no significant differences were 
present between the training and testing groups with regard 
to demographic, anthropometric, and educational param-
eters in mothers or neonates [39]. This includes parameters 
such as advanced maternal age (≥ 35 years) [40] and grand 
multiparity (≥ 5 pregnancies resulting in viable offspring) 

[41] in the training and testing groups. According to the 
exclusion criteria described earlier, multiple pregnancies or 
pregnancies resulting from assisted reproductive technol-
ogy were excluded from the study. Among the 177 children 
included in the training and testing groups, one child was 
diagnosed with intrauterine growth restriction (IUGR). In 
this child, the lung growth was indeed below average (data 
not shown), as expected, but exclusion did not affect the 
overall outcome, and it was thus included in the study. Along 
this line, we wish to highlight that our aim was to predict 
the risk for childhood infection and asthma based on lung 
growth, rather than focusing on such risk in distinct sub-
groups, such as children born upon pregnancy complications 
or IUGR. Fetal ultrasound assessment and lung area meas-
urement were performed at three main time points during 
pregnancy (Fig. 1c). To assess the quality and accuracy of 
the obtained lung ultrasound measurements, the intraclass 
correlation coefficient (“one-way” model; “agreement” type) 
was calculated in samples of the training group and revealed 
excellent agreement for ultrasound assessments at all time 
points of interest between two independent blinded observ-
ers (Supplementary Fig. 1a). Mean ultrasound parameters 
throughout pregnancy for the training and testing groups 
are shown in Supplementary Tables 1 and 2, respectively. 
To design the fetal lung growth trajectory throughout preg-
nancy based on standardized time points, data imputation 
was performed. Importantly, the calculation of Pearson’s 
correlation coefficient showed excellent agreement between 
the actual and predicted values for the fetal lung area (Sup-
plementary Fig. 1b). Subsequently, fetal lung growth trajec-
tories were designed, and their progress was quantified based 
on the estimated area under the curve, here referred to as 
the lung growth index (Fig. 1d and e). To exclude potential 
aberrations in fetal growth, trajectories depicting the fetal 
growth course were also designed based on the estimated 
fetal weight at the three main time points. In this case, the 
estimated area under the curve served as an indicator of fetal 
growth throughout pregnancy (Supplementary Fig. 1c).

Respiratory infections in infancy and asthma 
manifestation in childhood

During the first year, the common cold was the most frequent 
respiratory infection in both boys and girls (Fig. 2a; Supple-
mentary Tables 3 and 4). Among the 133 children included 
in the training group, five (3.76%) children exhibited no res-
piratory infections in the first year of life, while the majority 
(24%) of children suffered from three respiratory infections 
during this time. In general, most children were classified 
as being at low infection risk, while the minority exhibited 
more than six respiratory infections and were characterized 
by a high infection risk. The highest documented number 
of respiratory infections until the first birthday was twelve 
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(Fig. 2b). Although the total number of infections did not 
differ between boys and girls, the mean number of infections 
in boys was significantly higher than that in girls (Fig. 2c). 
Notably, testing for specific pathogens causing a respiratory 
infection is not routinely performed in our country (and many 
other countries), unless the course of the infection is very 
severe and the clinical symptoms require additional attention, 
such as hospitalization. Hence, among the total number of 
children included in the training and testing groups (n = 177), 
polymerase chain reaction-based testing of the pathogen 
causing the respiratory infection was available only in five 
children, four of which tested positive for RSV infection 
and one child for influenza A virus. Regarding early-onset 
asthma, a positive asthma risk classification was identified 
in 12.23% of all participating children at the age of 5 years, 
based on at least one of the applied scoring systems, with 
boys and girls being similarly affected (Fig. 2d).

Fetal lung growth as a predictor for early‑life 
respiratory morbidities

Using a Poisson regression model, we next aimed to identify 
risk predictors for respiratory infections in infancy. Among 
all examined factors, fetal lung growth, here evident as the 

lung growth index, as well as the sex of the offspring were 
found to significantly affect the risk for early-life respiratory 
infections. Importantly, an enhanced progress of fetal lung 
growth, specifically a one-point increase in the lung growth 
index, would result in a decrease in the respiratory infec-
tion risk ratio by a factor of 0.78, while holding all other 
variables in the model constant (Fig. 2e; Table 2). Addition-
ally, male sex was identified as an independent risk factor 
for early-life respiratory infections if all other parameters 
in the model were constant (Table 2), meaning also that, 
among children with a similar lung growth index, boys are 
at higher risk for suffering from frequent respiratory infec-
tions in infancy.

Using machine learning to predict susceptibility 
to respiratory infections in infancy

After identifying fetal lung growth as a pivotal predictor for 
the early-life risk for respiratory infections, we next used 
machine learning to design a prediction model allowing 
for early recognition of susceptible individuals (model I). 
Apart from ultrasound-monitored fetal lung growth during 
pregnancy, the abovementioned confounding factors were 
again included. To predict the exact number of respiratory 

Table 1  Characteristics of the training and testing groups as well as the entire study cohort (N = 660) [75]

BMI body mass index, GW gestational weeks, GA gestational age, SD standard deviation.  aAdvanced maternal age (≥ 35 years) characterized 
29% and 30% of the mothers included in the training and testing groups, respectively; bin total, one out of the 177 (0.6%) mothers included in the 
study was grand multipara. *Comparison between the training and testing groups, independent of sex, was performed by using the Chi-squared 
or the Mann–Whitney U test, as appropriate, with a significant level at P < 0.05

Variables Training group (n = 133) Testing group (n = 44) P* Entire cohort

Boys (n = 64) Girls (n = 69) Boys (n = 25) Girls (n = 19)

Maternal parameters
 Age at birth (y), mean ±  SDa 32.4 ± 3.4 32.6 ± 4.1 32.6 ± 4.0 33.6 ± 3.9 0.704 31.9 ± 3.7
 Parity, mean ±  SDb 1.3 ± 0.5 1.5 ± 0.7 1.6 ± 0.6 1.6 ± 0.7 0.010 1.7 ± 1.0
 First trimester BMI (kg/m2), 

mean ± SD
24.1 ± 3.5 24.0 ± 3.6 25.1 ± 5.0 25.7 ± 5.1 0.301 24.2 ± 4.0

 Underweight (< 18.5 kg/m2), % 0.0 2.9 0.0 0.0 1.6
 Normal weight (18.5–24.9 kg/

m2), %
64.1 63.8 72.0 57.9 66.5

 Overweight (≥ 25 kg/m2), % 35.9 33.3 28.0 42.1 31.9
 Educational level, % 0.433
  School attendance ≤ 10 y 24.6 19.1 32.0 26.3 22.2
  School attendance 10–13 y 27.9 35.3 28.0 42.1 27.9
  University degree 47.5 45.6 40.0 31.6 47.1

Neonatal parameters
 GW, mean ± SD 39.1 ± 1.2 38.8 ± 1.6 39.3 ± 1.2 39.0 ± 1.4 0.787 39.0 ± 1.6
 Preterm (GA < 37 wk), % 1.6 8.7 0.0 0.0 0.197 5.5
 Birth weight (g), mean ± SD 3499.4 ± 536.4 3412.3 ± 516.5 3648.6 ± 446.7 3393.8 ± 513.4 0.349 3472.2 ± 480.7
 Height at birth (cm), mean ± SD 52.1 ± 2.2 51.6 ± 2.3 52.4 ± 2.2 51.1 ± 2.7 0.921 51.9 ± 2.4
 Sex, % 48.1  51.9 56.8 43.2 0.385 51.4 (males)/48.6 

(females) 
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Fig. 2  Respiratory infections in infancy and risk for asthma early 
in childhood. a Documented respiratory infections and their preva-
lence in boys and girls of the training group; b infection count in 
infancy expressed as a percentage of all boys, girls and all children 
in the training group; c respiratory infections per child; d risk for 

asthma in boys and girls of the training group; e graphic depiction 
of the Poisson regression model showing the impact of fetal lung 
growth on the risk for respiratory infections (bars represent the 
mean ± standard error of mean). *P ≤ 0.05 as assessed by Mann‒
Whitney U test

Table 2  Impact of prenatal and postnatal parameters on the risk for early-life respiratory infections as calculated using a Poisson regression model

CI confidence interval, BMI body mass index, PSS-10 perceived stress scale-10

Predictors Total infection count

Risk ratio 95% Cl P

Intercept 0.43 0.02–10.4 0.610
Lung growth index  (mm2) 0.73 0.66–0.81 < 0.001
Fetal growth (kg) 1.26 0.86–1.88 0.241
Maternal age 1.00 0.97–1.02 0.777
Maternal smoking (yes) 1.09 0.77–1.54 0.630
Maternal first trimester BMI (kg/m2) 1.01 0.99–1.04 0.293
Maternal stress perception (mean PSS-10) 1.01 1.00–1.03 0.321
Gestational age at birth (wk) 0.95 0.87–1.03 0.223
Birth weight (kg) 1.00 0.99–1.00 0.080
Sex (male) 1.36 1.14–1.64 0.001
Older siblings (yes) 1.06 0.88–1.06 0.533
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infections in infancy, we used the KNNR, RFR, GBR and 
XGBR algorithms to develop models based on the train-
ing group (Supplementary Fig. 2). To conclusively validate 
the performance of the developed models, a prediction of 
the number of respiratory infections within the independ-
ent testing group was subsequently performed. XGBR was 
identified as the most accurate model (R2 = 0.92) (Table 3; 
Fig. 3a and b), while RFR, GBR and KNNR showed an aver-
age score of approximately 0.67 (Table 3; Supplementary 
Figs. 2 and 3). XGBR was also characterized by low error 
values. The lung growth index also had the highest absolute 
SHAP value of all input data features and was thus identi-
fied as the most important predictor for the selected XGBR 
model (Fig. 3c). Importantly, based on the generated SHAP 
dot plot charts, male sex (here in red) was associated with a 
higher number of early-life respiratory infections (Fig. 3c).

As a next step, we developed a second independent pre-
diction model with the ability to pinpoint children with a low 
or high risk for respiratory infections in infancy as early as 
birth (model II). Specifically, we again employed a machine 
learning approach for binary logistic regression based on the 
XGBC algorithm and the same training and testing groups 
(Fig. 4a). The XGBC achieved an accuracy of 0.90, a preci-
sion of 0.92, a recall of 0.90, and a f1-score of 0.91, with an 
area of the ROC curve of 0.91 (Fig. 4b and c). In this case, 
the most important predictors for the designed XGBC model 
were the child’s sex and the lung growth index, which had 
the highest absolute SHAP values of all input parameters 
(Fig. 4d). Similar to model I predicting the exact number 
of respiratory infections, male sex was again identified as a 
key predictor for a high infection risk in infancy (Fig. 4d).

Using machine learning to predict the risk 
for early‑onset childhood asthma

To identify young children at high risk for early-onset 
asthma development, the XGBC algorithm for logistic 
regression as well as our training and testing groups were 
again used, and model III was developed (Fig. 5a). After 
training on our dataset, XGBC model was able to predict 
the risk for asthma and underwent evaluation based on its 

performance on our testing cohort. Specifically, the XGBC 
was characterized by an accuracy of 0.93, a precision of 
0.94, a recall of 0.93, and a f1-score of 0.93, with an area of 
the ROC curve of 0.93 (Fig. 5b and c). As seen in the case 
of respiratory infections, the lung growth index exhibited the 
highest absolute SHAP value and was again identified as the 
strongest contributing factor to the predictive performance 
of the model. However, based on the SHAP dot plot charts 
(Fig. 5d), the lung growth index alone was not associated 
with a higher or lower asthma risk but could facilitate pre-
diction as part of the whole developed model. Apart from the 
lung growth index, maternal age also highly contributed to 
the prediction performance of the model (Fig. 5d). Of note, 
based on the SHAP dot plot charts, younger maternal age 
at birth was linked with a higher risk for early-onset asthma 
manifestation in the offspring (Fig. 5d).

Discussion

Here, we identified fetal lung growth as a significant predic-
tor of the risk for early-life respiratory infections and early-
onset childhood asthma. Using machine learning, we devel-
oped models I and II, which allow for the accurate prediction 
of the risk and number, respectively, of respiratory infections 
early in life. Similarly, model III was also developed to iden-
tify children at high risk for early-onset asthma.

These prediction models are of high clinical relevance. 
Fetal lung development paves the way for healthy lung func-
tion but also lung pathologies later in life. The delicate tra-
jectory of lung development can be easily disrupted, e.g., 
by prenatal adversities. A wealth of evidence underpins that 
prenatal exposure to environmental factors, including high 
levels of maternal psychological stress, smoking, and infec-
tions, may interfere with fetal lung development and sub-
sequently increase the risk for respiratory morbidities later 
in life [42–45]. Indeed, the increased risk for early-life res-
piratory infections, wheezing disorders, or asthma in child-
hood could be associated with an abnormally developed lung 
structure and function [20, 21, 46, 47]. The clinical evidence 
of this association becomes evident from the increasing 
incidence of these pulmonary diseases faced by our society. 
Early-life infections and childhood asthma are risk factors 
for chronic obstructive pulmonary disease (COPD) later in 
life, which will perpetuate such a burden [48, 49]. Since it is 
known that fetal lung growth and development shape post-
natal respiratory health and disease [46, 47, 50], our find-
ings will now facilitate the identification of the underlying 
pathogenesis [21, 47, 51]. In fact, the key mechanistic trig-
ger of airway diseases is, in most cases, dysfunction of the 
respiratory epithelial barrier, as shown in preclinical mod-
els or via lung biopsies in humans [47, 52–54]. Although 
imaging technologies such as ultrasound are still restricted 

Table 3  Performance of the machine learning regression models that 
were developed for infection number prediction

MSE mean squared error, RMSE root mean squared error, MAE mean 
absolute error

Model R2 MSE RMSE MAE

Extreme gradient boosting regressor 0.92 7.71 2.87 2.21
Gradient boosting 0.72 8.69 2.94 2.15
K-nearest neighbors 0.62 8.42 2.90 2.27
Random forest regressor 0.67 8.64 2.93 2.34
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in providing insights into such disrupted epithelial defense 
barriers, the fetal lung growth trajectories we evaluated here 
may serve as a proxy for potentially underlying pathologies 
and developmental deficits.

Our current findings close a pivotal gap in knowledge, 
as non-invasive methods for serial fetal lung growth assess-
ment during pregnancy were missing. To date, fetal lung 

maturation could only be evaluated at a specific gestational 
time point using invasive amniocentesis to test for mark-
ers, such as lecithin and sphingomyelin [55, 56], or a gen-
eralized, comparative assessment of lung, liver or placental 
parenchyma development [57]. However, these methods 
are not fully suitable to serially monitor fetal lung growth 
throughout pregnancy due to their invasiveness or lack of 

Fig. 3  Prediction of the number of respiratory infections in infancy 
using the extreme gradient boosting regressor (XGBR) machine 
learning regression model (model I). a Outline of the proposed 
XGBR-based approach; b XGBR-model-predicted and actual distri-
bution of the infection count, expressed as a percentage of children in 
the testing group; c graphic depiction of feature impact on prediction 
based on Shapley additive explanation (SHAP) values. Global fea-
ture importance evidenced by the mean absolute SHAP value (left). 

SHAP summary plot of each feature included in the prediction model 
(right). Each dot indicates the SHAP value (X-axis) of the feature for 
the number of infections of a certain child. The SHAP value of each 
feature depicts its contribution to the number of respiratory infec-
tions, with positive SHAP values linked to higher and negative SHAP 
values linked to a lower infection number. The color of each dot indi-
cates the actual feature value, with higher values in red and lower val-
ues in blue. BMI body mass index
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specificity. Notably, quantitative texture analysis of fetal lung 
ultrasound pictures has recently been proposed to provide a 
glimpse into fetal lung maturity. However, this approach is 
solely based on a single time point and only provides risk 
estimation for respiratory distress syndrome immediately 
after birth [58, 59]. Thus, our model now advances such 
first attempts, as we integrate not only three fetal time points 
but also two childhood disease entities.

Not surprisingly, male sex was independently associated 
with an increased risk for early-life respiratory infections in 
our study, as also described in a number of other studies [45, 
60], which can be attributed to sex-specific immune as well 
as anatomic differences of the respiratory tract [45]. Of note, 
functional sex-specific differences in fetal lung maturation 
and especially perinatal lung transition with timely and suffi-
cient surfactant production account for the increased risk for 

Fig. 4  Prediction of low or high risk for respiratory infections in 
infancy using the extreme gradient boosting classifier (XGBC) pre-
diction model (model II). a Outline of the proposed XGBC-based 
approach for infection risk prediction; b confusion matrix; c respective 
ROC curve (blue); d global feature importance evidenced as the mean 

absolute Shapley additive explanation (SHAP) value (left) and SHAP 
summary plot of each feature included in the XGBC prediction model 
(right). Positive SHAP values are associated with an increased, and 
negative values are associated with a decreased infection risk. In red 
higher and in blue lower values. BMI body mass index
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pulmonary complications in term and preterm male infants, 
the so-called “male disadvantage” [61, 62]. In our study, no 
sex-specific differences in the fetal lung trajectories could 
be detected, a finding that does not rule out an underlying 
functional and molecular sexual dimorphism that cannot be 
captured by ultrasound.

Epidemiological studies highlight an association between 
IUGR, preterm birth or low birth weight with an increased 
risk for respiratory diseases such as early-life respiratory 
infections and asthma in childhood [63]. Interestingly, no 
significant impact of fetal growth, gestational age or weight 

at birth on the early-life risk for respiratory infections or 
asthma was found here. This observation may be attributed 
to the homogenously low-risk character of the cohort, since 
included pregnancies lacked complications, in the vast major-
ity resulted in term deliveries, while only one was associated 
with IUGR. Of note, since our aim was to develop universally 
applicable prenatal prediction approaches for the postnatal 
risk for respiratory diseases, pregnancies resulting in preterm 
birth were not excluded from the study. Similarly, maternal 
smoking or increased stress perception during pregnancy 
were not considered exclusion criteria but were taken into 

Fig. 5  Prediction of the risk for asthma in early childhood using 
the extreme gradient boosting classifier (XGBC) prediction model 
(model lll). a Outline of the proposed XGBC-based approach for 
asthma risk prediction; b confusion matrix; c respective ROC curve 

(blue); d global feature importance evidenced as the mean absolute 
Shapley additive explanation (SHAP) value (left) and SHAP sum-
mary plot of each feature included in the XGBC prediction model 
(right). BMI body mass index
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account in our analysis. No correlation among fetal lung vol-
ume, early-life respiratory infections and risk for childhood 
asthma could be identified in our setting. This finding may 
be due to the relatively small sample size and the inclusion 
of all respiratory infections, regardless of their severity, in 
the current work compared to previous observational studies, 
which mostly take severe infections into account [17, 64, 65]. 
In agreement with previously published evidence [66–68], 
we could also demonstrate that maternal age independently 
influences the risk for asthma development in early childhood. 
Specifically, increasing maternal age could be linked with a 
lower risk for early-onset asthma. Indeed, several population-
based studies have identified younger maternal age as a risk 
factor for childhood asthma and associated maternal aging 
with improved lung function and a lower risk for asthma 
manifestation in offspring [66, 67].

The finding of a birth weight- and gestational age-inde-
pendent association of the fetal lung growth trajectory with 
the risk for respiratory immune diseases in early childhood 
strengthens its importance as a predictor and determinant of 
postnatal health and highlights the urgent need to unravel the 
external and internal factors that may disrupt the develop-
mental process. Such challenges may include, among others, 
increased maternal stress perception, smoking, inflamma-
tion and medication [69, 70]. Future studies focusing on the 
impact of prenatal adversities on human fetal lung growth 
are needed.

Using the state-of-the-art approach of machine learn-
ing, we were able to foresee critical health burdens of the 
offspring long before their manifestation. Specifically, we 
developed three novel highly accurate models, with model 
I predicting the exact number of early-life respiratory infec-
tions, model II predicting the risk of early-life respiratory 
infections, and model III predicting the risk of early-onset 
childhood asthma, mainly based on the lung growth index 
as the most potent predictor. The number of infections is a 
continuous outcome variable (numerical value). Its predic-
tion constitutes a regression predictive modeling problem; 
therefore, XGBR was used. On the other hand, the predic-
tion of low or high infection risk and asthma or no asthma 
(binary values) is a categorical problem between the two 
classes and thus a binary classification problem. Therefore, 
XGBC was applied in these cases. Model development was 
based on a training and a testing group with similar maternal 
and neonatal characteristics, as well as the number of chil-
dren with a positive asthma risk classification. Although the 
distribution of infections differed between the two groups, 
our model could perform excellently in predicting the infec-
tion risk in the testing cohort, an observation suggesting that 
it can be applied universally. Importantly, both the training 
and testing groups were low-risk, mostly lacking pregnancy-
associated complications or other factors with a known link 
with an increased infection or asthma risk [71, 72]. Thus, 

we here acknowledge the respiratory health risk of children 
mostly resulting from healthy pregnancies and identify poor 
fetal lung growth as an independent risk factor in this con-
text. If implemented in clinical practice, such models would 
allow for timely recognition of offspring prone to respira-
tory immune diseases, thereby justifying the close moni-
toring and follow-up of these children’s health as well as 
early application of personalized prevention strategies, such 
as vaccination regimens and immunoboosting approaches. 
Avoidance of respiratory pathologies in this time period of 
continuous postnatal development and increased sensitivity 
may have long-term benefits for the respiratory health of 
the individual, including a reduced hospitalization need and 
lower risk for COPD in adulthood [73, 74].

Our study has some limitations. To address the chal-
lenge of missing information, especially in the lower and 
upper limits, due to missed visits during pregnancy in some 
cases, we performed data imputation. Importantly, excellent 
agreement was shown between actual and predicted fetal 
lung area values for all time points of interest throughout 
pregnancy. Additionally, it is quite easy to overfit the regres-
sion model, and for this reason, we selected a representative 
number of input parameters for the XGBR model. SHAP 
values provided more transparency through the report of a 
list of features with high influence on the outcome. Finally, 
as a single-center study, the models developed here require 
external validation in further studies.

In summary, we identified fetal lung growth as an impor-
tant predictor for poor postnatal respiratory health. Using 
machine learning, we could recognize children prone to 
infection or asthma manifestation early based on a serial 
sonographic assessment of fetal lung growth during preg-
nancy. All additional input factors are easy to access, which 
means that these models could be applied in most hospi-
tals. Overall, these models combined with fetal ultrasound 
may hold the potential to not only improve neonatal, infant 
and children’s health but also facilitate disease prevention 
later in life. Lung area measurement during routinely per-
formed ultrasound examinations in pregnancy would allow 
the calculation of the lung growth index, which could then 
be used for risk estimation by the models developed here. 
Such a prenatal non-invasive assessment could pave the way 
for developing similar algorithms [75] predicting long-term 
health risks based on prenatal life and thus fundamentally 
change risk assessment for children’s health.
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