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Abstract
Background Pediatric sepsis is a complicated condition characterized by life-threatening organ failure resulting from a dys-
regulated host response to infection in children. It is associated with high rates of morbidity and mortality, and rapid detec-
tion and administration of antimicrobials have been emphasized. The objective of this study was to evaluate the diagnostic 
biomarkers of pediatric sepsis and the function of immune cell infiltration in the development of this illness.
Methods Three gene expression datasets were available from the Gene Expression Omnibus collection. First, the differen-
tially expressed genes (DEGs) were found with the use of the R program, and then gene set enrichment analysis was carried 
out. Subsequently, the DEGs were combined with the major module genes chosen using the weighted gene co-expression 
network. The hub genes were identified by the use of three machine-learning algorithms: random forest, support vector 
machine-recursive feature elimination, and least absolute shrinkage and selection operator. The receiver operating char-
acteristic curve and nomogram model were used to verify the discrimination and efficacy of the hub genes. In addition, 
the inflammatory and immune status of pediatric sepsis was assessed using cell-type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT). The relationship between the diagnostic markers and infiltrating immune cells 
was further studied.
Results Overall, after overlapping key module genes and DEGs, we detected 402 overlapping genes. As pediatric sepsis 
diagnostic indicators, CYSTM1 (AUC = 0.988), MMP8 (AUC = 0.973), and CD177 (AUC = 0.986) were investigated and 
demonstrated statistically significant differences (P < 0.05) and diagnostic efficacy in the validation set. As indicated by the 
immune cell infiltration analysis, multiple immune cells may be involved in the development of pediatric sepsis. Addition-
ally, all diagnostic characteristics may correlate with immune cells to varying degrees.
Conclusions The candidate hub genes (CD177, CYSTM1, and MMP8) were identified, and the nomogram was constructed 
for pediatric sepsis diagnosis. Our study could provide potential peripheral blood diagnostic candidate genes for pediatric 
sepsis patients.
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Introduction

Sepsis, a potentially fatal illness, is a significant public 
health concern because of its association with an aberrant 
immune response to infections and severe organ failure 
[1]. There are an estimated 22 instances of pediatric sepsis 
per 100,000 person-years and 2202 cases of neonatal sep-
sis per 100,000 live births worldwide, totaling 1.2 million 
cases of pediatric sepsis annually [2]. Additionally, the 
case-fatality rate for pediatric sepsis following diagnosis 
is expected to be 25% [3]. Most children who die from 
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sepsis have refractory shock and/or multiple organ dys-
function syndrome, and many die during the first 48–72 h 
of treatment [4, 5]. To maximize outcomes for children 
with sepsis, early detection, adequate resuscitation, and 
care are crucial.

There are accumulating evidences that the systemic 
immune response plays a crucial role in the etiology and 
progression of sepsis [6–8]. Early in sepsis, the immune 
response is primarily proinflammatory and helpful in 
eliminating pathogens [9]. Suppression of the immune 
response, as seen by a decrease in the function and num-
ber of immune cells, is a primary hallmark of progressive 
sepsis [10]. A weakened immune system in the host may 
also be intimately associated with the poor prognosis of 
sepsis [11, 12]. In addition, an increasing number of stud-
ies have revealed that novel immunological biomarkers 
not only have the potential to serve as possible predictors 
of the prognosis of sepsis but also have the ability to act 
as prospective targets for immunotherapy of sepsis [13, 
14].

High-throughput sequencing is a useful method for 
investigating changes in illness gene expression and 
identifying possible disease-related genes to discover 
new diagnostic and therapeutic approaches [15]. The 
level of gene expression can indicate the condition of a 
variety of disorders, including pediatric sepsis, and is a 
vital indicator for basic diagnosis [16–18]. Using either 
supervised or unsupervised techniques, machine-learning 
algorithms have shown great promise in analyzing the 
underlying relationship of high-dimensional data [19, 
20]. Furthermore, machine learning is useful for assessing 
high-dimensional transcriptome data and locating genes 
that are of biological significance [21, 22]. Recently, 
early diagnosis and clinical treatment of pediatric sep-
sis are more likely to be successful now that common 
disease-associated variations in the population have been 
identified by large-scale genome-wide association studies 
(GWAS) and meta-analyses [23, 24].

Compared to previous studies [25], we not only inte-
grated multiple high-throughput sequencing data of pedi-
atric sepsis for analysis but also, more importantly, used 
machine learning to screen characteristic genes for the 
first time. Immune cell infiltration refers to the migra-
tion of immune cells to diseased tissues. Furthermore, the 
relationships between diagnostic markers and invading 
immune cells were investigated to acquire a deeper under-
standing of the molecular immunological mechanisms 
involved in the development of pediatric sepsis. This was 
done to acquire a deeper understanding of the molecular 
immunological mechanisms involved in the development 
of pediatric sepsis.

Methods

Gene expression profiles

Accessing the Gene Expression Omnibus (GEO) database 
(https:// www. ncbi. nlm. nih. gov/ geo/), which is a public 
collection of high-throughput gene expression data, 
chips, and microarrays, was how the information was 
collected [26]. We searched the GEO database with the 
keywords “Pediatric sepsis” [MeSH Terms] AND “Homo 
sapiens” [porgn: txid9606] AND “Expression profiling by 
array” [All Fields]. The following were included among 
the criteria used for screening: the microarray datasets 
referred to profiles of genome-wide gene expression in 
blood. The microarray datasets contained samples from 
pediatric sepsis and samples from a healthy state. None of 
the included samples were associated with any other dis-
eases. The sample size of both the pediatric sepsis group 
and the normal group was greater than 10. In the end, 
three different gene expression datasets were analyzed 
to complete the in-depth investigation. Supplementary 
Table 1 contains information regarding these different 
gene expression datasets. GSE26378 [27] and GSE26440 
[28] were used as the analysis set, and GSE13904 [29] 
was used as the validation set.

Identification of the differentially expressed 
genes

Gene expression profile files were generated by normal-
izing the data and correcting the expression value in 
batches using the "sva" package [30]. This was done after 
GSE26378 and GSE26440 were combined. The LIMMA 
package [31] was utilized to identify DEGs between 
the pediatric sepsis group and the control group, and a 
volcano plot was produced to highlight the differential 
expression of DEGs. Adjusted P values were looked at 
in GEO to account for the possibility of false-positive 
outcomes. An adjusted P value < 0.05 and |log2FC|> 0.5 
were considered to be the cutoffs for DEGs. Using R 
software's pheatmap package, a heatmap was generated 
based on the DEGs that had been screened.

Gene set enrichment analysis (GSEA)

To provide a more intuitively obvious picture of the gene 
expression level of highly enriched functional pathways, 
GSEA [32] was conducted using the R programming lan-
guage. There was statistical significance when the adjusted 
P value was less than 0.05.

https://www.ncbi.nlm.nih.gov/geo/
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Enhancement of functionality

Functional enrichment was applied to the data to verify 
the likely functions of potential targets. Gene ontology, 
often known as GO, is a well-known method for ascrib-
ing functions to genes, in particular molecular functions 
(MF), biological pathways (BP), and cellular compo-
nents (CC) [33]. KEGG enrichment analysis can be used 
to investigate not only the activities of genes but also 
the high-level genomic information connected to those 
functions [34]. To further understand the carcinogenic 
significance of target genes, we used R's "GOplot" pack-
age [35] and "cluster profiler" to analyze the GO function 
of candidate mRNAs and to enhance KEGG pathways.

Protein‒protein interaction (PPI) network 
construction

In addition to being aware of the fundamental roles that 
proteins play in cellular processes, it is essential to be 
familiar with the associated activities that proteins play. 
Functional connections between differentially expressed 
genes (DEGs) and other genes were annotated with the 
help of the Search Tool for the Retrieval of Interacting 
Genes (STRING) online database (http:// string- db. org) 
[36]. The PPI network was constructed using only those 
interactions that had been empirically validated and had 
a total score that was higher than 0.4.

Construction of coexpressed gene modules

The weighted gene co-expression network (WGCNA) approach 
is helpful in conducting research on the expression of gene sets. 
The WGCNA R package was utilized throughout the following 
primary phases for the construction and modularization of dis-
tinct gene networks at various stages. The samples were organ-
ized into clusters to identify any potentially significant outliers 
that may have been present. Then, automated network systems 
were utilized to establish co-expression networks. Hierarchi-
cal clustering and dynamic tree cutting function detection were 
both utilized by the modules. To establish a connection between 
modules and clinical features, estimates of module membership 
(MM) and gene significance (GS) were made. The modules that 
had the highest Pearson module membership correlation (MM) 
and a P absolute value of 0.05 were chosen to be the hub mod-
ules. The values of MM > 0.8 and GS > 0.2 were indicative of 
a highly connected module and clinical relevance, respectively. 
In preparation for more research, the gene information for the 
associated module was given [37].

Screening and validation of diagnostic markers

New and important biomarkers for pediatric sepsis were 
screened using three machine-learning algorithms: random 
forests (RF) [38–40], least absolute shrinkage and selection 
operator (LASSO) logistic regression [41, 42], and support 
vector machine-recursive feature elimination (SVM-RFE) 
[43]. The "randomForest" R package in R was used to imple-
ment the random forest technique in this study. This study 
carried out LASSO logistic regression investigation with 
the R package “glmnet” [44], and minimal lambda was 
considered optimal. In our study, the selection of optimiza-
tion parameters was cross-verified by a factor of 10, and 
the partial likelihood deviation met the minimum criteria. 
The genes that have traits in common with more than one of 
the three classification models discussed before were then 
selected for additional study. The validation set for the com-
plete analysis of the usefulness of significant biomarkers will 
be the dataset from GSE13904. It was evaluated based on the 
study of receiver operating characteristic (ROC) curves, and 
the area under the curve (AUC) was calculated to measure 
the predictive capability of the algorithms. Statistical sig-
nificance was determined by a two-tailed test with a P value 
of less than 0.05.

Evaluation and correlation analysis 
of infiltration‑related immune cells

Utilizing the website CIBERSORT, 22 types of immune 
cell matrices were filtered. P < 0.05 demonstrated that the 
immune cell infiltration matrix was acquired [45]. The 
Spearman association between unique diagnostic markers 
and immune invading cells was analyzed using the "ggstat-
splot" and "ggplot2" packages to illustrate the results.

Results

Screening of DEGs in pediatric sepsis

The clinical characteristics of the two groups of patients 
are presented in Supplementary Table 2. The process of the 
research is depicted in Fig. 1. There were 556 DEGs, includ-
ing 381 upregulated and 175 downregulated genes (Supple-
mentary Fig. 1a, b).

GSEA

GSEA was carried out on both pediatric patients with sep-
sis and healthy control subjects to investigate the biological 

http://string-db.org
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signaling pathway. The top five terms identified by HALL-
MARK analysis are displayed (Supplementary Fig. 2a). 
Coagulation, complement, IL6–JAK–STAT3 signaling, 
inflammatory response and TNFα signaling via NFκB were 
considerably enriched in the patients with pediatric sepsis 
(P adjusted < 0.05).

Functional enrichment analysis of DEGs

We conducted functional analysis to gain a deeper under-
standing of the biological functions of the DEGs. The results 
of DO analysis revealed that these DEGs were linked to lung 
disease, arteriosclerosis, hepatitis, atherosclerosis, arterio-
sclerotic cardiovascular disease, bacterial infectious disease, 
primary bacterial infectious disease, obstructive lung dis-
ease, tuberculosis and bronchial disease (Supplementary 
Fig. 2b). GO enrichment analysis showed that DEGs have 
immune response-regulating signaling pathways, activation 
of the immune response, positive regulation of cytokine pro-
duction, leukocyte-mediated immunity, T-cell activation and 

myeloid leukocyte activation (Supplementary Table 3 and 
Supplementary Fig. 2c). KEGG analysis was associated with 
hematopoietic cell lineage, Staphylococcus aureus infection, 
Th1 and Th2 cell differentiation and Th17 cell differentiation 
(Supplementary Fig. 2d). Supplementary Fig. 2e illustrates 
the PPI network.

Identification of co‑expression gene modules 
in pediatrics sepsis

In pediatric sepsis datasets, we used WGCNA to locate 
gene modules that were coexpressed by many genes. First, 
samples from both datasets were grouped into two groups, 
pediatric sepsis group and normal group, with no outliers 
observed (Supplementary Fig. 3a). Then, based on scale 
independence of > 0.8, 13 was selected as the soft thresh-
olding power β to ensure biologically significant scale-free 
network (Supplementary Fig. 3b, c). Through hierarchical 
clustering analysis and dynamic branch cut methods for gene 
dendrograms, genes were grouped into 12 modules (Sup-
plementary Fig. 3d, e). The lightcyan, blue and lightgreen 
module were significantly associated with pediatrics sepsis 
and selected for further analysis (Supplementary Fig. 3f, 
P < 0.05). The scatter plot is shown in Supplementary 
Fig. 3g, Supplementary Fig. 3h and Supplementary Fig. 3i. 
A total of 1582 genes were significantly associated with 
pediatrics sepsis gene significance and module membership.

Screening and validation of diagnostic markers

By utilizing a Venn diagram to compare the overlapping 
regions of DEGs and key module genes, we were able to 
identify 402 overlapping gene regions (Fig. 2a). We used 
three machine-learning algorithms to identify feature genes: 
SVM-RFE (Fig. 2b); RF in combination with feature selec-
tion was used to determine the connection between the 
error rate, the number of classification trees, and the 18 
genes in descending order of relative relevance (Fig. 2c, 
d); and LASSO regression analysis was used to select 16 
predicted genes from among the statistically significant uni-
variate variables (Figs. 2e, f). The three algorithms identi-
fied CYSTM1, MMP8, and CD177 as genes with overlap 
(Fig. 3a). Using the rms package, we developed nomogram 
models for diagnosing pediatric sepsis based on the hallmark 
genes CYSTMI1, MMP8, and CD177 (Fig. 3b). According 
to the results of the decision curve analysis (DCA), the nom-
ogram model offered a better clinical benefit (Fig. 3c). With 
AUCs of 0.988, 0.973, and 0.986, respectively, the ROC 
curves for CYSTM1, MMP8, and CD177 indicated their 
likelihood as valuable biomarkers (Fig. 3d), indicating that 
the biological markers had a high predictive value accuracy. 
In the GSE13904 validation set, the expression of CYSTM1, 
MMP8, and CD177 was considerably higher in the pediatric 

Fig. 1  The flowchart depicting the investigation procedure. GEO gene 
expression omnibus, GSEA gene set enrichment analysis, CIBER-
SORT cell-type identification by estimating relative subsets of RNA 
transcripts, DEGs differentially expressed genes, GO gene ontology, 
KEGG Kyoto Encyclopedia of Genes and Genomes, PPI protein‒
protein interaction, LASSO Least absolute shrinkage and selection 
operator, RF random forest, SVM-RFE support vector machine-recur-
sive feature elimination, ROC receiver operating characteristic curve, 
DCA decision curve analysis
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Fig. 2  Detection of diagnostic markers using a thorough method. a 
Venn diagram of key module genes versus DEGs; b based on SVM-
RFE to screen biomarkers; c, d Based on RF algorithm to screen 
biomarkers; e Different colors represent different genes; f LASSO 
logistic regression algorithm to screen diagnostic markers. DEGs dif-

ferentially expressed genes, WGCNA weighted gene co-expression 
network, SVM-RFE support vector machine-recursive feature elimi-
nation, RF random forest, LASSO least absolute shrinkage and selec-
tion operator
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Fig. 3  Hub genes for pediatric sepsis diagnosis. a Venn diagram 
showed the intersection of diagnostic markers obtained by the three 
algorithms; b Nomogram is used to predict the occurrence of pediat-
ric sepsis; c DCA curves d the ROC curve of the diagnostic efficacy 
verification; e Boxplot showed the expression of hub genes between 
pediatric sepsis group and control group in validation set; f The ROC 

curve of the diagnostic efficacy verification in validation set. SVM-
RFE support vector machine-recursive feature elimination, RF ran-
dom forest, LASSO least absolute shrinkage and selection operator, 
AUC  area under curve, ROC receiver operating characteristic curve, 
DCA decision curve analysis
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sepsis group than in the control group (P < 0.01) (Fig. 3e). 
With AUCs of 0.968, 0.964, and 0.957, respectively, the 
ROC curves for CYSTM1, MMP8, and CD177 indicated 
their likelihood as valuable biomarkers in the GSE13904 
validation set (Fig. 3f).

Infiltration of immune cells results

With the CIBERSORT algorithm, in comparison with nor-
mal samples, pediatric sepsis samples generally contained 
a higher proportion of monocytes, M0 macrophages, M1 
macrophages, M2 macrophages, resting mast cells, acti-
vated mast cells, eosinophils and neutrophils, and naïve B 
cells, CD8+ T cells, resting CD4+ memory T cells, acti-
vated CD4+ memory T cells, Trges, resting NK cells, acti-
vated NK cells and resting dendritic cells were relatively 
lower (P < 0.05) (Supplementary Fig. 4a, b). In accordance 
with the findings of the correlation analysis, CYSTM1, 
MMP8, and CD177 exhibited a significant degree of con-
nection with a wide variety of immune cells (Supplemen-
tary Fig. 5).

Discussion

In general, sepsis is a dysregulated host response to infec-
tious pathogens and acts as the final common pathway for 
children who are suffering from a variety of primary and 
secondary illnesses [46]. Children not only have rapid physi-
ologic development but also have major changes in their 
immune systems from the time they are born until they enter 
their teenage years. These changes have an effect on how 
children react to microorganisms, especially respiratory 
infections [47]. Current treatment guidelines for sepsis high-
light the importance of a strong index of suspicion for early 
detection of sepsis and prompt administration of antibiotics 
as critical concepts for improving patient outcomes [48]. 
Therefore, to improve the prognosis of patients suffering 
from pediatric sepsis, it is essential to search for a specific 
diagnostic marker and investigate the patterns of cell infiltra-
tion that are associated with pediatric sepsis immune cells. 
This will allow for a better understanding of how pediatric 
sepsis affects the immune system. In the current investiga-
tion, an effort was made to identify a diagnostic marker that 
is specific to pediatric sepsis, and an investigation into the 
effect of the infiltration of immune cells into pediatric sepsis 
was also carried out.

In this work, attempts were made to identify a diagnostic 
marker for pediatric sepsis, and the impact of immune cell 
infiltration on pediatric sepsis was investigated (e.g., coag-
ulation, complement, IL6-JAK-STAT3 signaling, inflam-
matory response and TNFα signaling via NFκB). Numer-
ous investigations have demonstrated that a substantial 

proportion of sepsis-related deaths are due to unresolved 
opportunistic infections and immunosuppressive character-
istics [6–8]. Sepsis can be viewed as a race to the grave 
between infections and the immune response of the host, 
with pathogens attempting to gain an advantage by imped-
ing various aspects of host immunity [9]. In addition, sepsis 
has a direct influence on the immune system as a result of 
the negative changes it causes in the formation, maturation, 
function, and death of immune cells [49].

Between the pediatric sepsis and the control groups, our 
research revealed a total of 556 DEGs, with 381 genes being 
upregulated and 175 genes being downregulated. Subse-
quent GO enrichment analysis showed that all DEGs were 
mainly associated with the immune response-regulating 
signaling pathway, activation of the immune response, posi-
tive regulation of cytokine production, leukocyte-mediated 
immunity, T-cell activation and myeloid leukocyte activa-
tion, while KEGG enrichment analysis showed some cor-
relation with hematopoietic cell lineage, S. aureus infection, 
Th1 and Th2 cell differentiation and Th17 cell differentia-
tion. On the basis of these DEGs, we incorporated WGCNA 
and three machine-learning algorithms to screen and iden-
tify pediatric sepsis diagnostic markers. The RF model is an 
example of a non-parametric technique that can be used to 
achieve classification while being supervised [38, 39]. RF 
is inclusive of the decision tree that has been constructed 
based on the datasets that have been segmented. Within the 
scope of this study, the training and analysis for one RF 
classifying model were carried out to locate descriptors that 
may separate RA from the general sample. LASSO logistic 
regression is an example of a machine-learning technique; it 
defines variables by searching for the value that corresponds 
to the lowest possible likelihood of classification error 
[41, 42]. SVM recursive feature elimination, also known 
as SVM-RFE, is a method of machine learning that has 
numerous applications, including the ranking of features 
and the selection of the most significant ones for classifica-
tion [43]. In the end, CYSTM1, MMP8 and CD177 were 
chosen, and the results of the in-depth verifications showed 
that they were accurate. Therefore, our prediction accurately 
represented the practicability displayed by the integration 
approach. Numerous reports have indicated a definite link 
between the two hub genes, MMP8 and CD177, and the pro-
cess of sepsis to some extent. This association was shown to 
be significant in some cases. Serum MMP8 levels have been 
shown to be much greater in patients with severe sepsis 
than in healthy controls, according to research conducted by 
Wong et al., who found that MMP8 gene expression is over-
expressed in children who are experiencing septic shock 
[29]. It is evident that MMP8 functions as a new regulator 
of inflammation in sepsis. CD177 is expressed primarily by 
neutrophils in the acute neutrophil response to an infection 
via neutrophil adhesion and transendothelial migration, and 
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neutrophil CD177 mRNA levels are enhanced in numerous 
diseases associated with elevated neutrophil numbers, such 
as severe sepsis. Although CYSTM1 has not been subjected 
to considerable research in sepsis until now, it possesses the 
potential to be an effective novel therapeutic target once 
further validation has been carried out.

The CIBERSORT program was utilized in the current 
investigation to analyze the immune infiltration process that 
occurs during pediatric sepsis. This was done to get a more 
in-depth understanding of the effects that are brought about 
by the infiltration of immune cells in pediatric sepsis, which 
was the motivation behind why this was done. Changes in 
the infiltration of various immune cells may be associated 
with the incidence and progression of sepsis in children. 
NK cells constitute the body's first line of defense against 
viral infections and the formation of tumors and are also 
necessary for maintaining the homeostasis of healthy tis-
sues [50]. Boosting the activity of NK cells may enhance 
the alleviation of viral infections and even severe infection-
induced sepsis. Classically activated macrophages (M1) 
undergo re-programming to become an alternative pheno-
type called M2 after an initial phase of inflammation. This 
second phase adds to secondary immune suppression, also 
known as immunoparalysis, which occurs during sepsis and 
works against the process of removing infectious organisms 
to ultimately worsen pathological conditions [51]. Others in 
the scientific community have observed that neutrophils are 
necessary for the control of pathogens in the early period of 
sepsis. It is interesting to note that patients with sepsis have 
a significant number of circulating neutrophils of varying 
degrees of maturation. This is because the increased release 
of immature neutrophils and the delayed death of circulating 
neutrophils both contribute to this phenomenon [52].

To uncover diagnostic indications for RA, new scien-
tific methodologies such as SVM-RFE, LASSO logistic 
regression, and the RF algorithm were applied. In addi-
tion, CIBERSORT was utilized to examine the invasion of 
immune cells. Nonetheless, this study has several limita-
tions. The CIBERSORT investigation is consistent with the 
little genetic information available, which may have been 
caused by disease-induced diseases, cellular heterogene-
ity interaction processes, or phenotypic plastic properties. 
Furthermore, the findings of this research indicate the need 
for further mining and investigation of previously collected 
datasets. Although the findings of some earlier studies do not 
agree with the findings of this analysis, it is imperative that 
large-scale experiments be carried out to determine whether 
the findings of this study are reliable.

This study concluded that CYSTM1, MMP8 and CD177 
are pediatric sepsis diagnostic indicators. Additionally, the 
results of this study demonstrated that immune cells may 
have a role in the onset and progression of pediatric sep-
sis. CYSTM1, MMP8, and CD177 were also found to have 

significant connections with a wide variety of immune cell 
types. It is anticipated that the immune cells mentioned 
above will have a significant impact on the development of 
pediatric sepsis. It is also likely that a comprehensive exami-
nation of these immune cells will assist in the identification 
of immunotherapy targets and the optimization of immu-
nomodulatory therapy for patients suffering from pediatric 
sepsis.
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