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Abstract

Background Prediction modelling can greatly assist the health-care professionals in the management of diseases, thus spark-
ing interest in neonatal sepsis diagnosis. The main objective of the study was to provide a complete picture of performance
of prediction models for early detection of neonatal sepsis.

Methods PubMed, Scopus, CINAHL databases were searched and articles which used various prediction modelling measures
for the early detection of neonatal sepsis were comprehended. Data extraction was carried out based on Critical Appraisal
and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist. Extricate data consisted of objec-
tive, study design, patient characteristics, type of statistical model, predictors, outcome, sample size and location. Prediction
model Risk of Bias Assessment Tool was applied to gauge the risk of bias of the articles.

Results An aggregate of ten studies were included in the review among which eight studies had applied logistic regression
to build a prediction model, while the remaining two had applied artificial intelligence. Potential predictors like neonatal
fever, birth weight, foetal morbidity and gender, cervicovaginitis and maternal age were identified for the early detection of
neonatal sepsis. Moreover, birth weight, endotracheal intubation, thyroid hypofunction and umbilical venous catheter were
promising factors for predicting late-onset sepsis; while gestational age, intrapartum temperature and antibiotics treatment
were utilised as budding prognosticators for early-onset sepsis detection.

Conclusion Prediction modelling approaches were able to recognise promising maternal, neonatal and laboratory predictors
in the rapid detection of early and late neonatal sepsis and thus, can be considered as a novel way for clinician decision-
making towards the disease diagnosis if not used alone, in the years to come.
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Introduction

Neonatal sepsis is the third most prominent cause of mor-
tality among neonates after intrapartum complications and
prematurity. Nearly, 13% of neonatal mortality is bequeathed
by it, of which 42% of the death occurs in the first week itself
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[1]. The primary challenge in neonatal sepsis is its evasive
signs and symptoms which makes the diagnosis and prog-
nosis burdensome. The only unrivalled quick fix is blood
culture confirmation which takes virtually two days to gener-
ate result [2]. The necessity of a distinguished biomarker is
fundamental for meticulous and for the nick of time diagno-
sis [3]. Inadequate immunity in neonates makes it soldier to
overcome mortality [4]. Therefore, there is a need to glance
at novel approaches to embark upon the situation.

Prediction modelling is a statistical measure of employing
established results to generate, design and validate a model
that can be applied for anticipating expected outcomes [5]. It
can greatly assist clinician as well as the health-care profes-
sionals on efficient management of any disease [6]. Severity
score generated by these prognostic prediction models aids
in scrutinising the profoundness of the disease in due time.
Furthermore, it recuperates any disease management by risk
and patient stratification [7].
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Prediction modelling has reinforced in the pronounce-
ment of several potential biomarkers in the diagnosis of
neonatal sepsis which essentially comprehend C-Reactive
Protein (CRP), Interleukin-27, neutrophil CD64, etc. [8—10].
It also inculcates myriad maternal and neonatal risk factors
such as intrapartum temperature, gestational age at deliv-
ery, duration of premature rupture of membrane (PROM),
intrapartum antibiotic treatments, mode of delivery, birth
weight, etc. in the conjecture of the disease [11-13]. Simi-
larly, clinical and laboratory biomarkers such as maternal
white blood cells, absolute neutrophil count was also used
for the diagnosis of the disease [13]. Incorporation of labora-
tory diagnostic markers such as WBC along with standard
biomarker such as CRP in the prediction model has consid-
erably reduced the applicability of antibiotics in early-onset
neonatal sepsis [14]. Sepsis risk calculator, scoring system
generation were some of the desired results of prediction
modelling implementation [15, 16]. Similarly, application
of sepsis risk calculator through prediction model develop-
ment also resulted in decrement in the usage of antibiotic
therapy [15].

Hence, a systematic review is required to assess this
modernistic approach which will give a fresh insight in the
prognosis of having neonatal sepsis. The principal purpose
of the study is to provide an overall depiction of the entire
prediction modelling measures projecting the early detection
of neonatal sepsis. As per our proficiency, this would be the
aboriginal systematic review to comprehend this facet. The
current systematic review will benefit the young researchers
and investigators to have an eye at the multifarious pathway
to undertake their research in neonatal sepsis meanwhile
making a provision for the clinician for improvised supervi-
sion on the disease.

Methods
Information sources

Articles were searched from distinct databases such as Pub-
Med, Scopus, and CINAHL using the following keywords
“Prediction model” “neonatal sepsis” “neonatal sepses”.
Earliest ten-year papers were searched till September 2020
for the study purpose in all the databases.

Eligibility criteria

Papers were comprehended if they fit the following inclu-
sion criteria: (1) Operational definition of neonatal sepsis:
Neonates having positive blood culture before 72 h of life
were considered as early neonatal sepsis, whereas neonates

having positive blood culture report after 72 h of life were
termed as late neonatal sepsis. Meanwhile, neonates hav-
ing positive blood culture report before 30 days of life were
considered as neonatal sepsis patient [17]; (2) Case—con-
trol, cohort—prospective/retrospective studies predicting the
prognosis of having neonatal sepsis (early/late onset) which
is to be culture positive; (3) Prediction model developed
through various statistical procedure like machine learning/
logistic regression/artificial intelligence for early detection
of neonatal sepsis; (4) The prediction developmental model
should be either internally or externally validated, and (5)
Articles published in English peer reviewed journal.

However, randomised clinical trial, review/systematic
review/meta-analysis related to early/late neonatal sepsis
were excluded from the study. Implementation of the pre-
diction models pertaining to neonatal sepsis or prognosis of
the disease was also ruled out from the study.

Study selection

The study screening was conducted in accordance with
the Preferred Reporting Items for Systematic Review and
Meta-analysis (PRISMA) guidelines [18]. The first reviewer
[P.S] evaluated all the search results. Further title, abstract
and subsequently full text screening were cross checked by
the rest two reviewers (EAR, VK). Title, abstract and full
text screening was consummated on the ground of study
design/disease/outcome/intervention/irrelevant. Any dif-
ference in the opinion regarding final included articles was
resolved through discussions.

Data extraction and quality assessment

Data extraction was carried out by all the reviewers based
on Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies (CHARMS) check-
list [19, 20]. Extricate data consisted of objective, study
design, patient characteristics, type of statistical model,
predictors in the model, outcome measure, sample size and
location. Significant predictors were identified by relative
risk or odds ratio. Outcome measures were assessed by area
under the curve, sensitivity, specificity, positive predictive
and negative predictive value. Prediction model risk of bias
assessment tool (PROBAST) was applied to gauge the risk
of bias of the included articles and were classified into high,
low, and unclear risk of bias. PROBAST risk of bias consists
of questions from four domains which include participants,
predictors, outcome and analysis. A subtotal of 20 questions
were present for the judgement of the paper. These questions
were answered as yes/no/probably yes/probably no/ unclear,
where “yes” implies the absence of bias, while “no” signifies
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the presence of bias. An article is denoted as “low risk of
bias”, if all the desirable answers to the 20 questions were
yes or else it is designated as high risk. An unclear answer to
any of the 20 questions represents the article to be of unclear
risk of bias [21].

Data synthesis and analysis

Systematic analysis of all the included studies was conducted
to generate all the desired data. Statistical measure employed
for building the model was determined to figure out the
type of it. Predictors were viewed to identify its potential
in the model. Performance of the prediction model were
determined by noting the major indices like Area Under the
curve (AUC), Specificity, Sensitivity, Negative Predictive
Value (NPV) and Positive Predictive Value (PPV). External
and internal validation of the models was also scrutinised to
determine the efficiency of the model.

Results

The study screening was conducted in accordance with the
Preferred Reporting Items for Systematic Review and Meta-
analysis (PRISMA) guidelines. A total of 3135 articles were
retrieved from three databases, i.e. PubMed, CINAHL and
Scopus. An aggregate of ten studies were incorporated for
systematic review after scrutinising on the basis of eligibility
criteria. The screening process has been detailed in Fig. 1.

Study characteristics

Majority (five studies) of the included articles were per-
formed in United State of America [24, 26, 29, 30], while
the remaining each were from Israel, China, Mexico, United
Kingdom and Canada [22, 23, 27, 28, 31]. The highest sam-
ple size of all the included studies was 4794, while the mini-
mal is 36, which are illustrated in Fig. 2. Most of the studies

Fig. 1 Preferred reporting item
for Systematic Review and Meta
Analyses flow diagram of the
included studies from PubMed,
CINAHL, and SCOPUS
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Fig.2 Year-wise publication of all the included articles with respect to sample size, where sample size is represented by colour gradient and size

of circle

were single centre (six studies), while 30% (three studies)
were of multicentre origin. Greater number of studies (seven
studies) had applied logistic regression to build a predic-
tion model, while two of the studies had applied artificial
intelligence. Autoregressive hidden Markov model (AR-
HMM) was applied by a single study for prediction model
building [28]. Partly, the studies (five studies) had applied
split validation (70:30 ratio) concepts for the derivation and
validation of the model, while one of the studies had applied
external validation [21]; while the other four studies had

utilised bootstrap or concordance statistics methodology for
internal validation.

Neonatal sepsis detection was the primary outcome of
considerable number of studies (five studies) [27-31]. Early-
onset and late-onset sepsis detection were encountered as the
main outcome in three and two different studies, respectively
[22-26]. Sheer single study had stratification of the early-
onset neonatal sepsis patients based on the degree of illness
as the defined outcome [25]. The length of the age of all
the participants during outcome assessment varied from 0
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to 30 days of life. The major characteristics of the included
studies are summarised in Tables 1, 2 and 3. Predictors
adopted in the comprehended studies for constructing the
model were classified into four domains such as neonatal
factors, maternal factors, clinical, laboratory parameters and
miscellaneous. Table 4 represents the predictors notified in
each study for the final model prediction.

Risk of bias assessment

Prediction model risk of bias assessment tool (PROBAST)
was applied to appraise the risk of bias of the included arti-
cles. Six articles were of low risk of bias while two were
of high due to their minimal sample size. Remaining two
articles were of unclear risk of bias as “analysis domain”
of the PROBAST table was unable to give a clear conclu-
sion. Since, one of the domains was unclear, we labelled the
paper as the same as per the PROBAST guidelines [21]. The
detailed assessment of risk of bias for the included articles
using PROBAST tool, based on individual domain is pro-
vided in the supplementary table 1.

Predictors’ assessment

Predictors’ assessment of the included articles was evaluated
on the basis of neonatal factors, maternal factors, clinical/
laboratory parameters with sign and symptoms and miscel-
laneous factor for quick detection of early, late or neonatal
sepsis as a whole.

Maternal factors like maternal age, cervicovaginitis were
the potential predictors in detection of sepsis as whole [27];
whereas, group B streptococcus status, duration of prema-
ture rupture of membrane aids in evaluating early-onset
sepsis [24].

Sepsis detection can be eased out by neonatal predictors
like fever, birth weight, foetal morbidity and gender [27].
Birth weight, endotracheal intubation, thyroid hypofunction,
umbilical venous catheter (UVC) was the promising neona-
tal factors for predicting late-onset sepsis [23]; while gesta-
tional age, intrapartum temperature and antibiotics treatment
were utilised as budding prognosticator for early-onset sepsis
detection [24].

Clinical and laboratory parameters suchlike sick appear-
ance, neutrophil-lymphocyte ratio> 1.5, and C-Reactive
Protein > 0.75 were able to detect late-onset sepsis at the
earliest [22]. Signs and symptoms such as increase in the
number of bradycardia and mini-bradycardia events was a
reflection on fast onset of neonatal sepsis [28]. Moreover,
platelet count, bradypnea, band cells heart rate (maximum,
minimum), SpO, minimum, blood pressure systolic (mini-
mum, mean), thyroid, acyl carnitine, amino acids and adre-
nal functions were few of the indicators which also showed

significant results in the early detection of neonatal sepsis
as whole [27-30].

Miscellaneous factors like oximeter error did not show
any significant result [28]; while, catheter presence showed
positive sign in fast detection of neonatal sepsis [25].

Outcome measures

The AUC (derivation model AUC =0.92, validation model
AUC =0.90) noted for the model developed through clini-
cal and laboratory parameters for the prognosis of having
late-onset neonatal sepsis was quite satisfactory [22]. For-
mation and testing of various nomogram from the deriva-
tion and validation set (derivation AUC =0.855, validation
AUC=0.834) for prediction of late-onset neonatal sepsis
was also successful in doing so [23].

Intrapartum maternal risk factors were utilised to form
a prediction model for early-onset sepsis detection with
AUC of 0.807 and 0.794 from derivation and validation set,
respectively [24]. Early onset sepsis identification by neural
network model had AUC 92.5, accuracy of 86.74, sensitivity
80.32, and specificity of 90.4 [26]. Quantitative stratifica-
tion algorithm for early-onset sepsis detection had classified
neonates with sepsis risk at birth into three categories, i.e.
clinical illness, equivocal and well appearing [25].

Autoregressive hidden Markov model with AUC of 0.74
clearly exhibited that physiological change in events such
as bradycardia or mini-bradycardia can detect neonatal sep-
sis prior to culture report [26]. Maternal and neonatal fac-
tor model had predicted the neonatal sepsis disease with
an AUC of 97.4, specificity 80%, sensitivity 93.33%, PPV
82.35 and NPV of 92.3 which had surpassed the perfor-
mance of physician also [27]. Non-invasive model devel-
oped for early detection of neonatal sepsis through logistic
regression showed better results when compared to that of
the invasive model (AUC of invasive model 0.777, AUC of
non-invasive model 0.824) [30]. Neonatal sepsis detection
by another team of authors also displayed similar results
(AUC 0.879) [29]. Newborn screening results like thyroid
and adrenal function, acyl carnitine and amino acids also
improved the model fit for detection of neonatal sepsis [31].

Validation measures

Half of the included studies had utilized 2:1 ratio, i.e. split
method of derivation and validation set for evaluating the
accuracy, precision and validity of model [22, 24, 25, 29,
30]; meanwhile, mere one study had used the external vali-
dation procedure of conducting the same study in different
set of samples at different period of time [23]. 70:15:15 (70
derivation set, 15 validations set, 15 testing set) ratio was
applied for validation of model developed by maternal and

@ Springer
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neonatal risk factor for identification of neonates with sepsis.
Back propagation and neural network methods were applied
to do so. The performance of the model was calculated on
three metrics, i.e. root mean square error (RMSE), regres-
sion coefficient and statistical slope and intercept [27]. Simi-
lar back propagation method was applied by another study
for validation of model for early-onset sepsis detection [26].
Average precision and F score was generated by precision
recurve call for validation purpose in model built by autore-
gressive hidden Markov model [28]. Bootstrap method of
internal validation (200 samples) was applied to validate
model which predicted neonatal sepsis through the analysts
of newborn screening [31].

Discussion

Failure to quickly diagnose neonatal sepsis, primarily due
to its indefinite sign and symptom makes the disease more
lethal and destructive. Blood culture report being the only
chief solution, virtually takes two days to generate result.
Therefore, there is a need to look into novel approaches,
which may help in fast prediction of neonatal sepsis. This
systematic review tried to capture the modernistic prediction
modelling methods implied for quick detection of late/early/
neonatal sepsis as whole, thus endowing a fresh insight to
the approach for disease management. Thus, the main pur-
pose of our study was to perform a systematic review which
would give a detailed illustration of prediction modelling
measure in the prognosis of having neonatal sepsis. To the
best of our knowledge, none of the available studies had
focussed on the prediction modelling methods in neonatal
sepsis. To fixate our study in prediction modelling in prog-
nosis of having neonatal sepsis, the current review illustra-
tions were based on the foundation of three divisions, i.e.
principal findings, predictors assessed, comparison among
included articles based on statistical approach implied to
build the model.

Principal findings

This systematic review illustrated that few articles were
available on prediction modelling for fast detection of early/
late/neonatal sepsis as whole. Out of those, most articles
included had displayed satisfactory results in terms of pre-
diction of the disease. Maternal, neonatal, clinical and labo-
ratory predictors identified through these models will assist
health-care professionals in the rational management of the
disease [22-24, 27, 29, 30]. Model performance for quick
detection of sepsis was almost equivalent to that of physician
performance [27]. Stratification of early-onset sepsis into
clinically ill, equivocal and well appearing using prediction
modelling had helped in modifying the treatment approach

@ Springer

for individual categories [25]. Physiological events like
increased number of bradycardia or mini-bradycardia were
identified as good predictors to detect the disease prior to the
culture report [28]. Thus, it can be concluded that prediction
modelling measures can be used as an additional approach
to clinician decision, if not used alone.

Predictors assessed compared with other studies

Included articles in our study had either utilised clinical/lab-
oratory parameters, neonatal/maternal risk factors, or physi-
ological events of the neonates for building the prediction
model [22-31]. Birth weight characteristics, gestational age
features, role of setting, sampling strategy and concomitant
interventions were some of the primary predictors assessed
for late-onset neonatal sepsis by routine neonatal screening
[34]. Analogous results were found in one of the included
articles where birth weight, endotracheal intubation, thyroid
hypofunction and umbilical venous catheter (UVC) were the
promising neonatal factors for predicting late-onset sepsis
[23]. Study conducted by Seidel et al. for predicting late-
onset sepsis by body surface screening had pooled sensitiv-
ity of 41% (95% CI 17-70%) and specificity of 56% (95% CI
34-76%), whereas another included study in our review for
predicting late-onset sepsis by clinical and laboratory evalu-
ation had shown sick appearance (OR 5.7,95% CI 1.1-29.1),
CRP>0.75 (OR 5.4, 95% CI 1.1-26.3)), neutrophil to lym-
phocyte ratio> 1.5 (OR 6.7, 95% CI 1.2-38.5) as the chief
predictors with model AUC of 0.92 [22]

Another systematic review was designed to evaluate the
outcome of early neonatal sepsis by sepsis calculator, and
had shown reduced antibiotic usage and fewer surges in mor-
tality and readmission to hospital [32, 33]; whereas, one of
the included articles in the review had different objective
and had shown gestational age, intrapartum temperature and
antibiotics treatment as budding prognosticator for early-
onset sepsis detection [24]. Yet another included article had
classified early-onset sepsis patients into various categories
based on the degree of illness. Stratification of those patients
had enabled the health-care professionals to render distinct
treatment to various categories, thus ensuring proper man-
agement [25].

Study conducted by Liang et al. illustrated that prema-
turity, low birth weight and young age at presentation were
some of the major factors which were associated with mor-
tality in neonates with sepsis [35]. Artificial neural network
approach was employed by another included article for ana-
lysing various maternal and neonatal predictors for early
detection of neonatal sepsis and had suggested that maternal
age, neonatal fever, apnoea, platelet count was the most valu-
able predictor of sepsis followed by cervicovaginitis, gender,
bradypnea, band cells, catheter presence, birth weight, neu-
trophil counts and foetal morbidity.
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Apart from the previously mentioned predictors, novel
diagnostic marker such as neutrophil CD64, platelet to lym-
phocyte and neutrophil to lymphocyte can also be added to
the prediction model for increasing the accuracy of diagnosis
of neonatal sepsis as neutrophil CD64 when combined with
standard biomarkers like CRP and WBC increases the sen-
sitivity and accuracy of diagnosis [10, 37]. Likewise, inclu-
sion of platelet to lymphocyte and neutrophil to lymphocyte
ratio as predictors in the model will increment the diagnos-
ing capacity of early-onset neonatal sepsis in particular [37].
Thus, addition of novel biomarker along with the standard
biomarkers in the model will potentiate the predicting abil-
ity of the model.

Comparison among included articles based
on statistical approach employed to build the model

Among the two of the included articles used for the quick
detection of the late-onset neonatal sepsis, Huang et al. had
the most appropriate methodology which can be used in
other clinical settings for building prediction model [22,
23]. Logistic regression adopted for building the model had
several advantages in comparison to the other approaches
as it provide probability prediction of each predictor unlike
only classifying it into different levels [38]. Models gener-
ated by this approach are less likely to be over fit even with
the smaller datasets. Unlike other approaches like support
vector machines and decision tree, it can easily accommo-
date larger data set and can refurbish easily to reflect new
data set [39]. External validation approach was employed by
Huang et al. to measure the accuracy of the model. It ensures
reproducibility and transportability of the model in other
clinical settings [40, 41]. Being a multicenter origin study,
it provides the build model with satisfactory power to detect
late-onset sepsis in heterogeneous subjects [42]. Validation
cohort AUC of 0.963 of the study also highlighted similar
results [23].

Out of all the included articles for fast detection of early-
onset neonatal sepsis, Escobar et al.’s study can be consid-
ered to have remarkably relevant methodology [24-26]. Sim-
ilar kind of methodology was adopted by Puopolo et al. and
Martinez et al. [22, 23]; however, Escobar et al.’s study can
be primarily considered as it had stratified early-onset sepsis
neonates into clinical illness, equivocal and well appearing.
Stratification method adopted in the study will assist the
clinician in providing appropriate treatment modalities and
strategy for improved patient care in various subgroups [43].
Logistic regression, multicenter origin, and internal valida-
tion employed by this study had made it a desirable predic-
tion model; however, external validation was necessary for
replicating the methodology in other clinical settings.

Among the five selected articles for early detection of
neonatal sepsis, three had used the same statistical measure,

i.e. logistic regression [29-31], while the remaining one had
used autoregressive hidden Markov model approach [28].
Autoregressive Markov model is better than simple Markov
model as it identifies a greater number of sequences. It also
allows various sequences to be modelled rather than only
inserting or deleting it. Unlike simple Markov models, these
are quite expensive and require larger seed sequences to be
trained thus, is difficult to replicate [44]. Study conducted
by Thakur et al. 2019, 2018 was quite similar based on sam-
ple size, validation measure and outcome viewed. However,
replicating it in other settings is still questionable as exter-
nal validation was not performed [29, 30]. Bootstrapping
method applied by Fell et al. is one of the efficient ways
of internal validation when compared to that of cross or
split validation as it utilises the entire data set for validat-
ing which produces results of low variance [45] still, cannot
surpass the advantages of external validation. Thus, external
validation being one of the inevitable parts of prediction
modelling should be taken into consideration in the future
research for the applicability quotient.

Strengths

Articles containing model validation part (internal/external)
were particularly included in the review, as models without
validation were of low robustness and accuracy and difficult
to replicate in other settings [46—48].

Limitations

Studies conducted in English language were only consid-
ered for the review due to which a number of articles had
to be excluded and thus, can be considered as one of the
shortcomings. Meanwhile, scarcity of data also affected the
outcome of the review. Further research (both interventional
and observational studies) is required in this field to generate
more evidence.

Thus, the chief findings of this review are that prediction
modelling can be considered as a novel way of approach
towards the disease, which not only will help the clinician
in making rationale and critical decision but will help the
young researchers in considering prediction modelling as an
important tool for investigation.

Conclusions

Models generated through various statistical approaches
were successful in predicting the disease prior to culture
report and had attained comparable outcome to that of the
physician. Stratification of patient pertaining to severity of
illness for varied treatment approach is another key point of
the prediction model. Outcome obtained from the various
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prediction models were successful in generating potential
predictors that can benefit the clinician in appropriate man-
agement of the disease. Thus, it can be effectively concluded
that prediction model developed through proper statistical
measures can be recognised as a novel way of approach-
ing towards neonatal sepsis detection in the years to come.
However, extensive research is in need to assert the predic-
tion modelling as a sole measure for disease management
based on external validation as an aspect of reference and
reproducibility.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12519-021-00505-1.
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