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Abstract
The spatiotemporal analysis of land use/land cover change and monitoring, modeling, and forecasting the future of land uses 
are considered challenges facing planners and decision-makers in developing countries. These challenges are increased in 
neighborhood areas surrounding large cities, which are known as the “rural–urban continuum”. These areas have become 
the preferred areas for resettlement for most urban residents. The objectives of the present study were to (1) monitor the land 
cover change in the rural–urban continuum axis between the Ar-Riyadh and Al-Kharj cities during the period 1988–2020, 
(2) simulate the future growth of land cover up to the year 2030 using the Cellular Automated Markov Model (CA-Markov), 
and (3) improve the ability of CA-Markov to predict the future by integrating multi-criteria analysis based on geographic 
information systems (GIS-MCA) and analytic hierarchy process (AHP) method. The results of the study revealed large 
changes in the land cover in the rural–urban continuum axis between the Ar-Riyadh and Al-Kharj cities. About 60  km2 of 
agricultural land has been lost, with an average annual decrease of 2  km2. The industrial and urban areas were increased 
with growth rate of 4%. There were five categories of spatial suitability, ranging between 32 and 86%, and 70% or higher is 
the recommended percentage for future land uses. The industrial use was the most likely land use in 2030, as it recorded an 
increase of 27.1  km2 over the year 2020.

Keywords Spatiotemporal framework prediction · Urban sprawl · Land cover changes · Rural–urban continuum axis · 
Ar-Riyadh-Al-Kharj · CA-Markov · GIS-MCA · AHP · Future land cover

Introduction

The urban planning of land use in cities, major capitals, and 
neighborhood of urban communities constitutes crucial issue 
in the field of urban development. During the last decades, 
studying the land use/cover became a popular topic as it 
related to environmental, biological, and ecological pro-
cesses (Foley et al. 2005; Mwangi et al. 2017; Behera et al. 
2012). The most common and widespread land use/cover 
changes around the world are deforestation, agricultural 
expansion, and urbanization (Mubea et al. 2014; Hosonuma 
et al. 2012; Geist and Lambin 2001). Changes in land cover 
affect land use, climate change (Feddema et al. 2005), deser-
tification (Turner 1994), and global environmental change 
(Mbiba and Huchzermeyer 2002). The urban planners and 
policymakers around the world have a growing interest to 
study the neighborhood of urban areas. The neighborhood of 
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urban areas known as the rural urban continuum has become 
the preferred areas for resettlement for most of the urban 
population as the rent is relatively affordable, to work in 
economic, commercial and agricultural activities (Simon 
et al. 2004); (Kombe 2005), and for the availability of main 
agricultural lands and their proximity to the city (Thuo 2010; 
Tajbakhsh et al. 2016; Mandere et al. 2010; Acheampong 
and Anokye 2013; Gibbs and Salmon 2015). Modeling and 
simulating the land use are important tools for urban plan-
ning, policy formulation, and assessing the impacts of land 
use change on the ecological environment (Foley et al. 2005; 
Geist and Lambin 2001). Cellular automata model is the 
most popular technique to model land use changes since 
the 1990s (Guan et al. 2011; White and Engelen 2000a, 
1994; Santé et al. 2010; Li et al. 2017; Batty and Xie 1994; 
Wu 1998, 2002). Accurate simulations and predictions of 
urbanization and land use are essential in urban manage-
ment and addressing trends and temporal-spatial distribu-
tions, The CA–Markov model has proved high efficiency 
in the modeling and simulating of urban growth and pre-
dicting future land uses. Simulation of land use with the 
CA–Markov model improves the understanding of the com-
plex dynamic processes of land use change that cannot be 
achieved through conventional models (Pakawan and Saow-
anee 2019; Solomon et al. 2019; Taher et al. 2018; Rahel 
et al. 2018; Ahmadreza et al. 2016).

Cellular locally interacting Markov model or Cellular 
Automata is an integration of the cellular locally interact-
ing model or Cellular Automata and Markov model, where 
the Markov model is a method of analyzing the current 
behavior of a particular variable for the purposes of predict-
ing the future behavior of this particular variable. Markov 
chains are named after their discoverer Andrea Markov, 
the Russian scientist. Markov chains represent one of the 
“dynamic programming” tools, which are methods of opera-
tion researches used to support decision-making when the 
future status depends on the current status as a forecasting 
technique. The cellular locally interacting model or Cellular 
Automata is a mathematical software model that enables us 
to predict the future on the assumption that cells can take a 
finite number of states where each future state of the cell is 
related to its current state and the states of neighboring cells. 
The transformation from one state to another is governed by 
predefined rules that depend on the successive developments 
and the previous states of the cell and of neighboring cells.

In light of the outputs of Change Analysis application and 
Transition Potential Modeling, the model of Change Predic-
tion analysis is run, where the future scenario of the change 
can be predicted at a future date.

Although CA-Markov is one of the most widely used 
models to predict land use changes, it has a great limitation 
as it is affected by human bias and does not accurately reflect 
potential nonlinear relationships between land use change 

factors. To overcome this limitation, GIS and multi-criteria 
analysis (GIS-MCA) and AHP method were combined.

Malczewski (Malczewski 2006) defined GIS-based 
MCDA as a process that combines the preferences of the 
spatial data and the values law to generate information to be 
provided to decision-makers (Malczewski 1999; Chakhar 
and Mousseau 2008; Yatsalo et al. 2010; Reynolds and Hess-
burg 2014; Dell’Ovo et al. 2018; Janssen and Rietveld 1990; 
Carver 1991; Rinner and Heppleston 2006). GIS-based 
MCDA includes evaluating the spatial decision alternatives 
that were determined based on the parameters and prefer-
ences of decision-makers. Multi-criteria decision analysis 
(MCDA) is generally used to evaluate multiple parameters. 
The decision-making process mainly involves four stages: 
defining the problem, building the preferences of decision-
makers, evaluating the alternatives, and determining the 
best of the alternatives (Simon 1977; Tzeng and Huang 
2011). Integrating MCDA and GIS is a great contribution 
that usually yields very useful spatial alternatives to help 
decision-makers.

The main purpose of using MCA is to improve the abil-
ity of the CA-Markov cellular model to predict the future of 
land cover in 2030 using twelve criteria. The analytic hier-
archy process (AHP) method that was developed by Saaty 
(Bossche et al. 2018) is one of the most important methods 
for analyzing the land suitability and providing the decision-
makers and planners with the statistical analysis data before 
giving their final decision regarding the future changes in 
land uses (Lee and Yeh 2009; Pan and Pan 2012; Hasan et al. 
2019; Araya et al. 2018). Integration of AHP and GIS was 
done for determining the importance of the used criteria and 
calculating their weights according to the importance with 
regard to the experts’ opinions (Merlos et al. 2015; Baja 
et al. 2018; Huiping et al. 2019).

Several studies showed that the CA–Markov model is able 
to simulate and predict the spatial process of urban devel-
opment and efficiently predict land use (Silva and Clarke 
2002; Liu 2009; Oguz et al. 2007; Ding and Zhang 2007). 
CA-Markov can be combined with other techniques such 
as GIS-MCA and AHP (Webster and Wu 2001; White and 
Engelen 2000b; Abd El Karim and Mohsen 2020; Abdelka-
rim 2020; Abdelkarim et al. 2020) to model future land uses 
(Oguz et al. 2007; Saidi et al. 2017; Jin and Álvaro 2017).

The CA–Markov model has diverse advantages in simu-
lating land uses (Parsa and Salehi 2016; He et al. 2017b; 
Xu et al. 2016) as it simulates complex land use patterns 
based on simple local transformational rules. CA–Markov 
model can be combined with GIS and remote sensing data 
to improve the capabilities of GIS to analyze complex, tem-
poral, and spatial complex natural feature (He et al. 2008). 
Land use prediction models have been developed to focus on 
a set of multiple models with several natural, social, and eco-
nomic factors based on GIS-MCA and AHP method which 



503Applied Geomatics (2022) 14:501–525 

1 3

makes the simulations of land use change more accurate 
(Liu et al. 2017).

This study aims to (1) monitor the land cover changes 
in the rural–urban continuum axis between the Ar-Riyadh 
and Al-Kharj cities during the period 1988–2020 using the 
supervised classification of Landsat satellite images acquired 
in years 1988, 2000 and 2013, and 2020; (2) predict and 
simulate the future land use growth in year 2030 using the 
CA–Markov model; (3) improve the CA–Markov model 
through integration with the GIS-MCA; and (AHP) to cover 
the factors of land use changes in the rural–urban continuum 
axis between the Ar-Riyadh and Al-Kharj cities.

The problem of this research was focused on study-
ing the contradiction between the national urban strategy 
for land use in the Kingdom and the comprehensive plan 
for Al-Kharj governorate. On the other hand, the national 
urban strategy for land use in the Kingdom recommends the 
increased industrial, commercial, and agricultural activities 
in the study area to support the economic aspect of the cen-
tral region in the Kingdom. The comprehensive plan for Al-
Kharj governorate proposes that the land uses in the study 
area are recommended to be agricultural and free of any 
industrial activities. The study is also interested in examin-
ing the impacts of the rapid population growth in the cities 
of Ar-Riyadh and Al-Kharj as the population has doubled 
over the past 30 years, 5 times and 3.3 times for Ar-Riyadh 
and Al-Kharj, respectively. This population increase led 
the population to move towards the rural–urban continuum 
axis between the two cities resulted in the encroachments at 
the expense of agricultural lands. The results of the present 
study indicated that the agricultural lands lost about 60  km2 
of its total area during the past 30 years during the period 
1988–2020, with an average annual decrease of 2  km2 and 
the industrial areas increased at a growth rate of 4%. This 
imbalances increases and decreases have led to (1) an imbal-
ance of the population component, (2) deterioration of the 
urban fabric, (3) lack and misdistribution of services, (4) 
penetration and control of industrial use at the expense of 
other uses, (5) increase in environmental changes, and (6) 
loss of the environmental and ecological balance of the char-
acteristics of the study area. The acceleration of urbaniza-
tion and industrialization affects the regional development 
of the urban–rural continuum axis between Ar-Riyadh and 
Al-Kharj, and achieving the balance between economic 
development and environmental protection became a major 
issue for planners and policymakers in Saudi Arabia.

Study area

The rural–urban continuum axis is located between the cities 
of Ar-Riyadh and Al-Kharj on the Ar-Riyadh-Al-Kharj high-
way with a length of 45 km and an average width of 4.5 km 

on both sides of the highway. The rural–urban continuum 
axis is located between the two latitude 24° 13′ 58.31″ and 
24° 29′ 48.57″ in the north and between longitudes 46° 56′ 
29.62″ to 47° 12′ 44.44″ in the east as seen in Fig. 1.

The continuum extends from the end of the industrial city 
in the south of Ar-Riyadh until the beginning of the borders 
of exit number seven in the north of the city of Al-Kharj. 
The rural–urban continuum axis includes about seven urban 
agglomerations, namely, from south to north: Al Bijadiyah, 
Ar Rufayi’, Souther Hit, Al Aammaieh, Al ljamn, Dahl Hit, 
and Al Riya. The population of the urban rural continuum 
area is about 16,819 people (General Authority for Statistics, 
2018). The urban rural continuum axis is characterized by 
the different land uses, which is dominated by industrial use, 
in addition to palm farms with the associated agricultural 
industries, recreational activities, camping areas, squares, 
and rest areas as shown in Fig. 2.

Study procedures and data processing

The study procedures and data processing are shown in 
Fig. 3 that included three main steps: firstly, monitoring 
changes in land use during 1988–2020; secondly, multi-
criteria analysis based on geographic information systems 
and determination of weights using hierarchical analysis; 
and thirdly, using the Cellular Automata Markov model to 
predict land uses in 2030.

Monitoring changes in land cover during 1988–
2020:

The process of monitoring land cover changes for the 
rural–urban continuum between the cities of Ar-Riyadh and 
Al-Kharj during the period 1988–2020 is consisted of a set 
of stages that can be summarized as follows:

The first stage was downloading of four satellite images in 
1988 and 2000 from the Landsat-TM and 2013 and 2020 
from Landsat-OLI to monitor changes in land cover in the 
urban rural continuum axis between Ar-Riyadh and Al-
Kharj during the period 1988–2020. Table 1 and Fig. 4 
present details about the satellite images from 1988 to 
2020.

The second stage: band combination
The stage of band combination is one of the necessary 
stages to show the satellite images in their natural or 
true colors and to choose the appropriate ranges for 
the three colored ranges RGB, in order for the feature 
to appear in their true earthly colors through Multi-
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spectral. The appropriate ranges have been selected in 
the fields of red–green–blue. When modifying spectral 
ranges, they appear in different colors. For example, 

in the American satellite Land sat 4–5-7, when select-
ing the fifth, fourth, and second ranges in the fields of 
Layer 1-Layer 2-Layer 3, features appear in their natural 

Fig. 1  Location of the rural–
urban continuum axis between 
Ar-Riyadh and Al-Kharj from 
the Kingdom of Saudi Arabia in 
2020.  Source: A KSA official 
map, Geo Portal, General 
Commission of survey; B Atlas 
distribution maps of the primary 
results of the General Popula-
tion and Housing Census, 
General Authority for Statistics; 
C Background: Sentinel 2 — 
US Geologic Survey (Earth 
Explorer (USGS)) website
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colors. However, in the American satellite Landsat 8, 
the sixth, fifth, and third ranges are selected in the fields 
of Layer 1-Layer 2-Layer 3.
The third stage: spectral enhancement
Due to some spectral interference in Landsat images, 
spectral enhancement of an image is performed to 
increase its spectral accuracy and ease of processing, 
as there may be problems or interference in spectral sig-
natures. Spectral enhancement of an image is performed 
to increase its spectral accuracy and reduce spectral 
interference through principal component.
The fourth stage: spectral sections
The spectral sections of the different feature were 
extracted from the satellite image of the rural–urban 
continuum. The aim was to know the path of the spec-
tral signatures of each feature in the different ranges of 
the satellite image, to know the extent of homogeneity 
or incongruity, and to identify the extent of conformity 
with reality. That was done through Spectral Profile.
The fifth stage: spectral signature
The stage of spectral signature is one of the most impor-
tant stages that help to classify satellite images accu-
rately. Several distributed samples of the spectral sig-
natures of different feature are taken, and then similar 
spectral signatures are determined. This is done through 

Signature Editor, which is used to take spectral signa-
tures. Then, the spectral signature window appears.
Therefore, the spectral signature of each feature is taken 
through the drawing tools in the Drawing menu, and a 
number of spectral signatures of each feature are drawn 
and merged together into one spectral signature indicating 
the average spectral signatures taken.
The sixth stage: supervised classification
The process of supervised classification helps to stand-
ardize, identify, and separate the feature from the satel-
lite image. After determining the spectral signatures of 
different feature, the image has been classified into color 
categories illustrating the different uses of land, which 
makes it easy to measure and calculate the areas of each 
classification. Supervised classification is done through 
maximum likelihood.
The seventh stage: accuracy assessment
Accuracy assessment of rural–urban continuum axis 
between Ar-Riyadh and Al-Kharj images was done to 
know the levels of trust in classifications during different 
years, and this was done through the following steps:
The classification and the satellite image for each year 
were added together in two Viewer display spaces. The 
classification accuracy was performed through Accuracy 
Assessment, the classification path which was required 

Fig. 2  Geographical distribu-
tion of the urban communities 
in the rural–urban continuum 
axis between Ar-Riyadh and 
Al-Kharj Source: Sentinel 
2 — with a resolution of 10-m 
— US Geologic Survey (Earth 
Explorer (USGS)) website
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Fig. 3  Study procedures and 
data processing

Table 1  Characteristics of 
the satellite images used in 
monitoring the urban changes of 
the urban rural continuum axis 
from 1988 to 2020

Satellite Sensor Spatial resolution Spectral bands Path Row Acquiring date

Landsat 4–5 TM 30 m 8 165 43 1988
Landsat 4–5 TM 8 2000
Landsat 8 OLI 11 2013
Landsat 8 OLI 11 2020
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to be tested for accuracy was determined, Random Points 
which were used in the classification accuracy-test were 
added (the number of Random Points = 100 points), and 
then the Random Points bearing the value (zero) that 
reflected the unclassified areas were deleted. All unclas-
sified samples were removed, and each point of the satel-
lite image was tested, and the rank of the feature in which 
it was located was written according to the ranks upon 
which the classification was established.
Field samples were collected to increase the accuracy of 
validation of classified maps by comparing samples from 
the classified image with the field samples collected. Field 
samples were collected by GPS. The total number of field 
samples that were collected was 84 samples out of a total 
of 100 randomly distributed samples in the program (after 
deleting 16 samples in the unclassified areas). The field 
samples were distributed over the land uses in the area as 

follows: agriculture (22), urban (16), desert (39), water 
(4), roads (3). The validation process with field samples 
went through several stages. In the first stage, the land 
use of each of the samples was collected in the field by 
means of the global positioning systems (GPS) through 
the coordinates of each sample, and in the second stage, 
the field samples were compared with the same samples 
on the original satellite image. In the third stage, field 
samples were compared with same samples on the clas-
sified map by the Accuracy Assessment window within 
the ERDAS aerial imagery and satellite image processing 
program. This method of accuracy validation increased 
confidence in the final results of the classified maps and 
their matching with the satellite images and reality.

The final report appears with all its details, in which the 
total accuracy of the classification and the classification 

Fig. 4  Landsat satellite images: 
A 1988, B 2000, C 2013, D 
2020
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accuracy of each feature appear; overall accuracy (Eq. 1) and 
the Kappa coefficient were calculated as shown in Table 2.

Where:
N = total number of samples.
∑K

i=l
xil = sum of integer samples for all classified land 

cover.
The satellite image classification in 1988 for the 

rural–urban continuum (Ar-Riyadh-Al-Kharj) reached about 
99% of the total samples used in the test, which were 100 
samples. That is, only one sample from the total number 
of samples differed in classification by 1% when assessing 
the accuracy, and the accuracy in 2000 AD reached about 
98% of the total samples used in the test, which were 100 
samples. That is, only two samples from the total number 
of samples differed in classification by 2% when assessing 
accuracy. Moreover, the accuracy in 2013 was about 97% 
of the total number of samples used in the test, which were 
100 samples. That is, only three samples of the total number 
differed in classification by 3% when assessing accuracy, 
and the accuracy in 2020 AD reached about 99% of the total 
samples used in the test, and the number was 100 samples, 
meaning that only one sample from the total number differed 
in classification by 1% when assessing accuracy.

Multi‑criteria analysis based on geographic 
information systems and determination of weights 
using analytic hierarchy process

Criteria definition

The first stage of multi-criteria decision analysis (MCDA) is 
concerned with combining information and data from sev-
eral criteria for decision-making purposes (Abudeif et al. 
2015). The suitable areas for future land cover using the 
GIS-MCA were determined using twelve criteria, namely, 
light slopes (S) and distance from Wadis (V), proximity to 
urban agglomerations (U), proximity to road network (R), 

(1)Overall accuracy =

∑K

i=l
xil

N

proximity to railways (RW), distance from agricultural land 
(A), soil type (SO), geology (G), dimension from faults (C), 
distance from wells (W), distance from environmental areas 
(E), distance from power lines (P). The main purpose of 
using MCA is to improve the ability of the CA-Markov cel-
lular model to predict the future of land cover in 2030 using 
twelve criteria. Figures 5, 6, and 7 illustrate the criteria 
affecting land cover within the CA–Markov model.

Determine the input data, spatial accuracy, and sources 
used in the study

To conduct GIS-MCA analysis in the rural–urban continuum 
between Ar-Riyadh and Al-Kharj cities, the necessary data 
was obtained from several different sources with stand-
ardization of measurements and projections for it so that 
data integrates within the geographic information systems; 
data from different sources were collected to cover all the 
information about the twelve criteria; five topographic maps 
with scale 1:50,000 and the geologic map number (GM-121 
C) of Ar-Riyadh sheet with scale 1:250,000 were obtained 
from the General Authority for Geologic Survey, and digital 
elevation model (DEM) data with resolution of 12 m was 
obtained from the (Vertex) website of NASA. Landsat-OLI 
8 satellite image for 2020 was obtained from the US Geo-
logic Survey (USGS) website for monitoring and delineat-
ing the agriculture areas, urban areas, and other features 
that might be of interest to the study; the Atlas maps of the 
regional planning of Ar-Riyadh were also implemented in 
the study and were obtained from the “Royal commission 
for Ar-Riyadh city), and the maps of the regional planning of 
Al-Kharj were obtained from the Ministry of Municipal and 
Rural Affairs of KSA. Table 3 shows the data input, types, 
spatial accuracy, and sources.

Determine the preferences values and the relative weights 
of the criteria

The research applied the analytic hierarchy process (AHP), 
which is one of the techniques used in multi-criteria deci-
sion analysis (MCDA), where the analytic hierarchy 

Table 2  Accuracy assessment 
of satellite images from 1988 
to 2020

Land cover 1988 2000 2013 2020

Producer User Producer User Producer User Producer User

Agricultural lands 100 100 100 100 90 100 100 100
Urban areas 87.5 100 100 100 100 100 100 100
Desert lands 100 95.3 98.9 95 98 95 100 100
Water 100 100 100 100 100 100 100 100
Roads 100 100 100 100 100 100 100 100
Total accuracy 99 98 98.8 100
Kappa coefficient 0.94 0.94 0.93 1
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process starts placing the elements of the problem at hand 
hierarchically, makes a pairwise comparison between them 
based on the selection criteria, and then weighs them in 
relation to the goal. Preference is based on the comparison 
scale suggested by Saaty (Saaty 1980). Through bilateral 
comparisons, we get the weight of the criteria used in 
prioritization. Then, there is the consistency verification, 

which guarantees there are no contradictory views, and 
it should not exceed 10%. Tables 4, 5, and 6 show the 
determination of the criteria weights using AHP method.

To determine the preference values of the criteria using 
the hierarchical analysis method (AHP), Eqs. (2–4) were 
used next:

Fig. 5  Unifying standards 
values (roads-railway-urban-
slopes) using fuzzy logic on 
a scale ranging from (1 to 10) 
within CA-Markov software

Fig. 6  Unifying standards val-
ues (streams-geology-wells-soil) 
using fuzzy logic on a scale 
ranging from (1 to 10) within 
CA-Markov software
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The percentage of preference values between two 
parameters, one in a column and the other in a row, can be 
determined using the formula:

(2)
[

aij
]

, where i, j = 1, 2,… ..n

(3)aij = 1 f or i = j

(4)aij =
1

aji
f or i ≠ j

Where:
ajk : the percentage of preference between two param-

eters in column and row.
ajk : the values of preference between two parameters in 

column and row.
∑m

1=I
aIk ∶ the total sum of the column parameter.

(5)ajk =
ajk

∑m

1=I
aIk

Fig. 7  Unifying standards 
values (agriculture-power 
line-crevasses-environment are) 
using fuzzy logic on a scale 
ranging from (1 to 10) within 
CA-Markov software

Table 3  The input data, spatial accuracy, and sources used in the study

M Input data Scale and spatial accuracy Source

1 Geologic formation Scale 1:250,000 General Authority for Geologic Survey
2 Soil Scale 1:250,000 Ministry of Environment Water and Agriculture
3 Streams/valleys DEM 12 m (Vertex) Website of NASA
4 Slopes DEM 12 m (Vertex) Website of NASA
5 Agriculture areas Satellite image Landsat 8/OLI US Geologic Survey (USGS) website
6 Urban areas Satellite image Landsat 8/OLI US Geologic Survey (USGS) website
7 Road networks Satellite image Landsat 8/OLI US Geologic Survey (USGS) website
8 Railways Regional Plan atlas for Ar-Riyadh region Royal commission for Ar-Riyadh city—2019
9 Wells topographic maps scale 1:50,000—Regional Plan 

atlas for Ar-Riyadh region
General Authority for Geologic Survey—Royal 

commission for Ar-Riyadh city—2019
10 Power lines Topographic maps scale 1:50,000 General Authority for Geologic Survey
11 Crevasses/faults Topographic maps scale 1:50,000 General Authority for Geologic Survey
12 Environmental areas Topographic maps scale 1:50,000 General Authority for Geologic Survey
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The relative weight values are determined using the 
formula:

Where:
wj : the value of the relative weight for the row parameter.
∑m

1=I
ajl : sum of the percentages of the preference values 

for a row parameter.
m : the final value of the sum 

∑m

1=I
ajl for all rows.

Table 7 shows the final weights.
The consistency is computed using the formula:

Where
ʎMax : the square root of the pairwise comparison matrix 

mean.

(6)wj =

∑m

1=I
ajl

m

(7)CI =
λMax − n

n − 1

Table 4  The preferences values 
of the criteria using the AHP 
method

Service S V U R RW A SO G C W E P

S 1 1 2 3 4 5 6 6 7 8 9 9
V 1 1 2 3 4 5 6 6 7 8 9 9
U 0.5 0.5 1 2 3 4 5 5 6 7 8 8
R 0.33 0.33 0.5 1 2 3 4 4 5 6 7 8
RW 0.25 0.25 0.33 0.5 1 2 3 3 4 5 6 7
A 0.2 0.2 0.25 0.33 0.5 1 2 2 3 4 5 6
SO 0.17 0.17 0.2 0.25 0.33 0.5 1 1 2 3 4 5
G 0.17 0.17 0.2 0.25 0.33 0.5 1 1 2 3 4 5
C 0.14 0.14 0.17 0.2 0.25 0.33 0.5 0.5 1 2 3 4
W 0.13 0.13 0.14 0.17 0.2 0.25 0.33 0.33 0.5 1 2 3
E 0.11 0.11 0.13 0.14 0.17 0.2 0.25 0.25 0.33 0.5 1 2
P 0.11 0.11 0.13 0.13 0.14 0.17 0.2 0.2 0.25 0.33 0.5 1
Sum 4.11 4.11 7.05 10.97 15.92 21.95 29.28 29.28 38.08 47.83 58.5 67

Table 5  The percentages of the 
preferences values using the 
AHP method

Service S V U R RW A SO G C W E P

S 0.243 0.243 0.284 0.273 0.251 0.228 0.205 0.205 0.184 0.167 0.154 0.134
V 0.243 0.243 0.284 0.273 0.251 0.228 0.205 0.205 0.184 0.167 0.154 0.134
U 0.122 0.122 0.142 0.182 0.188 0.182 0.171 0.171 0.158 0.146 0.137 0.119
R 0.080 0.080 0.071 0.091 0.126 0.137 0.137 0.137 0.131 0.125 0.120 0.119
RW 0.061 0.061 0.047 0.046 0.063 0.091 0.102 0.102 0.105 0.105 0.103 0.104
A 0.049 0.049 0.035 0.030 0.031 0.046 0.068 0.068 0.079 0.084 0.085 0.090
SO 0.041 0.041 0.028 0.023 0.021 0.023 0.034 0.034 0.053 0.063 0.068 0.075
G 0.041 0.041 0.028 0.023 0.021 0.023 0.034 0.034 0.053 0.063 0.068 0.075
C 0.034 0.034 0.024 0.018 0.016 0.015 0.017 0.017 0.026 0.042 0.051 0.060
W 0.032 0.032 0.020 0.015 0.013 0.011 0.011 0.011 0.013 0.021 0.034 0.045
E 0.027 0.027 0.018 0.013 0.011 0.009 0.009 0.009 0.009 0.010 0.017 0.030
P 0.027 0.027 0.018 0.012 0.009 0.008 0.007 0.007 0.007 0.007 0.009 0.015
Sum 1 1 1 1 1 1 1 1 1 1 1 1

Table 6  The relative weights of criteria for determining future land 
cover for the rural–urban continuum axis between Ar-Riyadh and Al-
Kharj

Service Sum of the row The 
relative 
weight

S 2.572 0.214
V 2.572 0.214
U 1.840 0.153
R 1.354 0.113
RW 0.990 0.082
A 0.714 0.059
SO 0.504 0.042
G 0.504 0.042
C 0.354 0.030
W 0.258 0.022
E 0.188 0.016
P 0.151 0.013
Sum 12 1
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n: the number of parameters or criteria

The closer the result to zero, the more confident the con-
sistency index and vice versa.

Secondly, calculating the consistency index percent from 
the formula:

where R is the random consistency index based on the num-
ber of criteria taken from Table 6.

The value of the random consistency index based on the 
previous table is equal to 1.49; that is because the used cri-
teria are more than 10. The percent of the consistency index 
is 0.07/1.49 = 5% = 0.05. The consistency values must be in 
consistent range not exceeding 0.1 (i.e., 10%), as the higher 
the value than 0.1, the more conflict in consistency.

Using the Cellular Automata Markov model 
to predict land cover in 2030

The prediction of future land cover was performed with 
IDRISI Selva software version 17.0 using the CA-Markov 
prediction model; IDRISI software also enables the imple-
mentation of CA–Markov model, which combines local 
cellular behavior and Markov chain analysis; multi-criteria 
evolution (MCE) analysis; multi-objective land allocation 
(MOLA); the procedures of land-cover prediction, which 
add an element of the spatial continuum; and the potential 
spatial distribution of transitions to Markov chain analysis.

The supervised images were exported to IDRISI Selva 
software to apply the CA-Markov prediction model to model 
and simulate the land cover in the study area in 2030 as 
follows:

1. The Markov model was used to get the transition prob-
ability matrix and transition area matrix for the time 
period 2000–2010.Predicting the land cover in 2020 was 
obtained using the CA–Markov model which required:

The 2010 land cover images
The transition area matrix (obtained in the previous 
step)
The number of iterations was determined to 10 itera-
tions (according to the number of years desired)

(8)CI =
8.7 − 8

8 − 1
= 0.1

(9)Stability ratio =
CI

R

The default 5 × 5 filter
A default error rate of zero

2. A comparison of the actual supervised image in 2020 
and the predicted image obtained from the CA-Markov 
using the “validate simulation determination tool” in 
IDRISI Selva. The validation step was required to be 
assured of the results that will be obtained for the simu-
lation of 2030.

3. Prediction of land cover in 2030 using the CA-Markov 
based on the spatial suitability map using GIS-MCA and 
AHP (Figs. 8 and 9); the number of iterations was deter-
mined to 10 (years from, 2020 to 2030), filter of 5 × 5, 
and a zero error rate.

Results and discussion

Monitoring of the land cover changes of the rural 
– urban continuum axis between Ar‑Riyadh 
and Al‑Kharj during the period 1988–2020

Monitoring of the changes in the area of agricultural lands 
during the period 1988–2020

The analysis of Table 8 revealed that, the area of agricultural 
lands in 1988 amounted to about 224.02  km2, representing 
about 8.2% of the total area of the study area. In the year of 
2000, the agricultural lands decreased to 126.98  km2, which 
constitutes about 4.7% of the total area of the study area, 
while it increased in the year of 2013 to 166.18  km2, rep-
resenting about 6.1%. Then, it decreased again in the year 
of 2020 to reach 162.9  km2, representing about 6% of the 
total area. From the analysis of the agricultural lands from 
1988 to 2020, it is clear that the annual growth rate was 
about − 0.99% and the average annual decline was − 1.9  km2, 
which means that the rural–urban continuum (Ar-Riyadh-Al-
Kharj) lost about 61  km2 of its agricultural lands. Figure 10 
shows the change in the agricultural areas of the rural–urban 
continuum during the period 1988–2020.

The bulldozing of agricultural lands to establish industrial 
zones helped to lose a lot of agricultural land. In addition, 
the great housing crisis in the city of Ar-Riyadh led to search 
for areas that are less expensive and close to the city, and 
many agricultural lands have been transformed into urban 
areas to meet the needs of housing demand. The ease of 

Table 7  Random stability index N 1 2 3 4 5 6 7 8 9 10

R 0 0 0.52 0.89 1.11 1.25 1.3 1.4 1.45 1.49
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spreading agricultural rest houses along the Ar-Riyadh-Al-
Kharj corridor helped in converting these rest houses into 
accommodation for those looking away from the city noise 
and crowding, and the establishment of the industrial zone 
south of Ar-Riyadh helped to attract investors to establish 
other industries near these areas, and then much of the agri-
cultural land was lost.

Monitoring of the urban areas changes from 1988 to 2020

From Table 9, it is clear that the urban areas in the year 
of 1988 were about 36.25  km2, which represents 1.3% of 
the total area. It increased to 49.92  km2 in the year 2000, 
which constitutes about 1.8% of the total area. It increased 
to 90.92  km2 in 2013, which is equivalent to 3.3% of the 

Fig. 8  Spatial suitability of the 
criteria affecting the rural–urban 
continuum axis between Ar-
Riyadh and Al-Kharj: A valleys, 
B land surface inclinations, C 
road networks, D urban com-
munities, E agricultural lands, 
F railways
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total area, and it continued to rise in the year of 2020 and 
amounted to 114.09  km2, with nearly 4.2% of the total 
area.

The analysis of Table 8 revealed that the annual growth 
rate during the period from 1988 to 2020 reached 3.65%, 
and the average annual increased to 2.4  km2. That is, the 
urban–rural continuum axis between Ar-Riyadh and Al-
Kharj has achieved an increase 78  km2 in the urban areas.

Monitoring of the desert land changes during the period 
1988–2020

Table 10 shows the changes in desert lands from 1988 to 
2020. The desert areas in 1988 represented about 2444.51 
 km2, and it increased to reach 2527.84  km2 in 2000 with an 

Fig. 9  Spatial suitability of 
the criteria affecting the rural–
urban continuum axis between 
Ar-Riyadh and Al-Kharj: A 
geology, B soil, C faults, D 
water sources, E power lines, F 
environmental areas
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increase of 103.41%. During the period from 2000 to 2013, 
it reached about 2445.27  km2 in 2013 with a decrease of 
96.73%. Then, the desert lands decreased about 2420.43  km2 
in 2020 with 98.98% than it was in 2013.

Monitoring of the changes in water during the period 
1988–2020

Table 11 presents the changes in water; their areas in 1988 
were about 4.77  km2, the area reached 4.8  km2 in 2000, 
and it increased to 7.18  km2 in 2013 with an increase 

Table 8  Changes in the 
agricultural lands of the rural–
urban continuum axis during 
the period 1988–2020

Year Area  (km2) Area  (km2) 1988 Increase of 
annual aver-
age

Rate of aver-
age increase

Rate of change

km2 %

1988 224.02
2000 126.98  − 97.0  − 59.57%  − 43.32%  − 8.1  − 4.62%  − 43.32%
2013 166.18 39.2 24.06% 17.50% 3.0 2.09% 30.87%
2020 162.9  − 3.3  − 2.01%  − 1.46%  − 0.5  − 0.28%  − 1.97%
2020–1988  − 61.1  − 37.52%  − 27.28%  − 1.9  − 0.99%  − 37.52%

Fig. 10  Land cover for the 
rural–urban continuum axis: A 
in 1988, B in 2000, C in 2013, 
D in 2020
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of 149.58% from what it was in 2000. In 2020, the area 
reached 12.13  km2 with an increase of 168.94% over what 
it was in 2013.

Predicting the future of land cover for the urban 
rural continuum axis (Ar‑Riyadh–Al‑Kharj) 
until 2030

The actual and predicted land cover in 2020

CA–Markov model was applied on the land cover maps 
obtained previously from the supervised classification of 
the satellite images for the years 2000 and 2010. The land 
cover types existed in 2000 and 2010 were agricultural 
lands, urban areas, desert lands, water, and roads. The two 
land cover layers were entered to the model, and the time 
interval between the two images was set to 10 indicating 

the difference in years from 2000 to 2010. The number of 
years to be signed after the second image has been set to 10, 
indicating the difference in years between 2010 and 2020. 
So that, the model will generate a future land cover map 
for the year of 2020. The transition probability matrix, the 
transition areas matrix, and the transition suitability maps 
are obtained in Tables 12 and 13. The subsequent step was 
comparing the predicted map with the actual land cover in 

Table 9  Changes in the urban 
areas of the rural–urban 
continuum axis during the 
period 1988–2020

Year Area  (km2) Area  (km2) 1988 Increase of 
annual average

Rate of aver-
age increase

Rate of change

km2 %

1988 36.25
2000 49.92 13.7 11.98% 6.10% 1.1 2.70% 37.71%
2013 90.92 41.0 35.94% 18.30% 3.2 4.72% 82.13%
2020 114.09 23.2 20.31% 10.34% 3.3 3.30% 25.48%
2020–1988 77.8 68.23% 34.75% 2.4 3.65% 68.23%

Table 10  Changes in the desert lands of the rural–urban continuum 
during the period 1988–2020

Year 1988 2000 2013 2020

Desert areas  (km2) 2444.51 2527.84 2445.27 2420.43

Table 11  Changes in the water areas of the rural–urban continuum 
during the period 1988–2020

Year 1988 2000 2013 2020

Water  (km2) 4.77 4.8 7.18 12.13

Table 12  Transition probability 
matrix of land cover during the 
period 2000–2010

Year 2010

Land cover Agricultural lands Urban areas Desert areas Water Roads

2000 Agricultural lands 0.7844 0.0131 0.2024 0.0000 0.0001
Urban areas 0.0023 0.9939 0.0017 0.0000 0.0021
Desert areas 0.0250 0.0141 0.9600 0.0009 0.0000
Water 0.0000 0.0001 0.0266 0.9733 0.0000
Roads 0.0000 0.0000 0.0000 0.0000 1.0000

Table 13  Transition matrix (in 
pixels) for different land cover 
from 2000 to 2010

Year 2010

Land cover Agricultural lands Urban areas Desert areas Water Roads

2000 Agricultural lands 144,840 2415 37,376 0 12
Urban areas 233 100,408 169 0 211
Desert areas 67,937 38,237 2,608,291 2507 0
Water 0 1 212 7766 0
Roads 0 0 0 0 12,210
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2020, which obtained supervised classification of the satel-
lite images for the years 2020. The aim of the comparison 
between the actual and predicted land cover map in 2020 
was to verify the accuracy of the model to be assured of the 
results of the forecast in 2030.

The CA–Markov model was run for the second time 
using the classified images in 2010 and 2020, the number 
of iterations was set to 10 (number of years between 2010 
and 2020) to get the simulated land cover map for the 
year 2020. Figure 11 shows the actual and predicted land 
cover maps in year 2020. Table 14 presents the areas of 

the land cover in the actual and predicted land cover maps 
in year 2020.

Table 14 shows the accuracy of the prediction model, 
which was ranged between 82.8 and 98.91%. for differ-
ent land cover. The total area of agricultural lands result-
ing from the predicted map in 2020 was about 190.9  km2, 
while the actual total area resulted from the supervised 
classification was 162.9  km2, with an accuracy of 82.8%.

The urban areas were 126.6  km2 in the predicted map in 
2020, while the actual area was 114.09  km2, with an accu-
racy of 89.03%. The desert lands were 2381.5  km2 in the 
predicted map in 2020, while the actual area was 2420.43 
 km2, with an accuracy of 98.39%. The total area of water 
in the predicted map was 10.4  km2, and its actual area was 
12.13  km2 with accuracy reached 85.74%. Finally, the total 
area of the main roads in the prediction map was 11.1  km2, 
while the actual area was 10.98  km2 and the accuracy was 
98.91%.The validate tool was used in the IDRISI program 
as second method to verify the accuracy of the CA-Markov 
prediction model. Kappa value of 0 illustrates agreement 
between actual and reference map (equals chance agree-
ment), the upper and lower limit of kappa is + 1.00 (occurs 
when there is total agreement) and − 1.00 (represents 
agreement which is less than chance) (Congalton 1991). 
The results of the validate tool showed very high accu-
racy for the various Kappa coefficients as seen in Table 14. 
The values of the parameter Kno, Klocation, KlocationStrata, and 
Kstandard were 0.9488, 0.8717, 0.8717, and 0.8091 respec-
tively. According to Zadbagher and Becek (2018), a model 
is valid if the overall Kappa (Kstandard) score exceeds 70% 
(or 0.7). The Kstandard score, close to 90%, is a very strong 
indicator of the overall accuracy and performance of the 
model, and the remaining k scores, all exceeding 85%, 
indicate that there are almost no or very small quantifi-
cation and location errors between the predicted and the 
actual land cover map for 2019. Thus, the simulation has a 
strong ability to predict both the quantity and the locations 
of change (Table 15).

Fig. 11  A Land cover map: A actual in year 2020, B predicted land 
cover map in 2020

Table 14  A comparison between actual and predicted statistics in 
2020 to assess the model’s accuracy

Land cover Area  (km2) Prediction 
accuracy 
(%)Actual 2020 Projected 2020

Agricultural lands 162.9 190.9 82.8%
Urban areas 144.09 126.6 89.03%
Desert lands 2420.43 2381.5 98.39%
Water 12.13 10.4 85.74%
Roads 10.98 11.1 98.91%
Total 2720.5 2720.5 100%
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Prediction of the future land cover in the year of 2030

A Markov model was run using the supervised images 2010 
and 2020; the time interval between the two images was 
set to 10, indicating the 10-year difference between the two 
images. The number of years to be signed after the second 
image has been set to 10, indicating the 10-year difference 
from 2020 to 2030. The number of iterbations was set to be 
10 equal to the number of years to be predicted. The transi-
tion probability matrix and the transition areas matrix are 
illustrated in Tables 16 and 17 respectively.

The spatial suitability map was obtained using the 
multi-criteria analysis (GIS-MCA) and hierarchical anal-
ysis (AHP). From Fig. 12 and Table 18, it is clear that 
the land cover of the rural–urban continuum axis between 
Ar-Riyadh and Al-Kharj in 2030 is varied in terms of the 
amount of change expected to occur, either by increase or 
decrease. The urban land cover was the most likely type in 
terms of increasing the area (it is expected to increase from 
114.09  km2 in 2020 to 141.19  km2 2030). The increase in 
the urban areas came at the expense of the desert lands. 
The desert lands lost about 2396.46  km2 from its total area 

in 2030 which were 2420.43  km2 in 2020 with a decrease 
equal to 23.97  km2. The agricultural lands recorded an 
expected decrease in the total area equivalent to 3.65  km2 
as the total area was 162.9  km2 and 159.25  km2 in 2020 
and 2030, respectively. The change in water was about 
0.4  km2, as it recorded an area of about 12.53  km2 in 2030 
while in 2020, it was 12.13  km2. Finally, the area of the 
main roads recorded a very slight increase of 0.12  km2, 
as the area 2020 was 10.98  km2 and changed to 11.1  km2 
in 2030.

Validation of spatial suitability map

From the suitability map in Fig. 13, the total area of the 
urban in 2030 is expected to be 141.19  km2. The area of 
the urban in the very high suitability zone is 75.12  km2, 
which is 53.2% of the total area of the urban in 2030, 
whereas the total area of the urban located in the high 
suitability zone is 43.98  km2 with about 31.15% of the 
total area of the urban. The total area of the urban located 
in the moderate suitability zone is 18.88  km2 with a ratio 
of 13.37%. The total area of the urban located in the low 
suitability zone is 3.21  km2 with only 2.27% the total area 
of the urban. Table 19 shows that no urban areas located 
in very low suitability zone in 2030.

The results show high compatibility between the suit-
ability map and the projected map of year 2030 where 
85% of the urban areas are located in very high and high 
suitability zones. This indicates an excellent compatibil-
ity between suitability map and projected maps, and this 
confirms the effectiveness of the techniques used to get 
these results.

Table 15  Kappa coefficient to assess the accuracy of the prediction 
model

Kappa coefficient Kappa coefficient 
value for CA-
Markov

Kno 0.9488
Klocation 0.8717
KlocationStrata 0.8717
Kstandard 0.8091

Table 16  The probability 
transition matrix of land cover 
from 2020 to 2030

Year 2030

Land cover Agricultural lands Urban areas Desert areas Water Roads

2020 Agricultural lands 0.8764 0.0034 0.1184 0.0018 0.0001
Urban areas 0.0010 0.9951 0.0039 0.0000 0.0000
Desert areas 0.0067 0.0115 0.9791 0.0026 0.0000
Water 0.0000 0.0001 0.1036 0.8963 0.0000
Roads 0.0000 0.0000 0.0000 0.0000 1.0000

Table 17  Transition matrix (in 
pixels) for different land cover 
from 2020 to 2030

Year 2030

Land cover Agricultural lands Urban areas Desert areas Water Roads

2020 Agricultural lands 158,638 609 21,427 331 0
Urban areas 125 126,139 498 0 0
Desert areas 18,106 30,972 2,633,191 7097 0
Water 0 1 1397 12,085 0
Roads 0 0 0 0 12,210
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Scenarios to reduce the increase of the industrial 
usage control in the map of using the rural–urban–
continuum land in 2030

The map of using the rural–urban–continuum land for the 
year 2030 revealed that the industrial usage is the most 
likely type in terms of increasing the area and to preserve 
the remaining agricultural lands that have lost more than 
61  km2 during the past 30 years and which are expected 
to witness continued loss during the next 10 years and to 

reduce the increase of the industrial usage control in the 
map of using the rural–urban–continuum land in the year 
2030; the study proposes three different scenarios so that 
these scenarios take into account the current conditions 
of land usage in the study area, especially the industrial 
establishments spread on the axis of the Ar-Riyadh-Al-
Kharj road and its relation to the rest of usages, this as 
well as the link of some industries to the sites of some 
raw sources, as there are industries such as dates, veg-
etables, fruits, dairy and water that require their pres-
ence in their current locations while preserving as much 
as possible the agricultural lands and work to develop 
it and increase its productivity; the first scenario deals 
with moving industrial establishments towards the city 
of Al-Kharj in the industrial zones designated for this, 
and allocating the lands located on the (Ar-Riyadh-Al-
Kharj) road for agricultural and recreational use and not 
to be extended to any other activities so that no extension 
occurs from the cities of Ar-Riyadh and Al-Kharj and 
let the Ar-Riyadh-Al-Kharj road remain a developmental 
separator and a barrier to urban inflation, while the sec-
ond scenario concerned (keeping industrial facilities on 
the axis) deals with confirming the existence of industrial 

Fig. 12  Land cover in the 
urban–rural continuum axis 
between Ar-Riyadh-Al-Kharj in 
year 2030 based on the spatial 
suitability map for land cover

Table 18  Areas of land cover in 2020 and projected land cover in 
2030

Land cover Area  (km2)

2020 2030 Expected change

Agricultural lands 162.9 159.25  − 3.65
Urban areas 114.09 141.19  + 27.1
Desert lands 2420.43 2396.46  − 23.97
Water 12.13 12.53  + 0.4
Roads 10.98 11.1  + 0.12
Total 2720.5 2720.5 0
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facilities, but with organizing them according to the foun-
dations, standards, and planning and design controls, by 
choosing places linked to the Ar-Riyadh-Al-Kharj road 
axis, as combined industrial areas, away from the road 
with a suitable depth, and provided them with all neces-
sary infrastructure, while the third scenario deals with 
converting sites that concentrate more than one industrial 
facility at the present time into an industrial cell after 
rehabilitating and optimization of urban spaces in it and 
adding other facilities, in accordance with the principles 
and standards followed in this regard to produce the least 

losses on the material, developmental, and environmental 
levels (Fig. 14).

Table 20 illustrates the evaluation of scenarios to reduce 
the increase of industrial usage control. the scenarios to 
reduce the increase of the industrial usage control have been 
evaluated in the map of using the Rural–Urban–Continuum 
land in 2030, by giving points for the evaluation, which are 
(3,2,1,0) According to the evaluation of the scenario accord-
ing to the standard, so that evaluation (0) means that the cri-
terion is not met, and evaluation (3) means that the criterion 
is fully achieved.

Through the trends of each of the three expected scenar-
ios, which represent general trends for scenarios to reduce 
the increase of the industrial usage control on the axis (Ar-
Riyadh-Al-Kharj), it is noted that although all scenarios 
contribute to solving the problem, they differ in terms of 
economic gains. Through the evaluation of these scenarios 
in the previous table, the third scenario can be chosen as 
an optimal scenario, as it combines the advantages of the 
first and second scenarios, supporting the orientations of 
the previous plans such as the national urban strategy and 
the regional plan for Al-Kharj Governorate, as well as pre-
serving as much as possible the current industrial system 
and reducing the resulting economic cost. For the transfer 

Fig. 13  Final spatial suitability 
map for future land cover

Table 19  Area of the spatial suitability zones for the expected urban 
mass in 2030

Spatial suitability zones Area  km2 Percent

Very high suitability 75.12 53.205%
high suitability 43.98 31.150%
Moderate suitability 18.88 13.372%
Low suitability 3.21 2.273%
Very low suitability – –
Total 141.19 100%
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of the entire activities, in addition to the compensation that 
the responsible authorities would have to pay upon expro-
priating the lands on which the industrial establishments are 
located, and it provides job opportunities for the population 

and limiting the migration of residents to the two centers 
(Ar-Riyadh-Al-Kharj).

Conclusions

• The map of land use changes in the urban rural area (Ar-
Riyadh-Al-Kharj) during the period between 1988 and 
2019 revealed that the lands that were transformed into 
urban and industrial areas reached 77.84  km2; it included 
the largest proportion of these changes from the desert 
areas, and it included the southern lands Al-Sharqiyah, 
adjacent to Ar-Riyadh, and northwest adjacent to Al-
Kharj, as well as the adjacent lands around the main 
road network (Ar-Riyadh-Al-Kharj), in addition to the 
expansions that took place from leveling some agricul-
tural lands. The lands that were transformed into water 
marshes reached an area of 7.36  km2. The largest pro-
portion of these changes included the desert areas with 
increase in the area of Al-Ha’ir sabkha located to the 
west. As for agricultural lands, they lost about 61.12  km2 
of its area, and the largest percentage of these changes 
included the desert areas. This is due to the feature of 
desertification and dredging spread in the northwest of 
the city of Al-Kharj around the main road (Ar-Riyadh-
Al-Kharj), in addition to bulldozing agricultural lands 
to establish industrial zones. The desert lands lost about 
24.08  km2 of its area, and the largest percentage of these 
changes included the urban and industrial areas.

• The compatibility between the spatial suitability map and 
land cover prediction map in 2030 indicates that about 
85% of the urban mass is located in the range of very 
high spatial and high spatial suitability, which indicates 
an excellent compatibility between spatial suitability and 

Fig. 14  Scenarios to reduce the increase of the industrial usage con-
trol in the map of using the rural–urban–continuum land in 2030

Table 20  Evaluation of scenarios to reduce the increase of the industrial usage control

Evaluation standards Scenarios to reduce the increase of 
the industrial usage control

First Second Third

Supporting the direction of the national urban strategy by supporting the diversification of the economic 
base on the axis as a major axis in the central sector

1 2 3

Taking into account the recommendations of the regional plan for Al-Kharj governorate by emptying the 
axis except for agricultural and recreational activities

3 0 1

The economic cost of implementing the scenario trend 1 3 2
Environmental impacts resulting from the implementation of the scenario 3 1 2
Social gains that are reflected in the area’s population 1 2 2
Limiting the migration of residents to the two urban centers, Ar-Riyadh and Al-Kharj 1 2 3
Integration of existing farms with associated industries 0 3 3
Supporting and strengthening the industrial activity on the axis as an existing and productive activity 0 2 3
Total Rating Score 10 15 19
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prediction maps, and this confirms the effectiveness of 
the techniques used to obtain these results.

• To reduce the increased control of industrial uses in the 
map of land uses for the urban and rural continuum in 
2030, the study proposed three different scenarios, one 
of which deals with the transfer of industrial facilities 
towards the city of Al-Kharj, and the other confirms the 
existence of industrial establishments, while the third 
scenario deals with the transformation of industrial facili-
ties into cells and the exploitation of urban spaces in 
them, and the study favored the third scenario to reduce 
the increased control of industrial uses.

• Although the CA–Markov model is able to predict and 
simulate the future land cover, it has been combined with 
the GIS-MCA and the AHP method to improve the accu-
racy of the prediction for the future land cover map pro-
duced for the urban rural continuum between Ar-Riyadh 
and Al-Kharj.

Recommendations

 1. The study recommends that the ratio of 70% or higher 
has to be considered for spatial suitability for future 
land cover on the urban–rural continuum axis between 
Ar-Riyadh and Al-Kharj.

 2. Allocating the lands located in the rural–urban contin-
uum between Ar-Riyadh and Al-Kharj and determining 
its land uses to be recreational and tourist uses, with a 
building ratio of not more than 10% of the land area.

 3. Reorganizing the industrial facilities on the rural–urban 
continuum axis in the form of industrial cells. Each cell 
includes the licenses donated by official authorities to 
ensure stopping polluting the environment. It is prefer-
able to link the industrial cells with the source of raw 
materials and try to reduce the establishments that will 
be decided to transfer to other authorized industrial 
regions.

 4. Transferring all the industrial establishments that pol-
lute the environment (especially the non-authorized) to 
the industrial zone in Al-Kharj. Attempting to evaluate 
the conditions of the non-polluting industrial establish-
ments related to the source of raw material and related 
to each other in the production cycle. By this way, the 
random establishments will be transformed into an 
industrial cell after rehabilitating it and exploiting the 
urban spaces in it to add other facilities, in accord-
ance with the principles and standards followed in this 
regard.

 5. Creating land uses to achieve the principles of envi-
ronmental planning science for industrial areas. For 
example, the use of a “waste warehouse,” which is an 
area within the industrial zone that collects, classifies, 
and redistributes the waste according to their types, on 

the companies that use them as raw materials, whether 
inside or outside the industrial zone.

 6. Environmental sustainability is one of the necessary 
requirements for balanced development, and this will 
only be possible through:

– The preservation of Wadis
– Environmental rehabilitation and utilization of 

existing water resources to contribute the main-
taining water, food, and housing security

– Achieve the foundations for sustainable urban 
development

– Mitigation of negative environmental impacts by 
periodic monitoring of the change in land use using 
the modern technologies such as remote sensing 
and GIS

 7. Approve the amendment of agricultural land uses with 
special conditions adopted by the municipality to stop 
the random construction and urban sprawl in agricul-
tural lands.

 8. Intensifying the control over the agricultural lands and 
preventing any division of these lands for residential 
purposes.

 9. Preventing the establishment of workshops, factories, 
and other commercial warehouses within agricultural 
lands.

 10. The study suggested three different scenarios to reduce 
the increased control of industrial uses in the map of 
land uses for the urban and rural continuum in 2030, 
and the study favored the third scenario to reduce the 
increased control of industrial uses.
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