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Abstract
Monitoring open crowded areas is fundamental for policy makers to set up the proper measures for people security and
safety. Different techniques have been developed to tackle this issue. The most relevant approaches, which are currently
available to estimate the number of attenders, are based on the size of the area hosting the event, the count of people passing
through specific points, and the employment of satellite images. All these techniques roughly estimate static crowds, but
they may be limited by different factors such as the availability of satellite images, the cost of dedicated unmanned vehicles,
and the capability to set up multiple counting points. In order to fill this gap, a tool to monitor dynamic crowds, based on
WiFi positioning, is presented. The tool allows not only to assess the total number of people attending an event, but also to
monitor their spatiotemporal distribution. In particular, the impact of the cleaning strategies on both the estimated number
of participants and their spatiotemporal distribution is analyzed. The proposed approach is demonstrated using real data
collected during the JRC Open Day 2016. From the results, the need of a clear strategy to identify real users in order to avoid
misleading results emerges. Moreover, a proper setting of the thresholds used for the identification criteria is required. Such
thresholds need to be set according to the dimension of the site, the geography of the WiFi network, and the duration of the
event.

Keywords WiFi · Tracking · Big data · Cleaning

Introduction

Monitoring open crowded areas is fundamental for policy
makers to set up the proper measure for people security and
safety (Doig 2009; Oberschall 1973; Nardo 1985; Lohmann
1994); of foremost importance is the number of people
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attending an event (Jacobs 1967; Krewson 2012) and their
distribution in time and space. In Cariveau (2006) and
Rabaud and Belongie (2006), a review of the common
techniques adopted for estimating the number of people
attending an event is presented. In McPhail and McCarthy
(2004) and Yip et al. (2010), the estimation of the number
of people participating to a demonstration is attempted.
Many different techniques have been proposed to estimate
the dimension of a crowd. The most relevant techniques
currently available to assess the number of people attending
an event are based on the following:

– the size of the area hosting the event (Jacobs 1967;
Krewson 2012): the total number of participant is
obtained multiplying the area for a factor depending on
the season during which the event takes place.

– the actual count of the people passing through specific
points (Watson 2011).

– the employment of satellite images and density-analysis
(Sirmacek and Reinartz 2011; Wallace and Parlapiano
2017).
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– the employment of images from unmanned aerial
vehicles (Choi-Fitzpatrick and Juskauskas 2015; Choi-
Fitzpatrick 2014).

All the abovementioned approaches are mainly used for the
estimation of static crowds, and they are limited by different
factors such as the availability of satellite images, the cost
of images from a dedicated unmanned vehicles, and the
capability to set specific counting points.

About the dynamic crowd monitoring, several
approaches are known to currently be used; each of them
presents given benefits and limitations. Two of the most
common approaches for dynamic crowd monitoring in
outdoor scenarios are mentioned in the following. One of
the most adopted is the image-video processing supported
by a dense network of cameras (Zhan et al. 2008; Li et al.
2015). Its performance depends on dislocation of the cam-
eras, resolution of the acquired images, characteristics of
the adopted image processing algorithm, and applied track-
ing techniques. Its main limitations are represented by the
possible camera occlusion and the weather-environmental
conditions, e.g., rain, fog, smoke bombs, and low-light
conditions, may limit the applicability of the approach.
A comprehensive survey on crowd monitoring based on
video and images is available in Lamba and Nain (2017).
In Yuan et al. (2013) and Yuan (2014), the authors propose
an RF-based crowd density estimation for indoor scenarios,
using mobile phones, together with considerations on its
extension to outdoor. This approach does not present the
limitations of that based on cameras and it provide excellent
performance, but it requires data from telecom providers
and faces strong privacy constraints, which may limit its
application (EC-GDPR 2016).

In this paper, a tool to monitor dynamic crowds is
presented; such a tool allows not only the estimation of the
total number of people attending an event, but also their
spatiotemporal distribution.

The capability to locate and track users exploiting WiFi
data has been already proven in several works (Bobescu
and Alexandru 2015; Kotaru et al. 2015; Biswas and Veloso
2010). The approach is based on two implicit assumptions
(Petre et al. 2017): everyone uses a smartphone whose WiFi
is enabled all the time. Starting from these two assumptions,
the WiFi positioning and tracking exploit the fact that
smartphones repeatedly broadcast probe requests to identify
known networks. The probe request contains the device
unique identifier: the media access control (MAC) address
(Alessandrini et al. 2017). Therefore, in order to be detected,
a smartphone does not have to be connected to a WiFi
network, but it just needs to be within the range of a WiFi
node, when the probe request is sent. Having said that, one
can easily imagine that by carefully dislocating WiFi nodes
within a given area, it is possible to collect MAC addresses

of most of the users passing through that area and, through
a proper processing, to track these users.

Nowadays, the applications of WiFi positioning and
tracking are numerous and growing, including the analysis
of visitor movements and flows, including queue times,
dwell times, wait times, and first-time/repeat visitors; the
implementation of geofencing systems to define boundaries
around areas of interest, triggering alerts when registered
mobile devices enter or exit it; and the optimization of
security and safety assets dislocation during events that
gather critical masses of people.

Obviously, the exploitation of WiFi data is not the
only available solution to track users. Among the other
techniques, global positioning system (GPS) tracking is
the most common and extensively used. Nevertheless,
differently from GPS tracking, WiFi tracking is feasible
also indoors (Mingkhwan 2006). Moreover, whereas GPS
data are owned by telecommunications providers, an ad hoc
network of WiFi nodes is both cheap and easily deployable,
allowing direct collection of the necessary data. On the other
hand, one of the main drawbacks of WiFi tracking is the
need of a pre-processing, namely “data-cleaning,” which
is necessary to identify actual users, but it may limit the
real-time application of the method. Another key aspect
that favors a tracking method rather than another is how it
complies with privacy rules.

Privacy-related aspects are a fundamental topic, when
it comes to locate people through WiFi. Some relevant
considerations about this subject have been made in
Alessandrini et al. (2017), but the discourse on privacy and
personal data has definitely grown up within and outside the
EU, since the enforcement of the General Data Protection
Regulation (GDPR) in April 2018. How does the GDPR
affect the use of WiFi data? Primarily, companies will
no longer be able to provide free WiFi to consumers in
exchange for their browsing data: a very common practice
for the profiling and targeting of potential costumers.
The GDPR also states that organizations must “implement
appropriate technical and organizational measures to ensure
a level of security appropriate to the risk” of the provided
service. In other words, companies should implement best
practices to secure publicly available WiFi networks (Meyer
2018). What is still unclear is how the GDPR will affect
WiFi tracking. The whole discourse revolves around the
definition of MAC address. In fact, the MAC address, apart
from being unique, does not contain any information about
the user. Nevertheless, since it identifies a given device,
that in the case of smart phone is always kept by the
user, the MAC address could be considered as indirect
personal information, or “pseudonymous” data (Maldoff
2016). “Pseudonymization” is a new concept introduced by
the GDPR, consisting in the separation of data from direct
identifiers so that linkage to an identity is not possible
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without additional information that is held separately. Much
debate surrounds the extent to which pseudonymized data
can be re-identified. This issue is of critical importance
because it determines whether a processing operation will
be subject to the provisions of the Regulation.

The detection of a device using WiFi relies on the
uniqueness of its MAC address. Nevertheless, once a device
is detected, one needs to identify if that device corresponds
to an actual user, i.e., to a physical person, or to a static or
fake device. In fact, smartphones are not the only devices
using WiFi. There are plenty of new-generation devices
that exploit WiFi connection, such as printers, hard drives,
music players, surveillance cameras, and smart thermostats;
even some digital photo frames use WiFi. Moreover, some
devices use a fake MAC address when they broadcast
probe requests to identify available WiFi networks. The
identification of actual users is the main goal of the
abovementioned “data cleaning” procedure. Immediately
after the data cleaning, the “positioning” of the detected
users comes. The estimation of the user position within
a given area can be done according to different methods,
which can be based on the strength of the received WiFi
signal, the number of times that a WiFi receiver registers a
given users, etc.

This paper focuses on both cleaning and user positioning
procedures, starting from the data collection of the 2016
Open Day of the Joint Research Centre (JRC) in Ispra
(Italy) (Alessandrini et al. 2017) and comparing different
approaches on the basis of the results described in Gioia
et al. (2017). Data cleaning is conducted following different
approaches: a first screening of the device can be made
using the number of times a device is registered; the second
criterion is based on the number of base stations registering
the presence of the user; and a different approach to identify
real user is developed considering the dispersion of the
estimate user position. The explored positioning strategies
are the following: proximity principle based on received
signal strength (RSS), proximity principle using the number
of records, weighted centroid approach.

The paper is organized in the following way: the next
section describes the cleaning (the “Cleaning approaches”
section) and the positioning (the “Positioning approaches”
section) approaches; the “Experiment” section briefly
illustrates the data collection experiment; the results are
summarized in the “Results” section , which is followed by
relevant concluding remarks in “Conclusions” section.

Methods

In the following sections, the cleaning strategies and the
localization algorithms are described.

Cleaning approaches

WiFi data includes static devices (printers, personal
computer, etc.), fake devices, and devices outside the test
sites. In order to remove the data relative to the not real-
users, three cleaning strategies are implemented in the
measurement and position domains. The first one is based
on the minimum number of times a device is recorded, the
second one considers the number of stations by which a
device is registered, whereas in the position domain, the
distribution of the estimated user positions is analyzed.

A first screening of the devices can be made using the
number of times a device is registered:

real user = if num recordi ≥ threc (1)

where num recordi is the number of records of the ith device
and threc is the threshold set for the detection of the real
users.

The criterion based only on the number of records for
a given device allows to screen out devices which are
registered for a very limited period of time, for example,
devices which were in the proximity of the test field but
not entering it. However, this criterion does not allow the
exclusions of static devices (printers, PC, etc.) which are
registered for all the duration of the experiment. Hence,
another selection criterion is adopted, which is based on the
number of base stations registering the presence of the given
user. Using this approach, a device is classified as “actual
user” if its identifier is recorded by a number of access
points (APs) higher than a fixed threshold:

real user = if num basei ≥ thbase (2)

where num basei is the number of APs registering the
presence of the ith device and thbase is the threshold defining
the minimum number of APs required to classify a device
as a real user.

A different approach for identifying real user is
developed considering the dispersion of the estimate users
position. The standard deviation of the user coordinates is
computed and compared with a given threshold in order to
evaluate the dispersion of the user position:

real user = if σ (posuser) ≥ thpos (3)

where σ (posuser) is the standard deviation of the estimate
user positions and thpos is the threshold used to identify a
real user.

The criterion represented in Eq. 3 is very general: it can
be applied to the single coordinates separately

real user = if σ
(
posuser,x

) ≥ thpos,x
real user = if σ

(
posuser,y

) ≥ thpos,y
(4)
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or it can be applied using both conditions in Eq. 4 (see first
equation in Eq. 5), or on the horizontal component (second
equation in Eq. 5)

real user = if
(
σ

(
posuser,x

) ≥ thpos,x & σ
(
posuser,y

) ≥ thpos,y
)

real user = if σ
(
posuser,hor

) ≥ thpos,hor.

(5)

Positioning approaches

In this section, the methodologies developed to compute
the users position are described. Specifically, three different
strategies have been adopted to track users:

– proximity received signal strength indicator (RSSI)-
based (Manandhar et al. 2008; Dempster 2009);

– proximity occurrence-based;
– Weighted centroid (WeC) (Wang et al. 2013; Borio et al.

2016; Gioia and Borio 2014a, b).

These approaches are commonly used with simultaneous
measurements, i.e., the object to be localized is simul-
taneously connected to two or more nodes (Manandhar

et al. 2008; Dempster 2009; Borio et al. 2016; Gioia and
Borio 2014a). During the performed test, the objects to be
localized are usually seen only by one node at a time; this is
due to the size of the site where the experiment has been car-
ried out and to the typical area coverage of the APs adopted
for the experiment, together with their geographical dis-
placement within the site. Hence, the traditional algorithms
have been modified to compute the position of the tracked
object after accumulating measurements during a given time
interval. The time interval used to estimate the user posi-
tion is 3 min; this value has been selected considering the
following factors:

– The size of the site, the geometry of the network, and
the typical dynamic of the users: during the experiment,
the mean distance between the APs along the East
direction is almost 250 m and some 160 m along North,
assuming that a pedestrian moves at approximately 4
km/h (1.1 m/s), this covers about 200 m in 3 min.

– Heterogeneity of the device, in particular considering
the different data rates. A fundamental element to set
the value is the update rate of the measurements; the
cumulative distribution function of the number users as
a function of the update rate is shown in Fig. 1. From
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Fig. 1 CDF of the number of users as a function of the update rate

Appl Geomat (2019) 11:381–399384



the figure, it can be noted that 99% of the devices have
an update rate higher than 3 min.

In Fig. 2, the three positioning approaches are shown
together with the relative inputs. The input of the
occurrence-based positioning method is only the list of
the stations which recorded the user presence in the time
interval, whereas the other two approaches exploit also the
power of the received signal.

As mentioned above, three approaches have been
implemented: two derived the from proximity concept and
the third exploits the centroid concept.

Proximity RSSI-based

The first algorithm is based on the proximity principle and
exploits the RSS measurements. The position of the tracked
object is associated with the position of the station recording
the signal of the user with the highest RSSI in the specific
time period ΔT :

posu (ΔT ) = possMaxRSSI (ΔT ) (6)

where posu is the vector containing the user coordinates
and possMaxRSSI is the vector containing the coordinates of
the station that registered the signal of the user with the
maximum RSSI.

Proximity occurrence-based

The RSS is strongly affected by multipath and fading
phenomena; these effects are intrinsic characteristics of the
propagation environment and they can amplify or reduce
the received signal power. The multipath-induced variation
of the RSS could lead to erroneous object localization; in
order to fill this gap, an algorithm based on the proximity
principle, but exploiting the number of times a users is
recorded by a station during a specific time period ΔT , is
proposed.

In this case, the position of the tracked object is
associated with the position of the node that registers more
times the presence of the user.

posu (ΔT ) = possMaxNumPres (ΔT ) (7)

WeC

The third approach is the WeC, which is an extension of the
proximity principle; in this case, the user position is a linear
combination of the node coordinates. The mathematical
expression of the WeC is that of Borio et al. (2016) and
Gioia and Borio (2014a):

posu (ΔT ) =
∑N−1

i=0 wiPs,i
∑N−1

i=0 wi

, (8)

where Ps,i = (xi, yi) is the vector containing the
coordinates of the ith station and wi is the weight associated
to the ith node. In this work, the weights are related to
the RSSI of the received signal, in particular the following
weighting function is adopted:

wi = 1/
(
2 · 10(−RSSI)i/10

)
, (9)

where (RSSI)i is the RSS of the ith received signal
expressed in dB.

The user position is obtained as the WeC of the nodes
coordinates. If the time interval is reduced and only one
measurement is obtained within the considered interval,
the WeC solution converges to the RSSI-based proximity
solution.

In Table 1, the three implemented positioning algorithms
are summarized, together with their main pros and cons.

Experiment

In this section, the experimental setup is briefly described;
a more comprehensive description of the experiment is
available in Alessandrini et al. (2017).

The experiment was carried out on 28 May 2016, during
the JRC open day event (JRC Open Day 2016). Thanks to
the large attendance (more than 7500 participants) and to its
duration (some 11 h), the event was a unique opportunity
to collect a large amount of data. For the experiments, 20
APs were placed within the JRC Ispra site, as shown in
Fig. 3, where the AP locations and the relative identification
number are reported. The figure shows also the theoretical

Fig. 2 Block diagram of the
positioning procedures

Occurrence-Based
Proximity

RSSI-Based
Proximity WeC

Base List
RSSI

Localiza�on Block
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Table 1 Positioning algorithms implemented

Method Expression Pros Cons

Proximity occurrence-based posu (ΔT ) = possMaxNumPres (ΔT ) Not affected by multipath-
induced RSSI anomalies

Limited dynamics

Proximity RSSI-based posu (ΔT ) = possMaxRSSI (ΔT ) More resilient to anomalous
RSSI observations than WeC

Limited dynamics

WeC posu (ΔT ) =
∑N−1

i=0 wiPs,i∑N−1
i=0 wi

More dynamics Potentially affected by anomalous RSSI
measurements; a proper weighting func-
tion needs to be adopted.

coverage (the effect of obstacles limiting the range of the
APs is not considered) of the APs. The blue markers identify
APs located in proximity to the main entrance: two devices
(AP numbers 1 and 2) were placed close to the gate reserved
to the general public, which remained closed until the
official opening of the event (9:00 AM), whereas the AP
3 was placed close to the gate reserved for the access of
volunteers, which was open from 7:30 to 9:00. The yellow
markers show the positions of the APs in the central area of
the site; among the yellow markers, the AP 7 was located in
the Brebbia gate, which was reserved to volunteer entrance
and was open only 1 h and half before the official opening.
Finally, the red markers are used to identify APs close to the
exit gate, located in the west part of the site.

The event was a unique opportunity, not only to collect
a huge amount of data, but because of the nature of the
site: only one access and one exit for the general public,
with the security staff counting the accesses, the security
report allows to partially verify the results obtained (Sousa

2016). This gave us the possibility to perform a “qualitative”
check of the results obtained through the proposed methods.
The results check could be only “qualitative” for two main
reasons:

– Despite the security office reported 7623 accesses dur-
ing the entire event (Sousa 2016), there is no way to
know howmany of the participants held a mobile device
withWiFi enabled. In fact, the two implicit assumptions
“everyone use a smartphone whose WiFi is enable all
the time” are not entirely true: among the participants,
there were children and elderly people who might not
had a mobile; and it is reasonable to assume that there
were people who’s mobile had the WiFi switched off.
Therefore, the estimation of the number of participants
carried out with the proposed method can be compared
with the actual count of accesses reported by the secu-
rity service only through an assumption on the share of
participants without a mobile or with WiFi disabled.

Fig. 3 Location of the APs used for the experiment during the JRC open day 2016 and their theoretical coverage
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– Analogously, the participants were not actually tracked
with a different system during the event; therefore, the
results relative to their flow within the site can be only
qualitatively interpreted according to the schedule of
the event, the geography of the site, and the location of
the different exhibitions.

However, having said that, the impossibility to perform
a more accurate (“quantitative”) validation of the results
with the ground truth does not represent a limitation to the
potential of the proposed method as a crowd-monitoring
tool, especially when it is compared with the currently
exploited techniques and with their accuracy.

Results

In this section, the results obtained combining the diverse
cleaning strategies and positioning approaches are pre-
sented. The results are at first analyzed in terms of esti-
mated number of real users; then, the concentration of the

identified users is shown; finally, the movements of the
users among the nodes of the network are considered.

Cleaning based on the number of base stations
and records

The estimated number of real users using the criteria
described by Eqs. 1 and 2 is discussed in this section.

In Fig. 4, the estimated number of real users as a
function of the threshold value is shown. In the upper box,
the criterion based on the number of stations which have
recorded a device is considered. From the analysis, it can be
noted that the number of real users decreases exponentially:
the grey line identifies the exponential trend. The relation
between the estimated number of users and the minimum
number of stations which recorded the device is:

ln(number of real users) = a ∗ thbase + b (10)

where a = −0.245 and b = 11.26.
The R-squared value (Everit and Skrondal 2010; Rawl-

ings et al. 1998) of the model is 0.88. The total number of
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Fig. 4 Estimated number of real users as a function of minimum number of stations recording the presence of the device (upper box) and minimum
number of records of a single device (lower box)
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unique devices is 51,096, which is reduced by some 12,000
if a user is defined as a device recorded at least by two sta-
tions (number of devices recorded by at least two stations
39,880). Increasing the threshold, the number of users is
reduced; only 79 users were recorded by all the APs.

The estimated number of users, as a function of threc, is
shown in the bottom graph of Fig. 4, where the number of
users for 21 different values of threc is explicitly reported.
The number of users decreases when increasing threc,
according to the function:

ln(number of real users) = c ∗ ln(threc) + d (11)

with c = −0.622 and d = 11.2; the R-squared is 0.989.
From the the same graph, it can be noted that there

were some 8000 devices (51, 096 − 43, 077) which were
recorded only once. These records are probably due to
devices generating fake identifiers before connecting to a

node (Zebra Technologies 2015). It can also be appreciated
that only 448 devices out of 51,096 where recorded more
than 2000 times.

As mentioned in the “Cleaning approaches” section,
the two methods, individually considered, are not able to
exclude all the devices which are not associated to real
users. In order to enhance the exclusion capability of the
algorithm, the two criteria need to be used together; the
results obtained combining the two criteria are shown in
Fig. 5. In the figure, the size of the square indicates the
number of real users identified by the combination of
the two criteria. From the graph, it can be appreciated
that the squares with the largest size are in the upper
left, indicating a low exclusion capability. The number of
exclusion increases passing from up to down and from left
to right; in the two corners, upper left and lower right, the
extreme values recorded are 51,096 and 307 respectively.
Using thbase = 3 and threc = 50, a total number of

Fig. 5 Estimated number of real users considering two criteria together: a device is classified as real user if it is recorded by a minimum number
of stations and for a minimum number of times
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6009 potential real users is estimated. The estimate strongly
depends on the setting of the thresholds, which has to
be set taking into account both the geometry of the site
and the length of the phenomena to monitor. In our case,
considering the geometry of the site, three can be chosen
as a reasonable threshold for the minimum number of the
stations, because in the proximity of the main gate, three
APs were installed.

In order to further investigate the impact of the minimum
number of stations, the estimated number of users as a
function of the minimum number of stations considering a
minimum number of times is shown in Fig. 6. The lines
represent the estimated number of users as a function of the
minimum number of stations. From the graph, it is evident
that in the considered case (more than 3 base and at least
50 times), there is only limited impact passing from 1 to 4
stations (i.e., the number of users is reduced only by 8). If
the minimum number of records is reduced, a larger impact
of the minimum number of stations can be appreciated. In
all the curves, a plateau is present in the first part of the
line, the plateau becomes longer as the minimum number
of records is increased; this is reasonable because a user
registered for longer time is more likely registered by a
larger number of stations. Hence, the dominant criterion in
the considered case is the minimum number of records. If
a different set of thresholds is used, the effect of the two
criteria varies.

Cleaning based on the analysis of users movements

The potential number of users can be estimated with a
criteria based on the user movements, as described in the
“Cleaning approaches” section. In this section, the results
relative to the aforementioned criteria are discussed; the
localization of the users has been performed using the
three positioning strategies described in the “Positioning
approaches” section.

In Figs. 7, 8 and 9, the estimated number of potential real
users is shown; the positions of the users are computed using
WeC, proximity occurrence-based, and proximity RSSI-
based respectively. In the upper boxes, the estimated number
of users is obtained applying the exclusion criterion at the
East coordinates, while in the central boxes, the criterion is
applied on the North coordinates, finally in the lower boxes,
the number of users is obtained from the intersection of
the users satisfying both criteria (East and North). In the
three figures, the estimated number of users is plotted as a
function of thpos.

For all the cases, a linear relation (gray line) can be seen
between the estimated number of users and the threshold
values:

number of real users = m ∗ thpos + q. (12)

The values of m and q for the different cases are reported in
Table 2.
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Fig. 7 Estimated number of real users as a function of position dispersion along East (upper box), North (central box), and East and North (lower
box). The position of the user is computed using the WeC approach

The criteria allow the exclusion of the static devices and
of the devices registered only one time. In fact, when the
value of thpos passes from zero to 5 m, the total number of
devices reduces from 51,096 to some 13,000, for the RSSI-
based and occurrence-based, and to some 15,000 for the
WeC positioning.

The threshold for the screening criteria has to be set in
accordance with the size of the site to monitor and to the
geometry of the monitoring network. In the specific case, a
threshold of 300 m (corresponding at some half of the mean
distance among the nodes of the network) was adopted.
From the results, it can be noted that the criteria based on
the East and North components were too much stringent
and the results obtained are not consistent. For example,
using the proximity RSSI-based algorithm (Fig. 9), a total
of 6596 real users were estimated using the criterion based
on the East coordinate, whereas only 4595 were the users
satisfying the condition on the North component. Finally,
only 1673 devices satisfied both criteria. This relatively

high inconsistency is due to the fact that the criteria do not
properly represent the users motion: usually, a user does not
move only along a single axes or within a square.

In order to remove the dependence from the direction,
a criterion based on the horizontal component (second
equation in Eq. 5) is applied; the estimated number of real
users is shown in Fig. 10. The mean horizontal distance
among the stations is some 600 m, hence 300 m has been
identified as a suitable value for thpos for the horizontal case.
In correspondence of such a value, the estimated number of
users varies between 5534 (WeC yellow markers) and 8233
(proximity RSSI–based red markers).

In order to complement and compare the results shown in
Figs. 8, 9, and 10, a sample of the plotted data is provided
in Table 3.

In order to further investigate the impact of the value
of the threshold on the number of estimated real users,
the cumulative distribution function (CDF) of the excluded
device as a function of the horizontal position dispersion
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Fig. 8 Estimated number of real users as a function of position dispersion along East (upper box), North (central box), and East and North (lower
box). The position of the user is computed using the proximity occurrence-based approach

threshold is shown in Fig. 11. From the figure, the impact
of the threshold values clearly emerges, and considering the
current value, the percentage of excluded devices is 86, 84,
and 83 for the three positioning approaches. Considering the
approaches based on RSSI and on the number of occurrence,
some 75% of the total number of device where completely
static; this percentage is a bit reduced (some 70%) for the
case of the WeC. This discrepancy is due to the nature
of the positioning approach used. For example, if a small
oscillation in the RSSI of a device is present, the methods
based on the RSSI and number of occurrence are robust
with respect to this phenomenon, while the same anomaly
produces small variations in the positions estimated using
the WeC.

The estimated number of real users is a fundamental
figure; however, it is important to verify if the different
cleaning procedures identify the same devices as real users;
hence, the intersection among the possible user lists, using
the three different positioning methods, is computed and
plotted as a function of thpos in Fig. 12.

The number of users estimated using the proximity
RSSI-based includes the users identified using the WeC
approach; this evidence clearly emerges from the fact that
the blue continuous line is almost flat and close to one
(users identified using the proximity RSSI-based are also
identified using the WeC) and the blue dashed line is
lower than the blue one (not all the users identified using
the proximity RSSI-based are included in the user list
obtained using the WeC approach). However, a significant
overlapping among the set of real user can be appreciated,
since all the curves are higher than 50%.

User concentration and node connections

In order to evaluate the users distribution after the
exclusions of the devices not classified as real users, heat
maps of the user concentration are shown in Fig. 13. The
heat maps are computed using the user position estimates
obtained exploiting the three localization algorithms and
two cleaning approaches, one based on the horizontal
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Fig. 9 Estimated number of real users as a function of position dispersion along East (upper box), North (central box), and East and North (lower
box). The position of the user is computed using the proximity RSSI–based approach

position dispersion and the one obtained by combining the
minimum number of base stations and the minimum number
of records. The thresholds used for the heat map generation
are thpos,hor = 300, thbase = 3, and threc = 50. The heat map

Table 2 Parameter values of the linear model connecting estimated
number of real users and thpos

Case m q R2

East WeC –29.81 14,060 0.99

North WeC –33.12 15,309 0.97

N&E WeC –30.84 12,929 0.94

Hor WeC –31.23 15,287 0.95

East Occ –31.23 15,286 0.95

North Occ –27.40 13,842 0.98

N&E Occ –30.20 13,094 0.95

Hor Occ –27.40 13,842 0.98

East RSSI –28.15 14,238 0.96

North RSSI –30.06 14,408 0.97

N&E RSSI –29.63 12,435 0.94

Hor RSSI –22.89 14,130 0.97

has been generated considering a time span of 1 h between
11:00 and 12:00.

The combinations of positioning methods and cleaning
strategies show that the users are mainly concentrated in
the central area of the site; only small differences can
be appreciated considering the same localization algorithm
and a different cleaning strategy (i.e., comparing the heat
maps in the same columns). On the other hand, a sensible
difference can be appreciated when comparing the heat
map obtained using different localization algorithms (i.e.,
comparing the heat maps in the same rows): the user
concentration is very similar using the WeC amd the
proximity RSSI–based approaches, whereas a different
user concentration is obtained when using the proximity
occurrence-based. This is probably due to the effect of the
environment on RSSI measurements.

In Fig. 14, the heat maps of the device exclusions are
shown; the concentration has been calculated considering
the whole duration of the event. The heat maps are built on
the exclusion performed using the configurations described
above. An high consistency among the heat maps can be
noted: almost all the heat maps show a high number of
excluded devices in the correspondence of the AP numbers
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Fig. 10 Estimated number of real user as a function of the user horizontal position dispersion

Table 3 Comparison of the results in terms of estimated number of users obtained with the different methods as proposed in Figs. 8, 9, and 10

Thresh (m) East North North and East

WeC Occ RSSI WeC Occ RSSI WeC Occ RSSI

5 15,357 13,347 13,347 15,393 13,461 13,530 15,356 13,344 13,341

10 14,217 13,324 13,324 14,190 13,333 13,256 14,036 13,281 13,241

20 13,732 13,257 13,257 13,821 13,228 13,254 13,477 13,175 13,172

50 12,198 12,016 12,016 13,166 11,898 12,821 11,640 11,564 11,504

100 10,559 10,677 10,677 12,158 10,395 11,643 9739 9765 9496

150 9724 10,032 10,032 11,097 9719 10,471 8673 8921 8231

200 8793 9631 9631 10,074 9138 9345 7339 8040 6887

250 7232 8998 8998 7239 8191 6787 4271 5730 4026

300 4833 6596 6596 4326 6269 4595 1981 2622 1673

350 2933 3928 3928 2051 4307 2656 403 473 442

400 1882 2109 2109 1234 2617 1674 138 205 216

450 455 1292 1292 656 918 1022 90 184 191

500 126 170 170 403 178 647 1 1 0

505 119 170 170 394 178 640 1 1 0
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Fig. 11 CDF of the excluded device as a function of the horizontal position dispersion threshold

10 and 21, whereas only few devices are excluded in the
proximity of the other APs. The most probable explanation
for these results is given by the fact that, whereas AP 10
is located in the core of the administrative zone of the
site (where most of the remote devices as printers etc. is
present), AP 21 is closed to the west fence, which separates
the site from the most busy road in the area (therefore, it is
possible that part of the users registered by this AP never
enters the site).

The user flow between the nodes of the network is plotted
in Figs. 15 and 16. Each node is colored differently from
blue to yellow; if a line connects two nodes, it means that at
least one user moves from one node to the other. The color
of the line is the same color of the node from which the
user moved, while the width of the line represents the total
number of users moving between the nodes.

Both figures are built considering 1 h of data; specifically,
Fig. 15 refers to the time frame 8:00–9:00 (before the of-
ficial opening) and the second figure refers to the time frame
12:00–13:00. The configurations used to build the graphs

are obtained combining positioning proximity approaches
with exclusion criteria based on the horizontal position
dispersion and the one considering the number of stations
and records. The color of the line identifies the starting
node.

From Fig. 15, it emerges that real users are moving
from only three nodes, specifically numbers 3, 7, and 10:
presumably, the identified users were volunteers accessing
the site before the official opening of the event. The first
two APs (3 and 7) were located in the proximity of the gates
reserved for volunteers, while AP 10 was at the main gate.
The connections of the APs 3 and 10 are almost identical,
because almost all the devices passing fromAP 3 had to pass
also in front of the AP 10. The nodes 3 and 10 are connected
with almost all the nodes of the network and the curves are
wider than those departing from node 7. This is due to the
fact that the AP of the Brebbia gate registered only 47 users,
as described in Gioia et al. (2017).

In Fig. 16, the time interval 12:00–13:00 is considered;
here, all the nodes are connected, because of the presence
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Fig. 13 Heat maps relative to the estimated users distribution between
11:00 and 12:00. The six heat maps are obtained after the exclusions of
the devices not classified as real users obtained the following thresholds

thpos,hor = 300, thbase = 3, and threc = 50. Different positioning
approaches are compared horizontally, i.e., between heat maps on the
same line, whereas different cleaning strategies are compared vertically
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Fig. 14 Heat maps of the excluded devices. The entire duration of the
event is considered here. As for the previous figure, the thresholds used
are thpos,hor = 300, thbase = 3, and threc = 50. Different positioning

approaches are compared horizontally, i.e., between heat maps on
the same line, whereas different cleaning strategies are compared
vertically

of visitors moving within the site, from one exhibition to
the others. For clarity of representation, only the connection
starting from two nodes (the nodes with the highest number
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passing from AP 3 had to pass in front of the AP 10

of connections) is shown. It is worth noting that the thickest
lines connect nearby nodes. For example, a thick connection
is visible between nodes 6 and 15, which were placed on
opposite sides of the same plaza.
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Conclusions

Monitoring open crowded areas is fundamental for people
security and safety, and of foremost importance is the
number of people attending an event and their distribution.
In this paper, a monitoring tool exploiting big data and
WiFi positioning is presented. One of the issues related
to this type of activity is the identification of the devices
belonging to real users. This aspect is fundamental to
avoid misinterpretation of results; for example, devices
broadcasting fake identifiers before connecting to the
network can generate false users; analogously, static
devices, such as printers and PC, which continuously
connect to the monitoring network, can generate a false
overcrowded area, masking the real users concentration.

To fill this gap, an approach to identify real users
among a set of devices is proposed. The developed
approach combines seven exclusion criteria with three WiFi
localization algorithms. The exclusion criteria are based on
the following:

– the minimum number of APs recording a device;
– the minimum number of times a device is registered by

the network of APs;
– combination of minimum number of APs and minimum

number of records;
– user East-West position dispersion;
– user North-South position dispersion;
– user East-West and North-South position dispersion;
– horizontal user position dispersion.

Results discussion

The proposed localization algorithms developed are based
on the proximity and WeC principles. The traditional
algorithms exploit measurements collected simultaneously,
but this condition is seldom verified when the tracking of
an object is performed within a wide area. To fill this gap,
the traditional proximity and WeC algorithms have been
modified. In the proposed versions, the algorithms estimate
the users positions using measurements collected during a
given time interval; the time interval adopted is 3 min. The
three developed localization approaches are as follows:

– proximity occurrence-based: the user is located in
correspondence of the AP which recorded the user more
times during the time interval;

– proximity RSSI-based: the user position is associated
with that of the AP which recorded the signal of the
users with the highest power, during the reference time
interval;

– WeC: the user position is estimated as a linear
combination of the positions of the APs recording the
presence of the user in the time interval.

The screening algorithm has been tested using a unique data
set, which was collected during the JRC open day 2016.
More than 7500 people attended the event and almost 11
h of data was collected using 20 WiFi APs; the data set is
unique because of the extension and restricted access nature
of the site and of the availability of a program of the event,
which allows to verify the results, at least in a qualitative
way. This is usually one of the weak points of big data
analysis.

Main considerations

From the results, it can be concluded that:

• In the measurement domain, the two criteria taken
individually are not able to properly identify the real
users; hence, their combination should be adopted.
In addition, the threshold of the criteria has to be
set according to the distribution of the nodes of the
monitoring network and to the duration of the event.

– For the specific case hereby analyzed, the
threshold for the minimum number of station
was identified as 3 (corresponding to the
number of station in the proximity of the main
entrance gate), while the minimum number of
records for a given device was set to 50.

– Using these thresholds, a total number of 6009
users were identified, some 75% of the actual
number of people attending the event (7623
according to the report of the security office).

• In the position domain, the threshold for the screening
criteria has to be set in accordance with the size of the
site and with the geometry of the monitoring network.

– In the specific case, a threshold of 300 m
(corresponding at some half of the mean
distance between the nodes) was adopted.

– The criteria based on the East-West and North-
South components individually were much
too stringent and the results obtained are not
consistent. For example, using the proximity
RSSI–based algorithm, a total of 6596 real
users were identified using the criterion based
on the East coordinate, whereas only 4595
were the users satisfying the condition on the
North component. Finally, only 1763 devices
satisfied both criteria. This is due to the fact
that the criteria do not properly represent the
user motion; usually, a user does not move only
along a single axes or within a square.

– A possible solution is to consider the hor-
izontal user position distribution criterion,
using such screening method and the three
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positioning approaches, the estimated number
of real users was 5534, 6269, and 8283 for the
WeC, proximity occurrence-based, and prox-
imity RSSI-based respectively. The overesti-
mation of the real number of users is probably
due to the interference effect on the RSSI
measurements.

After the screening procedure, the distribution of the users
was computed. From the distribution of the excluded users,
it emerges that the main part of the excluded devices
was concentrated in the proximity of two APs; this result
is consistent among all the approaches used. Finally, the
connections among the nodes of the network were analyzed:
a high consistency can be noted among the diverse methods
adopted.

In conclusion, the feasibility of crowd monitoring
through WiFi positioning has been demonstrated. Different
cleaning strategies have been adopted and the relative
results compared. A general rule, applicable to all possible
WiFi positioning scenarios, cannot be stated. In fact, the
particular geography of the AP network within the area to
be monitored and the coverage range of the available APs
are fundamental to the setting of thresholds necessary for a
proper data cleaning.

Another point to be noted is that the results obtained
are derived by a posteriori processing, which has been
carried out on the whole data collection. Therefore, the
real-time implementation of the methods still remains to be
investigated. This will most probably be the direction of our
future research.
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