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Abstract The question the paper deals with refers to how it is
possible to update existing geodatabases considering both
their accuracies and those of the new measurements taken for
their updating. Traditionally, maintaining geodatabases (or
map bases) has been highly time consuming, costly, and
sometimes difficult work, especially in urban and high-density
areas. The most common procedure is to globally generate
geodatabases every few years by photogrammetric techniques.
On the opposite, the possibility of dynamically updating the
landscape information from a maintained core spatial database
can be considered as an appealing alternative to traditional
map revision techniques. A kriging solution, based on the
hypothesis that the vector field of the position error on a
geodatabase is a homogeneous, isotropic intrinsic random
field with constant mean and variogram depending only on the
squared distance, known a priori from the relative accuracy of
the map, is proposed. The method is a first approach to the
problem, as far as at the moment it does not consider
constraints to which points on the geodatabase must adapt
to. That is the reason why it is presented as an intermezzo.
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Position of the problem

Spatial databases can be nowadays easily managed by
means of geographic information system tools (Rigaux

et al. 2002). The hot point in the first era of the digital
revolution was mainly to collect pieces of information. On
the opposite now the great challenge relates to provide
geographic data of high quality level (and therefore the
estimation of such a kind of information) and to make
available methods to exploit as much as possible the
already available information, correctly modeling the
uncertainty intrinsic into spatial data, instead of remaking
maps every time from the beginning. Thus data sharing,
data conflating (Brovelli and Zamboni 2004, 2006), and
updating (Arnold and Wright 2005) must be supported by
rigorous approaches having a sound statistical basis. Efforts
have been made in this regard by some researchers (Leung
et al. 2004). The paper places in this frame, trying to solve
the problem at least for some elementary cases.

We consider a geodatabase basically as a collection of
points {Pi; i=1,2,…N} of known planar coordinates, {(xi
yi)}, topological information, allowing to identify linear or
area features and other numerical or thematic information
concerning several attributes related to these points and
objects. Here, we will be concerned only with the first
aspect, namely the set of points {Pi} and their coordinates.
The question we want to handle is the following: imagine
we perform new geodetic measurements involving one part
of the points {Pi}, how do we update their coordinates in
view of such an information?

As an example, think that at some points Pi we have
done observations with a GPS receiver, connected to a
positioning service in a RTK mode, as it is quite usual
nowadays.

Of course if it was available the full covariance matrix of
the vector of coordinates {(xi yi)} and that of the new
measurements, the update could be performed rigorously, at
least in terms of least squares theory.

This is however not the practical situation and for two
reasons. The former is that when the number of points is of
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the order of 104 or more its covariance information is of the
order of 108 real numbers or more and storing and using
such a huge quantity of information is not the easiest thing
to do.

The latter reason is even more important and it is that, in
practice, this information is usually not available because
the production of such coordinates is the result of many
steps in which noise propagation is not possible or was not
performed. On the opposite logical side there would be the
practice of moving, namely updating, only the points which
have been involved into the new measurements. This
immediately leads to unacceptable results, because it would
modify the relative position of objects in an incompatible
way, for instance moving a building into another one or in
the middle of the road. It is obvious that it is simply
impossible to ignore that there is a relation between points
so that once one is shifted by new observations, also the
others should follow. The question is that part of the points
should move like rigid bodies, verifying metric constraints
as lengths of sides, rectangular shapes, etc., while in general
all points should have a kind of “elastic” relation to one
another.

In order to cope with such problems, the authors have
already invoked a Bayesian concept (Belussi et al. 2006),
introducing first of all geometrical constraints into the prior
distribution of the coordinate vector and binding all the
points, one to the other, by means of a simple network of
pseudo-observations.

The idea bears some merits, in particular by showing that
Bayesian statistics is a natural tool to be applied to an
updating problem. Yet, the prior distribution reflecting the
true information available on the geodatabase is still a
problem. Specifically, the proposal of connecting all the
points on the geodatabase by a plane pseudo-traverse is
questionable in that the accuracy of each individual point
will then depend on the quite arbitrary design of the
traverse itself.

In this paper, we give precisely a solution to this
problem when the prior information is assumed to consist
barely of a relative accuracy prescription.

With “relative accuracy”, here we mean that given any
two points P, Q on the geodatabase, the errors in their
coordinates are such that

s rPQ
�� ��� �
rPQ
�� �� ¼ K ð1:1Þ

with K a given constant, rPQ the planar base vector between
P and Q, and σ the r.m.s. of its modulus.

It turns out that (1.1) defines an essential feature of the
error field uðPÞ ¼ dxðPÞ; dyðPÞð Þ of the geodatabase,
namely the variogram. In this way, the well-known kriging
theory (Wackernagel 2003) becomes available for the

solution of the present problem. So we find a clear method
to update the coordinates of all points, without considering
them as possibly belonging to rigid bodies, i.e., without any
further constraint.

This is the reason why we have entitled the paper
“Bayesian intermezzo”; because the full solution under the
Bayesian concept still has to be studied.

The relative accuracy of the geodatabase defines
the variogram of the error random field

In this paragraph, we set up the prior stochastic model of the
geodatabase on the basis of our hypotheses, namely the know-
ledge of the relative accuracy translated into formula (1.1).

So we assume that any identifiable point P on the
geodatabase, with coordinates

RP ¼ XP

YP

����
����; ð2:1Þ

has a random position, due to previous noise propagation,
with average

E RPf g ¼ rP ¼ xP
yP

��� ��� ð2:2Þ

and the difference between the two, the position error vector
uðPÞ, is a random field with zero average and finite variance.

Since the theory we are going to develop is fully
translation invariant, the hypothesis E uðPÞf g ¼ 0, can be
substituted by the much weaker

E uðPÞf g ¼ t; ð2:3Þ
a constant translation vector valid for the whole geo-
database.

This hypothesis is often useful if we have to compare
geodatabase coordinates with GPS coordinates which might
be given in a different geodetic datum.

Let us agree on the hypothesis that the vector random
field uðPÞ is intrinsically homogeneous and isotropic (cf.
Matheron 1970).

Notice that this implies an extension of the usual kriging
concept in the sense that we assume

1

2
E uðPÞ � uðQÞj j2
n o

¼ g dPQ
� � ð2:4Þ

where dPQ is the Euclidean distance between P and Q and
in addition that the component of uðPÞ along any fixed
direction is again an intrinsic process such that

1

2
E e � uðPÞ � e � uðQÞj j2
n o

¼ f dPQ
� � ð2:5Þ

with f independent of the direction of the arbitrary unit
vector e.
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This implies that

f dPQ
� � ¼ 1

2
E dxP � dxQ

� �2n o
¼ 1

2
E dyP � dyQ

� �2n o
;

ð2:6Þ
and also

f dPQ
� � ¼ 1

2
g dPQ
� �

; ð2:7Þ

because the sum of the second and third term in (2.6) has to
be γ(dPQ).

In addition it turns out that

E dxP � dxQ
� �

dyP � dyQ
� �� � ¼ 0: ð2:8Þ

This last relation is easily derived by imposing that the
field

dxP cos a þ dyP sin a ¼ du P;að Þ
has f(dPQ) as variogram irrespectively of the value of α.

In fact, using (2.6)

8a

f dPQ
� � ¼ E du P;að Þ � du Q;að Þ½ �2

n o
¼

¼ E dxP � dxQ
� �2

cos2 a þ dyP � dyQ
� �2

sin2 a þ 2 dxP � dxQ
� �

dyP � dyQ
� �

sin a cos a
n o

¼ f dPQ
� �þ 2 sina cos aE dxP � dxQ

� �
dyP � dyQ
� �� �

and this implies (2.8).
We call γ(d) the variogram of the field u and we note that

each component of u has a variogram which is just a half of γ.
Under these hypotheses, let us consider the random vector

RP ¼ rP þ uðPÞ: ð2:9Þ

Indeed we have

E RP � RQ

�� ��2n o
¼ rP � rQ

�� ��2þ2g dPQ
� �

: ð2:10Þ

Now we need to compute E RP � RQ

�� ��� �
. We do that

with an approximation up to the second order in uj j.
Observe that for any finite vector r and a small enough

vector " we have (denoting rj j ¼ r)

r þ "j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2r � "þ "2

p
¼ r þ r

r
� "

þ 1

2

1

r
"2 � 1

r

r

r
� "

	 
2
� �

þ O "3
� �

;

ð2:11Þ

We recall that E uP � uQ

n o
¼ 0 by hypothesis and use

(2.7), to find, neglecting third order terms in " ¼ uP � uQ,

E RP � RQ

�� ��� � ¼ E rP � rQ þ uP � uQ
�� ��n o

ffi rP � rQ
�� ��þ 1

2

1

rP � rQ
�� �� 2g dPQ

� �� g dPQ
� �� �

¼ dPQ þ 1

2

1

dPQ
g dPQ
� �

ð2:12Þ

Squaring (2.12) and subtracting from (2.10) yields

s2 RP � RQ

�� ��� � ¼ E RP � RQ

�� ��2n o
� E RP � RQ

�� ��� �� �2¼ g dPQ
� �

;

ð2:13Þ
which is the sought relation.

According to (1.1), (2.13) implies

g dPQ
� � ¼ k2d2PQ: ð2:14Þ

One interesting remark is that the model (2.14), which is
indeed an authorized variogram (Wackernagel 2003), is not
however compatible with a stationary covariance.

This is the reason why we have from the beginning
pointed to kriging, rather than the ordinary Wiener–
Kolmogorov theory, also known as collocation in geodesy.

The updating algorithm

Now that the relations (2.13), (2.14) are established, the full
machinery of kriging theory is available to solve the
updating problem formalized in the following.

We assume to have a geodatabase with points P
identified by the vector

RP ¼ XP

YP

����
���� ¼ xP

yP

����
����þ dxP

dyP

����
���� ¼ rP þ uðPÞ; ð3:1Þ

where uðPÞ is an intrinsic random field, homogeneous and
isotropic, endowed with the known variogram γ(dPQ),
given, in the present context, by (2.14).
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Moreover, we assume that new measurements have been
performed involving part of the points {Pi} so that we have
from them, namely for a certain subset J of the indexes {i=
1,2,…,N}, a new sequence of coordinates

Ni ¼ ri þ ni; i 2 J ; ð3:2Þ
where we have just denoted with an index i quantities
related to the point Pi.

In (3.2), we suppose that

E nif g ¼ 0; E nin
t
j

n o
¼ Cninj ; ð3:3Þ

so that the full covariance of the vector n ¼ :::nti:::
� �t

is
known. For the sake of simplicity, we shall assume that the
index set J is just that of the first J positions. Since we are
thinking of an updating of the geodatabase, we obviously think
of the variances of the coordinates in Ni as significantly
smaller than the variances of the geodatabase errors ui. More-
over, we assume ni to be uncorrelated with the field uðPÞ.

Now we observe that

Ri � Ni ¼ ui � ni; i 2 J ; ð3:4Þ
this relation means that we can consider Ri � Ni as an
observation of the random field uðPÞ at the updating points
Pi, i 2 J , with noise �ni. So, we shall put

uoi ¼ ui � ni ¼ Ri � Ni i 2 J ; ð3:5Þ
uoi being the observation vector.

The problem is precisely how to predict uðPÞ at any
other point of the geodatabase.

We look for a linear prediction, i.e., for a linear
combination of the observed uoi,

ûðPÞ ¼
XJ
i¼1

liuoi; ð3:6Þ

unconditionally unbiased or, recalling (2.3), such that

E ûðPÞ
n o

¼ t: ð3:7Þ

Moreover we will require that the mean square predic-
tion error E2

E2 ¼ E uðPÞ � ûðPÞ
��� ���2
 �

; ð3:8Þ

be minimized. Note that the class of our predictors (3.6) is
not the most general one, which would be of the form

ûðPÞ ¼
XJ
i¼1

Λiuoi ð3:9Þ

with Λi a set of 2×2 matrices. On the other hand, it is easy
to see that a predictor like (3.9) could be determined only if
we knew the full covariance of ui, which is not the case.

The form (3.6) in fact translates our prior hypothesis of
isotropy, which is not a model for how the “true” error uðPÞ is
but rather the formalization of our lack of prior information.

In other words, this is where the Bayesian concept plays
its role. As usual the condition (3.7) implies that the
coefficients λi have to satisfy the relation

XJ
i¼1

li ¼ 1: ð3:10Þ

Now the proof runs as that of ordinary kriging
(Wackernagel 2003) and we report it here only briefly.

First one can prove that, under (3.10),

E2 ¼ 2
XJ
i¼1

ligi �
XJ
i;k¼1

lilkgik þ
XJ
i;k¼1

lilkTrCnink ; ð3:11Þ

where

gi ¼ g dPPið Þ; gik ¼ g dPkPið Þ ð3:12Þ
and we have used

E ntink
� � ¼ TrCnink : ð3:13Þ
So by using the synthetic notation

l � lif g; g ¼ gif g; Γ ¼ gikf g; Σ ¼ TrCninkf g
we have

E2 ¼ 2ltg þ lt �Γ þΣð Þl: ð3:14Þ
In fact from

uðPÞ � ûðPÞ ¼ uðPÞ �
XJ
i¼1

liuoi ¼
XJ
i¼1

li uðPÞ � uoi½ �

¼
XJ
i¼1

li uðPÞ � ui � ni½ �;

which holds because of (3.10), one derives

E2 ¼ E uðPÞ � ûðPÞ
��� ���2
 �

¼ E
X
ik

lilk uðPÞ � ui½ �t uðPÞ � uk½ �
( )

þ
X
ik

lilkCnink :

Now using the identity

uðPÞ � ui½ �t uðPÞ � uk½ � ¼ 1

2
uðPÞ � uij j2

þ 1

2
uðPÞ � ukj j2� 1

2
ui � ukj j2

and again recalling (3.10), one easily derives (3.14).
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The target function (3.14) can be minimized with respect
to l with the constraint (3.10) that is written, introducing
the vector et ¼ 11:::1½ �, as
etl ¼ 1: ð3:15Þ

By using a Lagrange multiplier −2α, one finds the usual
kriging equations

�Γ þΣð Þlþ ae ¼ g

etl ¼ 1

(
ð3:16Þ

Once l is derived, ûðPÞ is computed through (3.6) and
(3.14) provides its prediction error.

Then the updated geodatabase at the original points Pi,
of coordinates Rup Pið Þ is
Rup Pið Þ ¼ Ri � û Pið Þ ð3:17Þ
and, since

Ri � û Pið Þ ¼ ri þ u Pið Þ � û Pið Þ; ð3:18Þ
the prediction error at Pi becomes the error of the updated
geodatabase.

We conclude the paragraph with a remark. Namely, in
addition to the above results, one would like as well to get hold
of the translation between geodatabase and updated coordi-
nates. It is known that the optimal estimate can be obtained
only if we know the full covariance structure of uðPÞ.

But since this is not available, we can still have a non-
optimal estimate, for instance by taking

t̂ ¼ 1

j

Xj

i¼1

uoi: ð3:19Þ

Though we are not able to give the variance of this
estimator, (3.19) is sufficient for many practical purposes.

An extension and a few examples

Since most of the updating work is nowadays done by GPS
and since, when a positioning service is not available, a

natural outcome of GPS observations is base vectors
between couples of points or even local networks of base
vectors, it is interesting to see whether and how the above
developed theory can account for this kind of measurements.

We will do that taking the case of single base, between
points P1 and P2,

b ¼ N2 � N1 ¼ r2 � r1 þ n2 � n1 ð4:1Þ

leaving to the reader the easy generalization to more bases.
We assume that E nf g ¼ E n2 � n1f g ¼ 0 and that the
covariance of n is known. This case is not covered by
ordinary kriging theory and then it requires some adjustment.

The point is that now the observations are themselves
translation invariant and therefore they cannot convey any
information on the absolute value of uðPÞ.

Nevertheless, we can expect to be able to say something
about variations of uðPÞ for instance about duP ¼ uðPÞ�
u P1ð Þ. So we have as observation:

duo2 ¼ uo P2ð Þ � uo P1ð Þ ¼ R P2ð Þ � R P1ð Þ½ � � N P2ð Þ � N P1ð Þ½ � ¼
¼ u P2ð Þ � u P1ð Þ � n2 � n1ð Þ ¼ u2 � u1 � n ¼ du2 � n

ð4:2Þ
and we try to estimate duP as a linear function of duo2,
namely

dûP ¼ lduo2: ð4:3Þ
It is extremely important to notice however that in this

context

E duPf g ¼ E uðPÞ � u P1ð Þf g ¼ t� t ¼ 0 ð4:4Þ
as well as

E dûPf g ¼ lE duo2f g ¼ lE du2 � nf g
¼ lE u2 � u1f g ¼ 0; ð4:5Þ

so that there is no constraint on (4.3) to get an unbiased
predictor, namely λ is a free variable. Now we proceed to
compute the r.m.s. prediction error, i.e.

E2 ¼ E duP � lduo2½ �2
n o

¼ E uP�ð u1Þ � l u2 � u1f g½ �2
n o

þ l2E nj j2
n o

¼
¼ 2g dPP1ð Þ þ 2l2g dP2P1ð Þ � 2lE uP � u1ð Þt u2 � u1ð Þ� �þ l2Tr Cnnf g :

ð4:6Þ

On the other hand

E uP � u1ð Þt u2 � u1ð Þ� � ¼ 1

2
E uP � u1j j2þ u2 � u1j j2� uP � u2j j2
n o

¼ g dPP1ð Þ þ g dP2P1ð Þ � g dPP2ð Þ: ð4:7Þ
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We call, for the sake of simplicity

g dPPið Þ ¼ gi i ¼ 1; 2 g dP1P2ð Þ ¼ g12 2Σn ¼ Tr Cnnf g
and then, combining (4.7) and (4.6), we find

E2 ¼ 2 1� lð Þg1 þ 2l l� 1ð Þg12 þ 2lg2 þ 2l2Σn: ð4:8Þ
The minimum of E2 is obtained at

l ¼ 1

2

g1 � g2 þ g12
g12 þΣn

: ð4:9Þ

From (4.9) and (4.8), the prediction error can be
computed. So we can put now

RP � R1ð Þup¼ RP � R1ð Þ � dûP ð4:10Þ
and therefore we have

RP � R1ð Þup¼ rP � r1 þ duP � dûP: ð4:11Þ

Formula (4.10) tells us how to update the geodatabase,
relative to the position of P1, while (4.11) tells us that the
prediction error of duP is the new error of the updated
geodatabase.

To get acquainted with the above concepts, we present
two small artificial examples.

Example 1: assume you have a geodatabase with a prior
relative error of σ(d)=2·10−4d. We have two points P1 and
P2 observed by GPS with errors n1; n2 such that

Cn1n1 ¼ Cn2n2 ¼ s2
nI sn ¼ 0:1m Cn1n2 ¼ 0:

The position of the two points is respectively −1 km and
+1 km on the x-axis at the scale of the terrain.

The errors observed at P1, P2 are uo1; uo2, and are given
in meters.

Note that, according with (2.14), γ(d)=4·10−8d2 (d
given in meters)=4·10−2d2 (d given in kilometers),
meaning that we shall express d in km but the result for γ
will be in m2.

So we have

Γ ¼ 0 4 � 10�2d212
4 � 10�2d212 0

�����
����� ¼ 0 16 � 10�2

16 � 10�2 0

�����
�����

Σn ¼
2s2

n 0

0 2s2
n

�����
����� ¼ 2 � 10�2 0

0 2 � 10�2

�����
�����

g ¼ 4�10�2d21
4�10�2d22

����
����

and the conditioned normal system (3.16) becomes

�2 � 10�2l1 þ 16 � 10�2l2 þ a ¼ 4 � 10�2d21
16 � 10�2l1 � 2 � 10�2l2 þ a ¼ 4 � 10�2d22
l1 þ l2 ¼ 1

8<
:

We notice that, in this system, l is non-dimensional, α is in
m2 as the known terms, but d1 and d2 are expressed in km.

The solution of the system is

l1 ¼ 1
2 � 1

9 d21 � d22
� �

l2 ¼ 1
2 � 1

9 d21 � d22
� �

a ¼ 10�2 2d21 þ 2d21 � 7
� �

8<
:
So that, using the relation d21 � d22 ¼ 4x (x in km),the
geodatabase correction is given by

ûðPÞ ¼ 1

2
uo1 þ uo2ð Þ þ 4x

9
uo2 � uo1ð Þ:

The result nicely illustrates that, when uo1 ¼ uo2, ûðPÞ is
just a common translation. The unit of ûðPÞ are meters as
those of uo1; uo2.

Finally, we compute the new geodatabase error (in m2)
and we find

E2ðPÞ ¼ 10�2 8

9
x2 þ 8y2 þ 1

� �
:

Here, we read that at the origin the error is 0.1 m, which
is a reasonable number, and that the error increases faster in
the Y direction, which again is understandable, given the
design of the updating points.

Example 2: we take the same situation as in Example 1,
with the only difference that now we assume that instead of
giving separately, the updated coordinates of P1 and P2,we
give the base vector N2 � N1.

Correspondingly (cf. 4.2), we will have an observation
duo2 with a vector noise n that now we assume to have
covariance

Cnn ¼ s2
nI sn ¼ 0:02m:

Our purpose is to predict dûðPÞ according to (4.3). The
solution is almost given by (4.9) so we have only to use

gi ¼ 4 � 10�2d2i kmð Þ; d2i ¼ rP � rij j2 i ¼ 1; 2ð Þ
g12 ¼ 16 � 10�2; Σn ¼ s2

n ¼ 4 � 10�4

in that formula.
The result is

l ¼ 2 xþ 1ð Þ
4:01

;

we observe that indeed λ=0 when x=−1, y=0 because in
that case duP ¼ 0.
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On the other hand, the same is true when x=−1 and y
whatever; this is explained by the fact that we have only
one base vector observed, directed along x and this gives no
information on du when rP � r1 is along the y axis.

Finally, a computation of E2 up to 10−4m2, and
neglecting 10−6m2, gives

E2ðPÞ ¼ 4 � 10�2 xþ 1ð Þ2þy2 � xþ 1ð Þ2 1� 10�2

4

� �� �
:

As we see E2 is zero for y=0, x=-1 as it should be. Also
interesting is the case y=0, x=1, namely P=P2, where
E2ðPÞ ¼ 4 � 10�2m2, which is complying with the noise of
duo2.

Conclusions

If one assumes that the vector field uðPÞ of the position
error on a geodatabase is a homogeneous, isotropic intrinsic
random field with constant mean and variogram (2.14),
known a priori from the relative accuracy of the geo-
database, one can attack the problem of updating the
position RP, of any point P on the geodatabase, by kriging
theory.

With a typical GPS updating survey in mind, in the
paper two cases are covered: that the coordinates of
individual points Pi, i 2 J , are re-determined or that base
vectors bik ¼ NPi

� NPk
are determined.

On the basis of the new observations, the new geo-
database coordinates are derived and their mean square
error is computed.

As explicitly stated, this approach does not take into
account any other geometric relation between points than
that of the relative accuracy of the bases Ri � Rkj j.

If other constraints have to be considered, this can
always be done a posteriori.

For instance, consider the case of Example 1 and assume
that four points P3, P4, P5, P6 have been accordingly

updated, with coordinates Rup3; Rup4; Rup5; Rup6 with
errors of know variances. Assume further that we want to
impose the condition that P3, P4, P5, P6 are the vertices of a
rectangle; then one can easily create the family of
rectangles in the plane, depending on five parameters
(namely the sides a, b and the three parameters of a roto-
translation) and find the one that best fits the updated
coordinates. Similar artifacts can be found to impose
different conditions. Of course, a full rigorous theory would
adjust the updating observations, taking the constraint into
account all together. But this is left for future work.
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