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Abstract Dealing with a procedure for the automatic
classification of laser point clouds based on surface
curvature values, one of the most critical aspects is the
correct interpretation of the estimated results. This care is
required since the measurements are characterised by errors
of different kind, and simplified analytical models are
applied to estimate the differential terms used to locally
compute the object surface curvature values. Following a
non-parametric approach, the differential terms are the first-
and second-order partial derivatives of a Taylor’s expansion
used to determine the Gaussian K and the mean H local
curvatures. Therefore, a statistical analysis is proposed in
this paper. It is based at first on a chi-square test applied to
verify the fulfilment of the second-order Taylor’s expan-
sion. Successively, the variance–covariance propagation
law is applied to the estimated differential terms, in order
to calculate the covariance matrix of a two-row vector
containing the Gaussian and the mean curvature estimates,
and an F ratio test is then applied to verify their
significance. By analysing the test acceptance or rejection
for K and H and their sign, a reliable classification of the
whole point cloud into its geometrical basic types is carried
out. A robust parametric modelling is then applied to
estimate the analytical function of each classified surface.

This parametric modelling allows also the indirect segmen-
tation of the geometrical units. Nevertheless, to directly
perform the unit segmentation by detecting the discontinu-
ity lines, an extension of the Taylor’s expansion to the
third- and fourth-order terms is also suggested. Some
numerical experiments on noisy synthetic laser data
confirm the validity of the method proposed.

Keywords Laser scanning . Classification . Feature
recognition . Statistical analysis . Spatial modelling

Introduction

As well known, laser-scanning survey is characterised by a
fully automatic point clouds acquisition method, while the
successive processing phases of registration, classification
and segmentation require some levels of human interven-
tion. To furnish a contribution in the direction of a fully
automatic laser data processing, a new reliable geometrical
classification of the point clouds is proposed in this paper.
The work fits in the recent researches conducted by the
authors, whose analytical aspects have been mainly
presented to the statistician community (Crosilla et al.
2007) and whose laser-scanning applications have been
shown at various International Society for Photogrammetry
and Remote Sensing (ISPRS) meetings (Crosilla et al.
2004, 2005; Visintini et al. 2006; Beinat et al. 2007).

The procedure of automatic classification proposed by
the authors is fundamentally based on the local analysis of
the Gaussian K and mean H curvatures, obtained by
applying a non-parametric analytical model. In detail, the
Z(X,Y) measured coordinate of each point is modelled as a
Taylor’s expansion of second-order terms of X,Y local
coordinates. The weighted least squares estimate of the
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unknown vector, collecting the differential terms, is
obtained by considering a selected number of neighbour
points within a bandwidth radius and by applying a
weighting function, taking into account their distance from
the central point.

Since the instrumental noise worsens the data quality and
the analytical modelling simplifies the surface true shape, the
curvature values have to be statistically verified, namely also
the variances of the estimated values have to be taken into
account, as recommended by Flynn and Jain since 1988 and
recently by Hesse and Kutterer (2005), these last specifically
for the form recognition of laser-scanned objects.

Neglecting for simplicity the presence of outliers in the
neighbour points, to verify the fulfilment of the second-
order Taylor’s expansion model, a chi-square ratio test is
applied to the estimated variance factor and to the a priori
measurement variance.

If the null hypothesis is accepted from the locally
estimated surface differential terms, the corresponding local
Gaussian K and mean H curvature values are obtained, as
well as the principal curvatures. As known, such curvature
values are invariant to the reference frame.

A statistical analysis of the two-term vector, containing
the Gaussian and the mean curvature values, is carried out
by applying the variance–covariance propagation law, so to
compute their covariance matrix. A Fisher ratio test is
subsequently applied to verify the significance of the
obtained curvature values vector. If the null hypothesis is
accepted, the surface can be locally accepted as planar. If
the null hypothesis is rejected, a ratio test for each K and H
curvatures is carried out.

By simultaneously analysing the sign and the values of
K and H, a classification of the whole point cloud is indeed
achievable, being possible the following surface basic
types: hyperbolic (if K<0), parabolic (K=0 but H≠0),
planar (K=H=0) and elliptic (K>0).

Furthermore, an empirical optimization method of the
Taylor’s expansion bandwidth size is presented. This allows
computing the minimal values of K and H that can be
evidenced by the F test, once a first-kind error value is
fixed.

As possible development of the proposed Taylor’s
model, third- and fourth-order terms can be considered.
As known from literature (e.g. Cazals and Pouget 2007),
third- and fourth-order series can be exploited to detect
ridges, crest lines and their properties.

The paper goes on with the parametric modelling of each
recognised unit by estimating the corresponding surface
analytical function, starting from raw clusters detected by a
region growing method.

In this case, the segmentation of geometrical units can be
indirectly obtained by means of 3D spatial intersections
among the estimated surfaces.

On the other hand, the segmentation can be also directly
done by detecting the discontinuity lines through the
analysis of the coefficient values of the Taylor’s expansion
third- and fourth-order terms.

The numerical testing of the proposed procedure has
been achieved with satisfactory results for simulated laser
data, also with noise, belonging to the OSU Range Image
database (Ohio State University: http://sampl.ece.ohio-state.
edu/data/3DDB/ /RID/index.htm;).

Estimation of local surface parameters
by a non-parametric regression model

Dealing with parameter estimation by regression models,
the main advantage of a non-parametric approach consists
in its full generality: in our case, i.e. the local estimation of
the bypassing surface through the laser points, it means that
neither a priori knowledge of the point geometry nor the
fitting analytical function is required. Let us consider the
following polynomial model of second-order terms (Cazals
and Pouget 2003):

Zj ¼ a0 þ a1uþ a2vþ 1

2
a3u

2 þ a4uvþ 1

2
a5v

2 þ "j ð1Þ

where the coefficients and the parameters are locally related
to a measured value Zj by a Taylor’s expansion of the
function Z=μ+ε in a neighbour point i of j, as:

a0 ¼ Z0i

a1 ¼ @Z

@X

� �
Xi

a2 ¼ @Z

@Y

� �
Yi

a3 ¼ @2Z

@X 2

� �
Xi

a4 ¼ @2Z

@X@Y

� �
Xi;Yi

a5 ¼ @2Z

@Y 2

� �
Yi

u ¼ Xj � Xi

� �
v ¼ Yj � Yi

� �
with Xi, Yi and Xj,Yj plane coordinates of points i and j. The
parameter a0 is the estimated function value Z0i at point i,
while the parameters as, with s>0, are the first- and second-
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order partial derivatives along X,Y directions at the i-th
point of the best approximating local surface.

To apply the Taylor’s expansion 1, the coordinate Z must
be univocally defined by X,Y coordinates. Sometimes, it is
necessary to apply a permutation among X,Y,Z coordinates
in order to assume, as Z-axis for Eq. 1, the direction whose
Z values results better expressed as function of the X,Y ones.
In other words, points displaced onto quasi-orthogonal
surfaces are not well modelled by Eq. 1.

Rewriting model 1 in algebraic form as:

z ¼ Xb þ v ð2Þ
the unknown parameters are collected into the [6×1]
vector:

b ¼ a0 a1 a2 a3 a4 a5 �T
h

ð3Þ

while, considering the p neighbour points j of point i, the
coefficient matrix X has p rows as:

Xj ¼ 1 u v 1
2 u

2 uv 1
2 v

2 �:� ð4Þ
In order to weight the different Zj acquired values for the

least squares estimation of vector β, a diagonal weight
matrix W is assumed by considering a symmetric kernel
function centred at the i-th point as:

wij ¼ 1� dij
�
b

� �3h i3
for dij

�
b < 1

wij ¼ 0 for dij
�
b � 1

where dij is the distance between the points i and j, and b is
the radius (bandwidth) of the window encompassing the p
closest points to i. The value of b, rather than the kernel
function, is critical for the quality in estimating β. In fact,
the greater is the value of b, the smoother the regression
function results, while the smaller is the value of b, the
larger is the variance of the estimated value.

Finally, the weighted least squares estimate of the
unknown vector β from p neighbour points results as:

b̂ ¼ XTWX
� ��1

XTWz ð5Þ
The residual vector v̂ for the p points within the

bandwidth is simply given as v̂ ¼ z� X b̂, and this allows
computing the a posteriori variance factor ŝ

2
0 at point i as:

ŝ
2
0 ¼

v̂
T
W v̂

p� 6
: ð6Þ

For each point i, this local value has to be suitably
evaluated, as will be better explained in the following, in
order to verify by a χ2 test if it is comparable to the
measurement noise or if it is sensible also to a systematic

effect, due to limitations in the Taylor’s expansion order or
due to the presence of possible outliers or data slips.

Figure 1 reports the simulated scan agpart-2 as example
throughout the paper chapters: it belongs to the OSU Range
Image database (Ohio State University: http://sampl.ece.
ohio-state.edu/data/3DDB/ /RID/index.htm). This synthetic
object is composed of a cylinder having a circular cavity in
the axis with a larger coaxial disk: the surfaces are thus
cylindrical and planar. The simulated scan is oblique with
respect to the object axis, as can be seen in Fig. 1 at left,
representing the view of the X,Y plan. The almost 30,000
points range along X from −2.30 to +1.68, while along Y
from −1.10 to +1.76: they are coloured by the original Zi
values from blue (+0.57) to red (+3.65). Coordinates of the
dataset are simply real numbers with six digits to the right
of the decimal point, but the unit of measurement is not
defined; nevertheless, supposing that one unit corresponds
to one decimetre, the cylinder of the agpart-2 model has a
diameter of 22 cm and a length of 33.5 cm, while the larger
disk has a diameter of 40 cm. Points are defined on a
rectangular X,Y grid with a size of ΔX=0.0200 and ΔY=
0.0168: supposing again the unit corresponds to a decime-
ter, the grid steps are ΔX=2.00 mm and ΔY=1.68 mm, so
simulating a high-density laser acquisition (30 points per
square centimetre). It can be considered as an “error-free”
point cloud, although some irregularity and lack of data
occur along the connection of the various unit surfaces.

Figure 1 at right depicts in the Y,Z plane the values of Zi
along the yellow section defined for X=5.2 cm; as can be
seen, decimetric data slips occur in correspondence of the
occluded part of the surfaces. This situation is very
common in laser-scanning measurements. To avoid the
estimation of a surface simultaneously interpolating both
discontinuous edges, the p closest points are found
considering for the distances dij not only their X,Y
planimetric coordinates but tridimensionally involving Z
coordinates also, by means of a 3D radius b centred at point
i. In other words, the circular 2D window mentioned before
becomes a spherical 3D volume in our procedure. Of
course, the value of b has to be suitably chosen less than the
data slip: in our case, the bandwidth radius b has been fixed
equal to 2 cm. In general, by applying a spherical
encompassing volume, no smoothing effects in computing
a0 ¼ Z0i are present in the data slip area as well as along
the border edges of the dataset.

Estimations by formulas 5 and 6 of agpart-2 dataset lead
to the values of bs2

0 shown in Fig. 2, where the points are
coloured from blue (0.00 mm2) to red (0.06 mm2). The
values of bs2

0 different from zero arise along the discontinu-
ity lines but not in correspondence of the decimetric data
slip thanks to the 2-cm radius spherical volume, as can be
also noticed in Fig. 2 at right, showing the variance factor
along the yellow section.
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Statistical analysis of the non-parametric model applied

As mentioned before, for each laser point i, the estimated
local value of the variance factor ŝ

2
0 is a quality index of

vector β estimation process. It is crucial to verify whether,
within the encompassing bandwidth, the behaviour of the
corresponding residuals v̂ ¼ z� X b̂ are due to the noise of
the laser measures, to possible outliers or rather to
limitations in the non-parametric model. For such aim, the
following chi-square test is applied, with null hypothesis
H0: ŝ2

0 ¼ s2
ls and alternative hypothesis H1: ŝ2

0 6¼ s2
ls.

ŝ
2
0

s2
ls

p� 6ð Þ � χ2
p�6ð Þ1�a

ð7Þ

where:

& s2
ls is the variance of the laser scanning (ls) instrument

employed for the data acquisition.
& χ2

p�6ð Þ1�a
is the value of the chi-square distribution for

(p−6) degrees of freedom, when α probability for a
first-kind error is assumed.

The results of the chi-square test 7 depend also on the
local value of ŝ

2
0 and on the degrees of freedom number

points (p−6) encompassed within the spherical volume.
The choice of the 3D distance dij<b is really important for
defining the number of p closest points to point i: for points
lying on a X,Y grid, p strongly depends on the local slope of
the surface with respect to the X,Y plane.

For instance, for agpart-2 dataset with b equal to 2 cm,
the number p falls down from about 300, for encompassing

areas with low slope, to less than 50 for discontinuity areas
between planar and very slant cylindrical surfaces, as can
be seen in Fig. 3 at left.

Chi-square test results (Fig. 3 at right) are not predictable
by simply considering the ŝ2

0 values (Fig. 2 at left). First of
all, such values have to be locally multiplied by the
corresponding (p−6) values (Fig. 3 at left), divided by the
measurement variance s2

ls and finally compared to the critical
value of #2p�6ð Þ1�a

. The following analysis of the chi-square
test results can be done, considering that, for most part of the
points, the H0 hypothesis is accepted (green colour):

& H0 is accepted; a good local congruence between laser
measures and a second-order Taylor’s model is statis-
tically proved. The values derived from vector b̂ as the
Gaussian and mean curvatures, are statistically mean-
ingful, and thus, a curvature-based classification can be
carried out in such zones.

& H0 is rejected; the local congruence between laser
measures and the Taylor’s model is not statistically
fulfilled, i.e. a significant difference between the
acquired laser data and the second-order polynomial
modelling is present. For this reasons, the derived
curvature values in such zones have to be interpreted
with particular care.

In general, the values of ŝ2
0 significantly differ from s2

ls

along the discontinuity lines of the scanned objects or along
ridges or crest lines. This might be explainable as a not
sufficient modelling of the Taylor’s order terms or as an
improper choice of the bandwidth radius.

Fig. 1 Agpart-2 simulated
model (OSU database): overall
Zi values (at left) and along the
yellow section (at right)

Fig. 2 Agpart-2 simulated
model: overall bs2

0 estimated
values (at left) and along the
yellow section (at right)
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Computation of local curvature values

For the local shape analysis of laser point cloud, some
fundamental quantities defined in differential geometry are
considered. In particular, local Gaussian, mean and princi-
pal curvature values are taken into account. All these can be
obtained from the so-called “Weingarten map” matrix A of
the surface (e.g. Do Carmo, 1976), that is given by:

A ¼ � e f
f g

� �
E F
F G

� ��1

ð8Þ

where E, F, and G are the coefficients of the so-called “first
fundamental form”, computable from as (s≠0) parameters as:

E ¼ 1þ a21

F ¼ a1a2

G ¼ 1þ a22

and e, f and g are the “second fundamental form”
coefficients:

e ¼ a3

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 1þ a22

q
f ¼ a4

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 1þ a22

q
g ¼ a5

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 1þ a22

q
The Gaussian curvature K corresponds to the determi-

nant of A:

K ¼ eg � f 2

EG� F2
ð9Þ

The mean curvature H can be instead obtained from:

H ¼ eG� 2fF þ gE

2 EG� F2ð Þ ð10Þ

The principal curvatures kmax and kmin, corresponding
to the eigenvalues of A, are given instead from the
solution of the system k2 � 2Hk þ K ¼ 0, i.e. from

kmin;max ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
. Further usable relationships for

the curvature values are:K=kminkmax and H=(kmin+kmax)/2.
Substituting the as terms into formulas 9 and 10 (see e.g.

Quek et al. 2003), the following expressions for the
Gaussian K and the mean H curvatures can be obtained:

K ¼ a3a5 � a24
a21 þ 1þ a22
� �2 ð11Þ

H ¼ a3 1þ a22
� �þ a5 1þ a21

� �� 2a1a2a4

2 a21 þ 1þ a22
� �3=2 ð12Þ

Summarising, for each i-th laser point, four local
curvature values K, H, kmax and kmin can be automatically
obtained as functions of the vector bb terms. Furthermore,
such curvatures are invariant to the adopted reference
frame, providing a very much important property in
analysing the surface shape.

Figure 4 shows the estimated K curvature values for the
agpart-2 scan, coloured from blue (−31.66 dm−2) to red
(+12.19 dm−2): values equal to zero correctly occur in the
central part of the various unit surfaces (where chi-square
test is fulfilled), while very high variations of the Gaussian
curvature take place in buffer areas along the ridges
separating the various surfaces.

Figure 5 at left illustrates instead the estimated H
curvature values coloured from blue (−7.67 dm−1) to red
(+6.94 dm−1): H values are constant in the central part of
the various unit surfaces. As can be seen in Fig. 5 at right,
along the yellow section, the following values of H have
been computed:

& +1.79 dm−1 for the cave smaller cylinder
& 0.00 dm−1 for both planar surfaces
& −0.45 dm−1 for the two convex equal radius cylinders
& −0.25 dm−1 for the convex larger cylinder (disk)

For the cylindrical surfaces, where in fact Gaussian K
values are correctly equal to zero, the minimum principal
curvature kmin corresponds to zero, while the maximum one
kmax=2H, and so the relative curvature radius rmin=1/2H. The

Fig. 3 Points coloured by
(p−6) values (at left) and by the
results of the χ2 test (at right):
green where H0, red where H1
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computed radius of the various cylinders are so respectively:
2.8 cm, 11 cm and 20 cm, exactly their own correct values.

Significance analysis of the curvature values

For the statistical analysis of the estimated local Gaussian
and mean curvature values, once the least squares solution
of the differential terms is obtained by means of Eq. 3, the
variance–covariance matrix of the estimated parameters is
also available. The variance–covariance propagation law
can be applied to the estimated b̂ terms to determine the
[2×2] covariance matrix of the Gaussian and mean
curvature values. For such end, let rewrite b̂ ¼ ẑ0

�
â1 â2 â3 â4 â5�T as a partitioned estimated vector

b̂ ¼ ẑ0 â
� �T

containing the estimated function value ẑ0 and
the sub vector â of the Taylor’s expansion differential terms at
point i. Let Σbb be the estimated variance–covariance matrix

of vector b̂ terms; it can be yet partitioned as:

Σbb ¼ s2
z0

sT
z0a

sz0a Σaa

" #
ð13Þ

whereΣaa is the variance–covariance matrix of the sub vector
a containing the differential terms at point i. As known, the
variance–covariance matrix Σbb can be expressed as:

Σbb ¼ ŝ
2
0N

�1 ¼ ŝ2
0

nz0 nTz0a
nz0a Naa

� ��1

¼ ŝ
2
0Qbb ¼

¼ ŝ2
0

qz0 qTz0a
qz0a Qaa

" # ð14Þ

where Qbb is the covariance matrix of vector bb, while bs2
0 is

given by the relationship 6.
Of course, the estimated Gaussian and mean curvature

values are not independent, as can be seen observing Eqs. 9
and 10 or 11 and 12. In order to apply a significance test
taking in account also the correlation between the curvature
values K and H, the following [2×1] vector is introduced:

w ¼ K H½ �T ð15Þ
Applying the variance–covariance propagation law, the

covariance matrix of vector ω can be obtained as:

Qww ¼ FwwQaaF
T
ww ð16Þ

where:

Fww ¼

@K

@a1

@K

@a2

@K

@a3

@K

@a4

@K

@a5

@H

@a1

@H

@a2

@H

@a3

@H

@a4

@H

@a5

26664
37775

For the points where the null hypothesis of the chi-square
test (7) is fulfilled (see Fig. 6 at left), in order to verify
whether the Gaussian and mean curvature vector ω is
significantly different from zero, the alternative hypothesis
of the following F ratio test must be satisfied (Pelzer 1971),
with null hypothesis H0: E(ω)=0 and alternative hypothesis
H1: E(ω)≠0:

wTQ�1
www

r ŝ2
0

> F1�a;r;1 ð17Þ

Fig. 4 Points coloured by K
estimated values (at left);
values of K along the yellow
section (at right)

Fig. 5 Points coloured by H
estimated values (at left);
values of H along the yellow
section (at right)
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where:

& r=rank (Qww ¼ 2),
& F1�a;r;1 Fisher distribution value for r and ∞ degrees of

freedom and α probability for a first-kind error.

The results of F ratio test obtained for agpart-2 are
depicted in Fig. 6 at right: having fixed a probability α
equal to 0.05, the critical value of F0:95;2;1 equal to 3 is
overcome for curved surfaces (red colour) and not for
planar ones (green colour).

Significance analysis of the curvature-based
classification

If E(ω)≠0, it is worthwhile to independently test the values
of K and H in order to check if both, or just one of them,
are significantly different from zero. The null hypothesis is
independently rejected for K and H, i.e. E(K)≠0, E(H)≠0,
if:

K2

ŝ2
0 qkk

> F1�a=2;1;1 ð18:aÞ

H2

ŝ2
0 qhh

> F1�a=2;1;1 ð18:bÞ

where:

& qkk and qhh are the diagonal terms of matrix Qww,
& F1�a=2;1;1 Fisher distribution value for 1 and ∞ degrees

of freedom and α/2 probability for each of the two tests
in order to satisfy a global first-kind error value equal to
α (Bonferroni correction).

By simultaneously analysing the sign and the values of
K and H, a statistically proven classification of the whole
point cloud is finally made possible. In fact, as known, each
surface can be classified as one of the following types (see
Table 1): hyperbolic (if K<0), parabolic (K=0 but H≠0),
planar (K=H=0) and elliptic (K>0).

When the null hypothesis H0: K=0 is only satisfied,
if H>0, the single curvature surface can be classified as a
concave parabolic valley while if H<0 as a convex
parabolic ridge. Finally, whether both null hypotheses
are rejected, the surface is classifiable as a concave pit
(if K>0 and H>0), as a convex peak (K>0, H<0), as a
saddle valley (K<0, H>0) or as a saddle ridge (K<0,
H<0).

Summarising, this step allows not only to classify the
various volumetric primitives but also to a priori define the
polynomial kind of the interpolating parametric model to
successively apply for a refined segmentation of the points,
as will be explained later.

Optimization of the Taylor’s expansion bandwidth size

Formulas 18.a and 18.b are also useful to determine the
minimal values of K and H that can be checked by the test,
once a global significance level α is fixed:

K > ŝ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1�a=2;1;1 qkk

p ð19:aÞ

H > ŝ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1�a=2;1;1 qhh

p ð19:bÞ

Of course, K and H tend to diminish, i.e. the test
becomes more sensible, as ŝ0, qkk and qhh become smaller;
that is if the precision of the laser measurements rises, the
curvature values augments, and the number of selected
points, within a prefixed bandwidth, becomes greater. This
fact makes it possible to empirically optimise the Taylor’s
expansion bandwidth size in order to evidence curvature
values. For instance, if the geometric characteristics of the
surveyed object are approximately known and rough
curvature values K0 and H0 can be a priori defined, once
the class of the instruments that are going to be used is
fixed and the corresponding measurement precision s2

ls is
known, a simulation procedure may be thought in order to

Fig. 6 Points coloured by the
results of the χ2 test (at left) and
the F ratio test (at right): green
where H0, red where H1
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find the minimal number of the bandwidth points that
satisfy the following inequalities:

K2
0

s2
ls F1�a=2;1;1

> qkk ð20:aÞ

H2
0

s2
ls F1�a=2;1;1

> qhh ð20:bÞ

The values qkk and qhh can be determined, for selected
classes of bandwidth points, once approximate design
parameters are fixed. Terms qkk and qhh correspond to the
diagonal elements of matrix Qww, computable from:

Qww ¼ FwwQaaF
T
ww

¼ Fww Naa � 1

nz0
nz0an

T
z0a

� ��1

FT
ww ð21Þ

In order to put in evidence particular K and H curvature
values, the minimum bandwidth radius satisfying inequal-
ities 20.a, 20.b and 7 will be chosen.

Estimating higher order terms of the Taylor’s expansion

As reported in the literature (e.g. Cazals and Pouget 2003),
third- and fourth-order Taylor’s terms make possible to
extract ridges and their properties. More precisely, ridges
are curves along which one of the principal curvatures has
an extremum along its curvature values. As ridges represent
points characterised by an extremum value of the principal
curvatures, their location requires estimating differential
quantities up to the third order, and actually up to the fourth
order to decide whether the extremum is a maximum or a
minimum. Furthermore, ridges, being curves of extremal
curvature, can furnish fundamental information for the laser
point clouds segmentation, registration and matching
procedures. As ridges are detected analysing the principal
curvature values, it is necessary to adopt for each point,
where the Taylor’s expansion is applied, a local reference
system able to directly furnish principal curvature values

and their directional derivatives. This coordinate system is
the so-called “Monge frame”, where the terms a0, a1, a2, a3
and a4 are equal to zero. The local Taylor’s expansion up to
the fourth-order terms assumes the following expression:

Zj ¼ 1
2 a3u2 þ a5v2ð Þ þ 1

6 b0u3 þ 3b1u2vþ 3b2uv2 þ b3v3ð Þþ
þ 1

24 c0u4 þ 4c1u3vþ 6c2u2v2 þ 4c3uv3 þ c4v4ð Þ þ "j

ð22Þ
where:

& a3, a5 correspond, in the Monge frame, to the principal
curvatures.

& b0, b3 are the directional derivatives of a3, a5 along their
respective curvature lines.

& b1, b2 are the directional derivatives of a3, a5 along the
other curvature lines.

Points having an extremum value for b0 or b3 automat-
ically identify ridges. Specific algorithms to perform the
curvature estimation of the differential terms in the Monge
frame and to automatically extract ridges have been
recently proposed in the literature (Cazals and Pouget
2007).

Analytical parametric modelling of the surface units

Within any kind of surface unit, classified as before thanks
to the F ratio tests 18.a and 18.b, whose result is visible in
Fig. 7 at left, a region growing method is applied for a first
raw cluster segmentation. Starting from a random point, not
belonging to any recognised cluster, the surrounding points,
having a distance less than the bandwidth b, are analysed
by evaluating the values of the difference Z0i � Zi and the
values of K and H. If the neighbour points present
difference values within a threshold, then they are labelled
as belonging to the same class and put into a list. The same
algorithm is repeated for each list element till this is fully
completed. Afterwards, the procedure restarts again from a
new random point, ending when every point has been
analysed.

Table 1 Classification of surfaces according to the values of Gaussian K and mean H curvatures (from Haala et al. 2004)
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A first raw segmentation of the whole dataset is so
carried out (Fig. 7 at right): each cluster represents an initial
subset to submit to a refining segmentation. For this aim,
we now suppose that laser measures can be rightfully
represented by the following parametric Simultaneous
AutoRegressive (SAR) model (Haining 1990):

z� rWz ¼ Aq þ " ð23Þ
where:

& z is the vector of laser height/depth values, as for the
non-parametric model (1).

& ρ is a value that measures the mean spatial interaction
between n neighbour points.

& W is a spatial adjacency (binary) matrix, defined as wij=1
if the points are neighbours, wij=0 otherwise.

& A is an r column matrix with rows as Ai ¼
1 Xi Yi ::: X s

i Y s
i �½ , where Xi and Yi are X,Y-

coordinates of points approximated by an s degree
orthogonal polynomial.

& q ¼ q0 q1 ::: qr�1 �T
h

is a [r×1] vector of parameters.
& ε is the vector of normally distributed noise, with mean

0 and variance s2
" .

Discerning about the differences between the
non-parametric model 5 and the parametric model 23
applied for processing the same laser points, we can
observe that:

& In model 5, the unknown parameters involve local
differential terms (β) of a whatever (and not estimated)
function, while in model 23, they correspond to the
polynomial parameters (θ) of the best interpolating
global analytical function.

& In both cases, the coefficient matrix involves X and
Y coordinates, expressed by relative values with
respect to the local reference point for the non-
parametric case, and by absolute values for the
parametric one.

& In both cases, the W weight matrices consider the
distance among the laser points although with very
different geometric and stochastic significance.

To solve Eq. 23, a Maximum Likelihood (ML) estima-
tion of the unknown parameters is carried out: in particular,
the value ρML giving the maximum log-likelihood value is
assumed as the ML estimation br of ρ. In this way, the
optimal estimation of the SAR unknowns is given by (Pace
et al. 1998):

bq ¼ ATA
� ��1

AT I � brWð Þz ð24:aÞ

ŝ2 ¼ n�1 z� r̂Wz� Aq̂
� T

z� r̂Wz� Aq̂
� 

ð24:bÞ

Within the z values, the individual departures from the
fitted polynomial trend surface can be estimated by the
vector e=σ−1 ε of standardised residuals, computed from
Eq. 23 as:

e ¼ ŝ
�1

I � r̂W
� �

z� Aq̂
h i

ð25Þ

Afterwards, the elements of vector e are inferentially
evaluated to find which measures do not fit the estimated
trend surface. The so-called “Forward Search” (FS)
algorithm (e.g. Cerioli and Riani 2003) is applied. It makes
possible the robust estimations r̂ and q̂ at each step of the
search, starting from a partition of the dataset. The basic
idea of the FS approach is to repeatedly fit the postulated
model to subsets of increasing size, selecting for any new
iteration the Z observations best fitting the previous subset,
that is having the minimum absolute value of e. Thanks to
this growing strategy, the outliers are potentially included
only at the end of the FS process. To understand at which i
iteration the outlier data enter into the subset, an F test is
continuously applied to the weighted Mahalanobis distance
of the difference vector bqi � bqi�1 (Crosilla et al. 2004). If
the null hypothesis is rejected, any new point included from
now on is an outlier: thus, there is no reason to go on with
the FS iterations.

Therefore, subsequent to the estimation by formulas 24.a
and 24.b of the analytical fitting function for each surface
unit, the point segmentation is fulfilled. Figure 8 shows, for
agpart-2 surfaces, the FS parametric modelling of the

Fig. 7 Classification (at left) in
planar (green) and cylindrical
(red) units; initial raw cluster
segmentation (at right)
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different units and the resulting refined segmentation in the
sequential order performed.

Indirect segmentation of the surface units

The above parametric modelling makes also possible to
find indirectly the analytical ridges separating the detected
surfaces, that is the unit segmentation: in fact, the ridges
can be estimated by means of 3D spatial intersections. This
parametric approach makes thus possible to overcome the
usual lack of data occurring, in principle, for every laser
scan acquisition, in correspondence of the discontinuity
lines.

In conclusion, starting from a raw segmentation based on
the geometric values computed by a non-parametric model,
the parametric modelling of each surface allows not only to
refine the raw segmentation by an iterative point-
enlargement process but also to fit the estimated analytical
surfaces to the acquired points up to the detail of the
analytical intersections between the surface units.

Direct segmentation of the surface units

As was mentioned before, Taylor’s expansion third- and
fourth-order terms makes it possible to automatically
determine surface curves presenting an extremum value of
the local principal curvature directional derivatives. This
means that these curves represent potential ridges of the
surface units, and their determination allows to automati-
cally proceed to a direct segmentation of the point cloud
units. As written before, to directly estimate local principal
curvature derivative values, it is necessary to express local
point coordinates into a Monge basis. The estimation

process is not simple since, according to Cazals and Pouget
(2007), it requires a four-step algorithm:

1. First step performs a Principal Component Analysis
(PCA) for each sampled point, relating to its surround-
ing ones. This analysis allows to determine three
orthogonal eigenvectors and the associated eigenvalues.
If the surface is well sampled, PCA provides one small
and two large eigenvalues. The eigenvector associated
to the small one approximates the normal vector.

2. At the second step, a change of coordinates is executed
to move the original values into the new system, having
as origin the point at which the estimation is performed.
A polynomial fitting, extended to fourth-order terms, is
then carried out.

3. Third step allows to determine the Monge basis by
computation of the normal direction and by a diago-
nalization process of the Weingarten matrix.

4. Finally, the Monge coefficients are computed in the
Monge frame by a new extended Taylor’s expansion.

Numerical experiments

Some more numerical experiments of the proposed proce-
dure have been carried out for the agpart-2 model. First of
all, a random error of ±1.5 mm has been introduced to the
original Z values, so simulating a true laser scanning
acquisition characterised by a s2

ls variance equal to
2.25 mm2. It must be noticed that the entity of this error,
although small, having in mind the laser scanning systems,
is fully comparable with the grid steps (ΔX=2.00 mm and
ΔY=1.68 mm) where the data are defined. Therefore, it can
be considered a significant worsening of the original
dataset. On the other hand, simulating a very high density

Fig. 8 Refined cluster segmen-
tation by parametric modelling
and Forward Search solution for
each geometrical unit
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Fig. 9 Agpart-2 with s2
ls ¼

2:25mm2: overall ŝ2
0 estimated

values (at left) and along the
yellow section (at right)

Fig. 10 Agpart-2 with s2
ls ¼

2:25mm2: results of the χ2 test
(at left, green H0) and along the
yellow section (at right)

Fig. 11 Agpart-2 with s2
ls ¼

2:25mm2: overall K estimated
values (at left) and along the
yellow section (at right)

Fig. 12 Agpart-2 with
s2
ls ¼ 2:25mm2: overall H esti-

mated values (at left) and along
the yellow section (at right)

Fig. 13 Agpart-2 with s2
ls ¼

2:25mm2 and b=1.5 cm:
estimated ŝ2

0 values (at left) and
χ2 test results (at right): green
H0
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laser acquisition, coherently, also the simulated measure-
ment error has to be quite small.

Figure 9 at left shows the estimated values of ŝ2
0: the

areas with variances different from zero are now larger with
respect to the example without errors of Fig. 3 at left.
Figure 9 at right depicts the quasi-constant value of about
2 mm2 in correspondence of the central part of the various
edges.

Although these higher variance factor values ŝ2
0, the

significance areas of non-parametric estimation, defined by
the chi-square test, remain practically the same as that of
the dataset without errors, as shown in Fig. 10. Examining
definition 7 of the chi-square test for α probability equal to
0.05 and the critical values χ2

p�6ð Þ0:95 for different values of
(p−6) up to 300, one can notice that, for the H0 acceptance,
ŝ2
0 has to be less than 1; 14 ŝ2

ls≅2.5 mm2. This condition is
practically fulfilled for most part of the dataset, even if
characterised by noisy measurements. Summarising, these
inferential results anyway numerically confirm the capabil-
ity of the proposed method to correctly process noise laser
datasets.

Also in this case, the estimated Gaussian K and mean H
curvatures values present a wider variability but even
around the theoretically correct values. In particular, as
can be seen in Fig. 11, the K curvature correctly assumes a
quasi-zero value in correspondence of the central parts of
the planar and cylindrical surfaces.

The addition of noise in the dataset seems to have a more
significant effect on the values of the mean H curvature (see
Fig. 12), in particular for the central parts of the units rather
than for the discontinuity edges.

A second numerical experiment has been carried out for
the same agpart-2 model with a s2

ls ¼ 2:25mm2 noise by
considering now a smaller bandwidth b equal to 1.5 cm. Of
course, the number of the p points involved in the non-
parametric estimations become smaller, about half, so
reducing the statistical redundancy but, on the other end,
the areas where ŝ2

0 significantly differs from zero are
reduced, as can be noticed in Fig. 13 at left (compared with
Fig. 9 at left).

Figure 13 at right reports the results of the chi-square
test: the red areas, of not significant estimations, are

Fig. 14 Experiments for the
column1–5 model: ŝ2

0 values
(at left) and χ2 test results (at
right): green H0

Fig. 15 Estimated curvature
values for column1–5 model:
Gaussian K values (at left) and
mean H values (at right)
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reduced with respect to the ones obtained with a 2-cm
bandwidth radius. In particular, for 30,105 points, the
number of them for which a second-order Taylor’s
expansion is adequate, grows from 20,846 corresponding
to 69.2% (see Fig. 10 at left) to 24,533 corresponding to
81.5% of points. Obviously, the percentage of fully
automatic point classification depends on the geometrical
complexity of the point cloud under exam: in general, the
choice of a suitable reduced bandwidth b, but anyway
allowing a satisfactory redundancy, makes possible reliable
non-parametric estimations. The minimal value of b
satisfying these properties depends from the curvature
values, the data density and also from the data accuracy.
The strategy to find the optimal value of b could be to
decrease it until the chi-square test fails, rejecting points
belonging to surfaces already recognised (classified) with a
larger bandwidth b. In fact, for real noisy dataset, when a
too-small bandwidth radius is applied, the residual v grows,
and the chi-square test fails. For instance, a value of b equal
to 1 cm for agpart-2 models furnishes worse results than
those obtained with a 1.5-cm radius.

Concluding, most part of a laser point cloud can be
directly classified by means of the proposed curvature
based procedure: for the unclassified points where the non-
parametric modelling results are not correct, the automatic
classification is anyway accomplished by a robust paramet-
ric modelling.

The proposed procedure has been experimented also for
the column1 model of the OSU Range Image database: this
is composed of 27,825 points simulating a cylindrical
column over a parallelepiped base, upper closed by a
circular plane: the scan column1–5 simulates a pointing-
down laser acquisition from a scanning position so that the
vertex among three planes of the base occurs at right (see
Figs. 14 and 15).

Figure 14 at left shows the estimated local values of ŝ2
0,

coloured again from blue (0 values) to red (maximum
values): as expectable, most part of the plane and
cylindrical surfaces present null variance factor, while
along the edges such values dramatically increase. In spite
of this, bs2

0 is not null also along some surface borders, but
the strong irregularity of the dataset in such areas must be
stressed. The result of the chi-square test 7 is reported in
Fig. 14 at right: the red areas, where the test fails, should be
not submitted to the successive F ratio test 17 and to the
curvature-based classification process.

Figure 15 shows the estimated local curvature values.
Since single curvature surfaces are only present, the value
of the Gaussian K curvature should be always null, i.e. E
(K)=0. This condition is represented by light blue coloured
points in Fig. 15 at left. The mean H curvature values are
instead correctly less than zero for the points belonging to
the cylindrical column, as can be seen in Fig. 15 at right,

where such H negative value is represented by a dark
yellow colour.

Conclusions

The paper proposes a procedure based on a statistical analysis
able to automatically detect reliable Gaussian and mean
curvature values for laser point clouds, computed by applying
a local surface non-parametric Taylor’s expansion. First, the
fulfilment of the analytical model applied is verified by a chi-
square test comparison of the a priori and a posteriori variance
factors. A second test considers the variance–covariance
propagation law applied to the estimated Taylor’s terms, in
order to compute the covariance matrix of the Gaussian and
mean curvature values. If the null hypothesis of the applied F
test is rejected, at least one curvature value is significantly
different from zero, and the sign analysis allows to correctly
classify the geometrical shape of each object surface unit. A
parametric modelling method of the surface units is finally
presented. The carried-out numerical experiments confirm the
capabilities of the proposed method.

This research has been partially presented by the authors
into the paper “A statistically proven automatic curvature
based classification procedure of laser points” at the XXIst
ISPRS Congress in Beijing, 2008, International Archives of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, XXXVII, B5:469–475 (on DVD).
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