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Abstract
Shale-rich reservoirs present a long-standing challenge for reservoir geologists because the clay minerals often induce a 
large-scale heterogeneity in the reservoir pore system. This work aims to understand the impact of clay distribution and 
mineralogy which would enhance the predictability of the best reservoir facies. We integrate seismic, well-log datasets to 
investigate the petrophysical characteristics of the clay-rich Cenomanian Clastics in the GPY oil field, north Western Desert 
of Egypt. These Clastics comprise the sandstone intervals which are the most prolific hydrocarbon reservoirs. Seismic data 
were used to interpret the main structural patterns as well as the different seismic facies. The well log data were utilized 
to interpret the lithologic variations and the type of clays in the reservoir as well as the different petrophysical parameters. 
Based on variations in their lithological and petrophysical characteristics, the Bahariya sandstones were sub-divided into 
three different rock units: Bahariya-3 (B-3), Bahariya-2 (B-2), and Bahariya-1 (B-1), separated by thick laminated clay 
intervals. AR/G Member is dominated by clays with relatively lower reservoir quality. Spectral gamma ray log values reveal 
that smectite is the dominant clay mineral in all the studied intervals. Laminated clays are dominant in B-1 and B-2 units, 
whereas, B-3 unit and Abu Roash G Member are enriched in structural clays. The quartzose sand content decreases from 
B-3 to AR/G and clay content increases from B-3 to AR/G. Therefore, the best reservoir facies and fluid flow conduits with 
best pore system characteristics are hosted in B-3 and the smectite clay streaks act as a good seal for hydrocarbons in the 
quartzose sandstone pay zone.
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Introduction

Clay minerals’ distribution in reservoir rocks presents 
key challenges to exploration geologists because of their 
detrimental effect on the reservoir quality (e.g., Loucks 
et al. 1984; Ehrenberg 1990; Walderhaug et al. 2012; El 
Adl et al. 2021). However, recent studies highlighted the 

beneficial impact of specific clay mineral phases on the 
reservoir quality such as chlorite coating in deeply buried 
reservoirs through preventing further diagenetic attributes 
such as quartz from destructing the primary porosity (e.g., 
Pittman 1992; Leila et al. 2018; Leila 2019). Therefore, the 
occurrence of clays and shale beds in the reservoir would 
complicate the determination and evaluation of petrophysi-
cal parameters. Accordingly, analyzing the type, content, 
and distribution mode of clay minerals in the reservoir is 
elemental for reservoir evaluation and management (Ghas-
sem 2018; Spooner 2018). In Clastics reservoirs, clays occur 
in three distribution types comprising dispersed, laminated, 
and structural. Each type varies in its impact on the reservoir 
quality (Wei et al. 2014; Ghassem and Roozmeh 2017).

The Cenomanian Clastics including the Bahariya and Abu 
Roash G sediments present the most prolific reservoirs in 
the north Western Desert (EGPC 1992; Dolson et al. 2001; 
Kassab et al. 2019; Yasser et al. 2021). These sediments 
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were deposited in a paralic depositional environment, and 
therefore host thick successions of Clastics dominated by 
argillaceous sandstones (Yasser et al. 2021; Radwan et al. 
2022). The present study is focused on the GPY oil field 
to the east of the Qattara Depression on the southern flank 
of the Abu Gharadig basin, Western Desert, Egypt (Fig. 1). 
Abu Gharadig basin is one of the most prolific basins in 
the whole Egypt as it contains the most productive oil and 
gas fields in the north of the Western Desert (El-Shaarawy 
et al. 1994; Teama and Nabawy 2016; Radwan et al. 2022). 
GPY field produces oil from the Cenomanian Bahariya and 
Abu Roash G (AR/G) sandstones. The drilling activity in 
this field started in 1981 by drilling an exploratory well 
named GPY-1 based on seismic data analysis and interpre-
tation. This well produces 200 barrels of oil per day from the 
AR/G reservoir with an oil viscosity between 40 and 42 API 
(EGPC 1992). Except for GPY-11 and GPY-9, which are 
categorized as less productive wells, all other wells host sig-
nificant hydrocarbon-bearing horizons in their sedimentary 
succession. However, these horizons are highly heterogene-
ous and most of the pay zones are laterally and vertically not 
connected due to the presence of numerous clay barriers. 
Moreover, Abu Roash G sandstones produce oil from some 
pay zones in specific wells and are dry in other wells typi-
fying a large-scale reservoir heterogeneity. Therefore, the 
main objective of this study is to define the different petro-
physical properties of the studied Cenomanian reservoirs 
and investigate their vertical and lateral distribution in the 
study region. Moreover, the impact of lithological attributes 
on the reservoir properties will be investigated. Additionally, 
the factors controlling the reservoir heterogeneity as well 
as the different scales of heterogeneity within the studied 
Cenomanian rock units will be evaluated.

Geologic setting

The north Western Desert of Egypt constitutes several 
petroliferous rift basins that were developed during the 
Mesozoic breakup of the Gondwana landmass and the birth 
of the southern Neo-Tethys (Garfunkel 1998, 2004; Guiraud 
et al. 2005; Tassy et al. 2015; Leila et al. 2022a). These 
basins are mostly aligned in a series of E-W, NE-SW, and 
ENE-WSW oriented half grabens (Fig. 1; Guiraud et al. 
2005; Moustafa 2008; Bevan and Moustafa 2012). Besides 
the studied Abu Gharadig (AG) basin, they include Natrun, 
Shushan, and Matruh as well as Faghur-Siwa basins. The AG 
represents an intracratonic E-W-trending basin in the central 
northern part of the Western Desert (Fig. 1). The basin was 
actively subsiding since the Paleozoic with a down warping 
initiated in Carboniferous and continued until Early Creta-
ceous (Kitchka et al. 2015; El Gazzar et al. 2016; Sarhan 
2017; El Mahdy et al. 2019). Similar to all the northern 

basins of the Western Desert, Abu Gharadig is a part of 
the extensive Tethys passive margin that evolved during the 
Late Triassic-Jurassic crustal break-up of the Gondwana 
landmass (Guiraud 1998; Bosworth et al. 1999; Stampfli 
et al. 2001; Garfunkel 2004). Rift-related subsidence dur-
ing the Jurassic permitted the accumulation of this syn-rift 
siliciclastics and mixed siliciclastics carbonate facies in all 
the north Western Desert basins (Ras Qattara, Khtataba and 
Masajid) (Fig. 2). The subsurface data from all the Western 
Desert rift basins suggest prevailing NW-SE extension tec-
tonics during the initial opening phase (Longacre et al. 2007; 
Bevan and Moustafa 2012; Abdel Maksoud et al. 2018). This 
is confirmed on seismic profiles by a dominant pattern of 
NE-SW extensional faults (Fig. 3a, b). By the beginning of 
the Early Cretaceous, a clockwise rotation of the extension 
direction prevailed toward the NE-SW, thus resulting in a 
generation of complex fault patterns with continuous subsid-
ence and deposition of Clastics-dominated Cretaceous sedi-
ments in Abu Gharadig Basin (Dolson et al. 2001; Bosworth 
et al. 2008; Ibrahim et al. 2009; Mousa et al. 2011).

The Jurassic-Cretaceous extensional phase was followed 
by a compressional episode during the Late Cretaceous and 
continued until the end of the Eocene due to the conver-
gence between Africa and Eurasia (Guiraud and Bosworth 
1997; Dolson et al. 2001; Guiraud et al. 2005; Bosworth 
et al. 2008; Bevan and Moustafa 2012). This convergence 
plate movement resulted in the structural inversions of the 
north Western Desert rift basins including Abu Gharadig 
and therefore inverted structural patterns extended as a fold-
belt across the whole north Western Desert (e.g. Moustafa 
and Khalil 1990; Guiraud and Bosworth 1997). The studied 
seismic profiles document these inverted structural patterns 
which form excellent hydrocarbon traps (Fig. 3a, b). The 
Upper Cretaceous sedimentary successions consist mainly 
of mixed siliciclastics carbonate facies marked by fluvial 
to shallow-marine Kharita sediments at the base grading 
upward into shallow marine Clastics of the Bahariya Forma-
tion. These Clastics are overlaid by transgressive carbonate 
of the Abu Roash Formation (Abu Roash “G” Member). 
The Bahariya Formation and AR/G Member petrophysically 
have been studied by numerous authors such as Temraz et al. 
(2009), Abu Shady et al. (2010), Shazly and Nouh (2013), 
Abdel-Fattah et al. (2018), Farrag et al. (2021), Abu-Hashish 
and Said (2016), Tian et al. (2018), and Saleh et al. (2021).

Material and methods

Seismic data

The available seismic data include 2D seismic pro-
files covering an area of approximately 70 km2 in the 
GPY field. Interpretation of seismic profiles included 
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(b)
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Fig. 1   A map illustrating the location of the GPY oil field wells in Abu Gharadig Basin, north Western Desert, Egypt (a) as well as the investi-
gated 2D seismic lines (b)
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picking the main seismic-stratigraphic horizons (Baha-
riya, AR/G) and identification of the cross-cutting 
faults based on the discontinuities in seismic ref lec-
tions (Abdel-Fattah et al. 2018; Henaish et al. 2022). 

Moreover, structural contour maps of the top studied 
horizons were constructed on the picked surfaces. 
Different seismic facies within the studied horizons 
were interpreted based on their variation in some 

Fig. 2   Generalized stratigraphic column of the North Western Desert of Egypt (Schlumberger 1995; Wescott et al. 2011)
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specific seismic characteristics (e.g., seismic ref lec-
tivity, continuity, and amplitude) following the stand-
ard seismic stratigraphic procedure of Mitchum et al. 
(1977). Seismic data analysis allowed the identifica-
tion of the structural patterns that affect the different 

stratigraphic horizons. Variation in seismic charac-
teristics (amplitude, ref lectivity) was compared with 
well-data after performing seismic well-tie and per-
mitted understanding variation in seismic facies with 
sedimentary patterns.

b

a

Fig. 3   Interpreted seismic profiles along strike (a) and dip (b) illustrating the dominant extensional structural patterns in the study region 
(Henaish et al. 2022)
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Wireline logging interpretation

Complete wireline log suites from four wells (GPY-2, GPY-3, 
GPY-9, and GPY-11) were utilized in this study. The availa-
ble well logs comprise natural and spectral gamma ray “GR,” 
“SGR,” caliper “CAL,” spontaneous potential “SP,” com-
pensated sonic “DT,” formation density compensated logs 
“RHOB,” and photoelectric factor effect (PEF). Additionally, 
neutron “CNL,” deep Laterolog “LLD,” shallow Laterolog 
“LLS,” and micro spherical logs “MSFL” were also available 
for the studied wells. Prior to performing the calculations, 
adjustments were performed to reduce the influence of sev-
eral factors on the well-log data, including lithology, mud 
weight, borehole temperature, and formation temperature. 
The petrophysical properties of the geological intervals of 
the Bahariya Formation and AR/G Member that may include 
highly promising hydrocarbon zones have been identified 
using the adjusted data. The well log analysis followed by 
potential reservoir petrophysical evaluation has been per-
formed in a successive and interrelated sequence as follows: 
determination of formation temperature, determination of 
mud filtrate resistivity, and determination of shale volume 
(Vsh) (gamma-ray and neutron-density methods). Finally, 
the Calculation of the total (∅t) and effective (∅e) porosity 
depended on the using of neutron-density method (Fig. 4).

The available well logs were analyzed using Schlum-
berger Techlog 2015 software and the outputs were 

interpreted and presented in vertical lithosaturation cross-
plot and isoparametric distribution maps. Different matrix 
cross plots were applied to differentiate between the main 
reservoir rock-forming lithologies and minerals such as 
sandstone, shales, and carbonate lithologies. In complex 
lithology, the (M-N) cross-plot or three-dimensional (3-D) 
cross-plot is often called litho-porosity cross-plots. The M 
and N parameters are derived using the readings of the neu-
tron, sonic, and density logs together (Bruke et al. 1969; 
Schlumberger 1974). M and N are deduced as follows:

where: Δtfl is the transit time of the saturation fluid, ρb 
density log reading, and ρfl fluid density; (ΦNfl) is the 
hydrogen index of the fluid and (ΦN) the neutron log read-
ing. For saline mud Δtfl = 184 µ sec/ft, ρfl = 1.1 gm/cc, and 
ΦNfl = 100%.

Thin-bed analysis (TBA) is a suitable way to prove how 
various combinations of logs would respond to porosity, 
lithology, and shale type and content. Shale mineralogy and 
distribution were interpreted using a spectral gamma ray log. 
Thomas–Stieber analysis was utilized for the evaluation of 

(1)M =
Δtfl − Δtlog

�b − �fl
× 0.01

(2)N =
∅Nfl − ∅Nlog

�b − �fl

Fig. 4   A flow chart illustrates 
the sequence of different ana-
lytical approaches that were fol-
lowed in this study for wireline 
logging data interpretation
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thin-bedded shaly-sand reservoirs, whose bed thicknesses 
are too thin to be resolved by traditional tools (Thomas and 
Stieber 1975). The parameters are derived using the total 
shale volume (Vsh) and total porosity (∅t) of the shale 
determined using the gamma-ray and density logs. The shale 
and sand endpoints should be picked in different cross-plots. 
Thomas–Stieber method needs the total shale porosity and 
porosity of clean sand (∅ss = ∅max). According to the 
method, the volume of laminar shale can be calculated by 
this formula:

Calculation of the volume of dispersed and structural 
shale can be obtained from these formulas (Thomas and 
Stieber 1975):

Vsh str = Vsh − V lam For laminar-structural shale 
distribution.

Vsh disp = Vsh − V lam For laminar-dispersed shale 
distribution.

Calculation of the total porosity (∅t) and effective poros-
ity (∅e):

Results and discussion

Seismic facies analysis

On seismic, the Bahariya Formation is characterized by 
vertically variable amplitude and frequency reflections. It 
comprises semi-parallel and discontinuous reflections. The 
Bahariya seismic reflections are partly chaotic and their 
amplitude decreases upward reflecting an upward variation 
in sedimentary facies and/or fluid content (Fig. 3a, b). On 
the other hand, AR/G seismic facies constitutes well-bedded, 
continuous, parallel, high amplitude, and reflectivity reflec-
tions. The AR/G seismic facies are vertically and laterally 
uniform in the study area reflecting its deposition during 
the same phase of sedimentation without significant varia-
tion either in lithology or fluid content (e.g., Mitchum et al. 
1977; Leila 2019, 2022b). The depth structure contour map 
on the top of the Bahariya Formation shows an irregular 
distribution pattern with local structural highs in the central 
and western part of the study region (Fig. 5a). The structural 
highs are bounded by faults from all directions forming a 
perfect four dip-way closure structure (Henaish et al. 2022). 

Vlam =
∅t − ∅max + Vsh × (1 − ∅sh)

(1 − ∅max)

∅tsand =
∅t − (Vlam × ∅sh)

(1 − Vlam)

∅esand =
∅t − (Vsh × ∅sh)

(1 − Vlam)

A similar pattern was also observed in the depth structure 
contour map on the top of the AR/G where the four dip-
way closure structures also exist in the central and western 
part of the study area (Fig. 5b). This structure was formed 
contemporaneously with the late Cretaceous–Paleogene 
inversion phase due to the convergence between Africa and 
Eurasia (e.g., Mustafa and Khalil 1990; Guiraud and Bos-
worth 1997). This tectonic phase was likely responsible for 
the hydrocarbon trap formation in Abu Gharadig Basin.

Lithosaturation characteristics of Bahariya and AR/G 
sediments

The plotting of the caliper log with the bit size reveals that 
there is a huge washout in the four wells of the study area, 
which has a significant impact on the reading of the logs, 
particularly the neutron and density logs. We attempted to 
mitigate the impact of washout with applying all necessary 
correction on all the raw data before the final analysis. Based 
on vertical variation in lithological and petrophysical proper-
ties, the Bahariya Formation is identified into three differ-
ent units. The lower Bahariya unit (B-3) is at the bottom, 
followed by the middle Bahariya unit (B-2), and the upper 
unit Bahariya unit (B-1) (Figs. 6, 7, 8, and 9). The B-3 unit 
consists mainly of sandstone and siltstone. The presence of 
carbonate minerals (limestone and dolomite) likely reflects 
their occurrence as pore-filling cement (e.g., Yasser et al. 
2021). The occurrence of siderite, hematite, clay content, 
glauconite, and pyrite is indicated by low resistivity and 
high gamma-ray log readings (Mohamed et al. 2016). B-3 
is characterized by an elevated shale volume due to the pres-
ence of siltstone. The highest effective porosity (∅e) and 
hydrocarbon saturation (Sh) values of 17% and 69% for B-3 
in the GPY-2 well are reported between 2321 and 2324 m 
(Fig. 6). B-3 unit is comparatively sand-rich in GPY-3 with 
the highest ∅e and Sh values of 43% and 83%, respectively 
(Fig. 7). Therefore, the highest net pay thickness is reported 
in GPY-3 well. On the other hand, B-3 unit is dominated by 
siltstone with thin sandstone interbeds in GPY-9 and GPY-
11 wells and therefore display comparatively lower ∅e and 
Sh values (Figs. 8 and 9).

The B-2 unit is dominated by sandstone and siltstone 
with thin shale interbeds. In GPY-2 well, the highest ∅e 
and Sh values are respectively 23% and 93% where hydro-
carbon-bearing pay zones are observed in this unit between 
2265–2277 m and 2295–2300. In GPY-3 well, the ∅e and 
Sh values are comparatively lower (17%, and 64%, respec-
tively) where the facies are more clay-rich. Moreover, in the 
GPY-9 well, the highest ∅e and Sh values are 21% and 54%, 
respectively, where a 1-m thick streak of hydrocarbon pay 
zone is reported at 2309–2310 m. Similarly, GPY-11 well 
constitutes only a 1.5-m thick pay zone (2294–2295.5 m) in 
B-2 unit with average ∅e and Sh values of 31% and 64%.
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Fig. 5   Depth structural contour 
map on the top of Bahariya 
Formation (a), and Abu Roash 
G (AR/G) member (b) in GPY 
oil vicinity in Abu Sennan Con-
cession, Western Desert, Egypt 
(Henaish et al. 2022 and Farrag 
et al. 2022) F7
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Fig. 6   Vertical litho-saturation cross plot showing the lithologic and petrophysical properties of the studied rock units in GPY-2 well in GPY oil 
vicinity in Abu Sennan Concession, Western Desert, Egypt
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Fig. 7   Vertical litho-saturation cross plot showing the lithologic and petrophysical properties of the studied rock units in GPY-3 well in GPY oil 
vicinity in Abu Sennan Concession, Western Desert, Egypt
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Fig. 8   Vertical litho-saturation cross plot showing the lithologic and petrophysical properties of the studied rock units in GPY-9 well in GPY oil 
vicinity in Abu Sennan Concession, Western Desert, Egypt
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Fig. 9   Vertical litho-saturation cross plot showing the lithologic and petrophysical properties of the studied rock units in GPY-11 well in GPY 
oil vicinity in Abu Sennan Concession, Western Desert, Egypt
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The B-1 unit is composed primarily of carbonate (lime-
stone and dolomite), shale, and sandstone. In the GPY-2 
well, the greatest ∅e and Sh values of 37% and 65% are 
observed between 2226 and 2231.5 m which is the main 
pay zone in the B-1 unit. In GPY-3, the maximum ∅e and 
Sh values are 17% and 64% in the 4-m thick pay zone identi-
fied between 2063 and 2067.5 m. The lowest value of Sh is 
reported for B-1 unit in GPY-9 and GPY-11 wells where no 
pay zones were observed in B-1 unit in these wells.

AR/G Member consists mainly of shale, limestone, dolo-
mite, and sandstone with a very low content of siltstone. 
AR/G Member has the maximum ∅e and Sh values of 37% 
and 60% in the GPY-2. Hydrocarbon-bearing pay zones 
within AR/G Member are only reported in the GPY-2 well. 
In the other wells, AR/G Member is dominated by calcare-
ous shale beds with very low ∅e values < 10%. Therefore, 
reservoir intervals are completely absent in AR/G Member 
in most of the studied wells.

Petrophysical parameters distribution

The different petrophysical parameters deduced from wire-
line logging interpretation for the Bahariya Formation units 
(B-3, B-2, B-1) as well as AR/G Member were mapped to 
define lateral changes and distribution of the best reservoir 
facies (Table 1). The mapped petrophysical parameters com-
prise shale volume (Vsh), effective porosity (∅e), movable 
hydrocarbon saturation (Shm), and the net-pay thickness.

For the B-3 unit, the Vsh increases northward with a 
maximum value of 25% in the GPY-9 well and decreases in 
the southwest direction with a minimum content of 12% in 

the GPY-3 well (Fig. 10a). The ∅e increases in the south-
west direction with the highest effective porosity value of 
27% in the GPY-9 well. It gradually decreases northeast 
with the lowest value of 13% in GPY-11 (Fig. 10a). The 
sediments of the B-3 unit are fully saturated with water in 
the eastern parts of the study area where the lowest content 
of movable hydrocarbon was reported (Fig. 10a). On the 
other hand, the movable hydrocarbon content increases in 
the northeastern and southwestern parts of the study region 
consistent with the occurrence of hydrocarbon pay zones in 
GPY-2 and GPY-3 wells. Figure 10b illustrates that the Vsh 
of the B-2 unit increases in the northwest directions, record-
ing a maximum value of 31% through the GPY-9 well. It 
decreases in the southwest direction, reflecting a minimum 
shale content of 5% in the GPY-3 well. The ∅e recorded 
an overall increase in the south and east directions with the 
highest percentage of 32% in the GPY-11 well. It gains the 
lowest connected pore percent of 20% in GPY-2 (Fig. 10b). 
The Shm recorded a maximum saturation of 41% through 
the GPY-2 well in the northeastern parts. This saturation 
decreases toward the northwestern direction recording an 
average value of 18% in the GPY-9 well (Fig. 10b). Finally, 
the thickness of the net pays intervals of nearly 24 m was 
recorded in the GPY-2 well and decreases to reach 0.3 m at 
the GPY-9 well (Table 1).

The Vsh of the B-1 unit increased in the northeast and 
southwest directions, recording a maximum volume of 
27% through the GPY-3 well. It decreases in the north-
west direction, reflecting a minimum shale volume of 
3% in the GPY-9 well (Fig.  10c). The ∅e displays a 
general increase in the central part of the study region 

Table 1   The values of petrophysical parameters for Abu Roash G member and the three units of Bahariya Formation for the studied wells in 
GPY oil and gas vicinity in Abu Sennan Concession, Western Desert, Egypt

FM Units Well Gross thickness 
(m)

Vsh (%) PHIE, (%) Sw, (%) Sh, (%) Shm, (%) Net pay (m)

ABU ROASH FM AR/G GPY-3 135.8 0.32 0.07 0.43 0.57 0.16 0.2
GPY-9 131.9 0.32 0.12 0.97 0.03 0.10 0.0
GPY-11 61.0 0.36 0.14 0.83 0.17 0.14 0.0
GPY-2 47.5 0.31 0.31 0.42 0.58 0.32 5.3

BAHARIYA FM B-1 GPY-3 113.3 0.27 0.17 0.39 0.61 0.24 3.3
GPY-9 87.0 0.03 0.32 0.38 0.62 0.12 0.5
GPY-11 41.0 0.18 0.31 0.43 0.57 0.17 1.5
GPY-2 30.4 0.26 0.25 0.41 0.59 0.37 7.8

B-2 GPY-3 53.0 0.05 0.28 0.37 0.63 0.30 8.5
GPY-9 95.0 0.31 0.28 0.46 0.54 0.18 0.3
GPY-11 126.0 0.22 0.32 0.40 0.60 0.24 2.5
GPY-2 49.0 0.17 0.20 0.25 0.75 0.41 23.9

B-3 GPY-3 218.9 0.12 0.25 0.32 0.68 0.38 69.8
GPY-9 77.5 0.25 0.27 0.41 0.59 0.19 1.1
GPY-11 42.5 0.16 0.13 0.99 0.02 0.00 0.0
GPY-2 78.6 0.23 0.17 0.37 0.63 0.28 3.5
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where the highest values of 32% are reported in GPY-9 
and GPY-11wells. It gradually decreases in the south-
west direction with the lowest connected pore percent 
of 17% in GPY-3 (Fig. 10c). The Shm recorded a maxi-
mum saturation of 37% through the GPY-2 well in the 

northeastern direction. This saturation decreases toward 
the northwestern direction recording 12% in the GPY-9 
well (Fig. 10c). A maximum net pays interval of nearly 
7.8 m was recorded in the GPY-2 well and it decreased 
to reach 0.5 m at the GPY-9 well (Table 1).

Fig. 10   Petrophysical param-
eters distribution charts of shale 
volume, effective porosity, and 
movable hydrocarbon saturation 
in a Bahariya-3 unit, b Baha-
riya-2 unit, c Bahariya-1 unit, 
and d AR/G Member, GPY oil 
vicinity, Western Desert, Egypt
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The Vsh of AR/G Member increased in the east direction, 
recording a maximum value of 36% through the GPY-11 
well. It decreases in the north, southwest, and west direc-
tions, reflecting a minimum shale content of 31% in the 
GPY-2 well (Fig. 10d). The ∅e recorded a general increase 
in the northeast direction with the highest effective poros-
ity of 31% in the GPY-2 well. It regularly decreases in the 
southwest direction with the lowest connected pore percent 
of 7% in GPY-3 (Fig. 10d). The Shm recorded a maximum 
saturation of 32% through GPY-2 well in the northeastern 
parts. This saturation decreases toward the northwestern 
direction recording an average value of 10% in the GPY-9 
well (Fig. 10d). The maximum net pay intervals of nearly 
5.3 m were recorded in the GPY-2 well and decrease to reach 
zero at GPY-9 and GPY-11 wells (Table 1). According to 
the distribution patterns of Cenomanian petrophysical char-
acteristics, the GPY field’s B-3 unit has a highly promising 
southwestern hydrocarbon potentiality, whereas the B-2, 
B-1 units, and AR/G Member all have northeastern high 
potentialities.

Reservoir lateral connectivity

Tracking both lateral and vertical variation in the archi-
tecture and distribution of reservoir sand bodies is crucial 
for hydrocarbon exploration and development strategies. 

These variations are often dependent on the depositional 
setting which control the sedimentary stacking patterns 
(Posamentier and Allen 1999; Nabawy and El Sharawy 
2015; Leila et al. 2022b). Stratigraphic architecture, sand-
body geometry, and proportion of clay and fine materi-
als are important factors to have an impact on reservoir 
facies connectivity (Tearpock and Bischke 1991; Bridge 
and Mackey 1993; Li et al. 2004; Colombera et al. 2016). 
The NE-SW stratigraphic cross-section passing through 
the studied wells shows wide variations in the thicknesses 
and lithological characteristics of the studied rock units 
(Fig. 11). For example, Bahariya unit 3 thickness in the 
southwest direction in GPY-3 well, however, the highest 
content of Bahariya unit 3 sand is observed in the north-
eastern part of the field where the thickness of Baha-
riya unit 3 (B-3) decreases. Despite the great thickness 
of Bahariya unit 3 in the GPY-3 well, the sand beds are 
thin, disconnected, and heterogeneous. The thickness of 
Bahariya unit 3 sandstone bodies is structurally rather than 
depositionally controlled. The inversion of the fault slip-
ping during Late Cretaceous–Middle Eocene affected the 
NE-SW normal faults, which suffered positive structural 
inversion forming a symmetrical anticline with variated 
thickness distribution in the four Cenomanian units with 
the thicker interval on the hanging wall of these faults that 
extended throughout the study area of GPY oil field. The 
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Fig. 11   Vertical litho saturation cross-plot correlation chart of the petrophysical parameters of Abu Roash G member and the three units of 
Bahariya Formation for the studied wells in GPY oil vicinity in Abu Sennan Concession, Western Desert, Egypt
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stratigraphic cross-section also reveals a lateral and vertical 
variation in the depositional facies from shallow to deep 
marine, where a shallow marine environment was reflected 
throughout the B-3 unit and extended along the study area. 
The B-2 unit represented shallow marine environments in 
the southwestern part and deep in the northeastern part, 

where the beginning of limestone deposition. The B-1 unit 
and AR/G Member are represented by deep marine envi-
ronments. These fluctuating sediments affected greatly the 
petrophysical properties of the four Cenomanian horizons, 
especially the shale quantity, distribution as well as the 
porosity, permeability, and hydrocarbon potentiality.

Fig. 12   Neutron-density cross 
plot of Abu Roash G member 
and the three units of Bahariya 
Formation for the studied wells 
in GPY oil and gas vicinity in 
Abu Sennan Concession, West-
ern Desert, Egypt
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Reservoir matrix analysis

The neutron-density cross-plot of the B-3 unit reflects in 
dominant sandstone composition with limestone and shale 
interbeds (Fig. 12). The sandstone porosity ranges from 20 

to 25%. Limestone likely occurs as calcareous cement and 
bed intercalations in the sandstones (Abdel Maksoud et al. 
2019; Yasser et al. 2021; Leila et al. 2022a, b). The matrix 
composition of Bahariya unit-2 (B-2) indicates a compara-
tively lower sand content than that in B-3. B-3 matrix is 

Fig. 13   M-N cross plot of Abu 
Roash G member and the three 
units of Bahariya Formation 
for the studied wells in GPY oil 
and gas vicinity in Abu Sennan 
Concession, Western Desert, 
Egypt
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rather dominated by dolomite and limestone with sub-ordi-
nate contents of siltstone and shale (Fig. 12). Bahariya-1 
unit (B-1) matrix consists mainly of limestone with porosity 
values of approximately 15%. Similar to B-1, the matrix 
composition of AR/G is dominated by limestone and shale 
with rare sandstone and siltstone contents (Fig. 12). Matrix 
analysis of the Cenomanian sedimentary facies in GPY 
Field reveals an upward increase in the shale and carbon-
ate content and a decrease in the sand content confirming a 

transgressive depositional phase that prevailed in the study 
region during Late Cenomanian. This transgressive phase 
was likely accompanied by a prominent change in the depo-
sitional facies from fluvial-dominated (B-3) at the base to 
shallow and deep-marine deposition at the top (B-3 and 
AR/G) (Leila et al. 2022b).

M-N cross-plot allows the identification of the domi-
nant mineralogical composition of the studied Cenoma-
nian rock units. The plot shows that B-3 unit sediments are 

Fig. 14   a PEF-density cross 
plot. b Thorium/potassium 
ratio — PEF cross plot. c 
Potassium% — PEF cross plot. 
d Potassium — thorium cross 
plot of Abu Roash G member 
and the three units of Bahariya 
Formation in GPY-9 well in 
GPY oil vicinity in Abu Sennan 
Concession, Western Desert, 
Egypt

(c)

(a)

(d)

(b)

351 Page 18 of 23



Arab J Geosci (2023) 16:351   

1 3

Fig. 15   Gamma ray-density and 
neutron-density cross plots of 
the sandstone of a B-3 unit, b 
B-2 unit, c B-1 unit, and d Abu 
Roash G member in GPY oil 
vicinity in Abu Sennan Conces-
sion, Western Desert, Egypt
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preliminary and consist of quartz and calcite with subordi-
nate content of clay minerals (Fig. 13). B-3 sediments also 
contain significant volumes of secondary pores evidenced 
by shifting of the B-3 points upwards. Secondary porosity 
in B-3 sandstones suggests a prominent dissolution of the 
calcite cement and/or the calcareous clasts (e.g., Radwan 
et al. 2022). B-2 sediments contain less content of quartz 
and their mineralogical composition is dominated by calcite 
and clay minerals. Secondary porosity is less common in 
B-2 compared with B-3 typifying a mild extent of dissolu-
tion and the carbonate materials mostly occur as concretions 
in the sand and thin-bed intercalations. Shale is the main 
lithology in the B-1 unit and its sediments mainly consist 
of clay minerals and carbonate. Similarly, AR/G facies are 
dominated by calcite, dolomite, and clay minerals, and the 
effect of secondary porosity is observed in some wells. Sec-
ondary porosity is mostly attributed to the dissolution of 
carbonate components.

The photoelectric factor (PEF) versus bulk density 
(RHOB) cross plot confirms the dominant quartzose 
sandstone composition of the B-3 unit and the mixed 
siliciclastics-carbonate composition of the other units 
(Fig. 14a). Such upward transitions from Clastics-dom-
inated sedimentation in B-3 into mixed siliciclastics-car-
bonate upward confirm a major change in the depositional 
environment during the Cenomanian with increasing the 
marine influence during Late Cenomanian (e.g., Hantar 
1990; Helba and Bakry 1996; Alsharhan and Abd El-
Gawad 2008; Leila et al. 2022b).

Clay mineral identification

The occurrence of clay minerals in the reservoir is often 
crucial for reservoir management as they induce a major 
influence on the reservoir storage and flow capacities 
(e.g., Walderhaug et al. 2012; Leila and Mohamed 2020; 
El Adl et al. 2021). Moreover, physical and chemical 
characteristics as well as the performance of conven-
tional sandstone, carbonate, and unconventional shale 
are significantly influenced by the presence of clay min-
erals (e.g., Schon 2011; Jiang 2012; Chou et al. 2014). 
Migration of fines and swelling of specific clay mineral 
phases are the primary reasons for formation damage 
measured as permeability impairment (Civan 2000, 
2007; Galal et al. 2016). Moreover, formation damage 
is a catastrophic operational and financial issue during 
the many stages of oil and gas recovery from reservoirs, 
including drilling, production, hydraulic fracturing, 
and workover operations. According to Amaefule et al. 
(1993), formation is particularly prone to occur in poorly 
lithified and densely packed formations that contain sig-
nificant amounts of authigenic, pore-filling clays that 

are susceptible to aqueous solutions, such as kaolinite, 
illite, smectite, chlorite, and mixes-layer clay minerals. 
Accordingly, accurate identification of the dominant 
clay phase as well as prediction of their distribution 
patterns is crucial for optimal reservoir management. 
The PEF versus Th/K cross-plot reflects the clay com-
position in the studied sediments (Schlumberger 1985; 
Schon 2011). Most of the studied sediments have Th/K 
values less than 10 typifying that montmorillonite is the 
most dominant clay phase in the studied Cenomanian 
sediments (Fig. 14b). Potassium (K) and thorium (Th) 
contents confirm that clay minerals in the studied sedi-
ments are mainly represented by montmorillonite and 
mixed layer clays with subordinate contents of kaolin-
ite and illite. The mixed clay phases mainly consist of 
mixed illite/smectite (Fig. 14c, d).

Thin bed analysis (TBA) was utilized to identify differ-
ent forms of shale associated with sandstone reservoirs of 
the Bahariya Formation and Abu Roash G Member (Farrag 
et al. 2021). The Thomas–Stieber model was initially created 
to resolve the problem of laminated shaly sand sequences in 
the older South Louisiana fields. Shale exists in three differ-
ent forms in the sand: dispersed, laminated, and structural 
(Ali et al. 2016; Schlumberger 2011; Willis et al. 2017). The 
gamma-ray and density porosity log values were plotted to 
determine the sand fraction, the sand porosity, and the shale 
distribution. Figure 15a typifies that the sandstone of the B-3 
unit is marked by laminated shale and rare dispersed shale. 
Nevertheless, the B-2 and the B-1 units are marked by lami-
nate shale only (Fig. 15b, c). On the other hand, A/R G is 
marked by laminated shale and rare structural shale (Fig. 15d).

Conclusions

The Cenomanian sediments host the most prolific reservoir 
targets in the north Western Desert. In the studied GPY oil 
field, the Cenomanian rock units were subdivided into four 
main units with variable lithologic and petrophysical char-
acteristics. These units comprise Bahariya units (B-3, B-2, 
B-1) as well as the AR/G member. B-3 unit consists mainly 
of sandstone, siltstone, and little shale streaks with the pres-
ence of carbonate as cement and bed intercalation. The sand 
content decreases upward from B-3 to B-1 with an upward 
increase in the silt, shale, and carbonate content. AR/G con-
sists preliminary of carbonate with little content of quartz 
and silicate minerals.

The depositional facies change upward from Clastics 
facies in B-3 to mixed siliciclastics carbonate B-1, B-2, and 
carbonate in AR/G. B-3 has the best reservoir characteris-
tics and hosts the best reservoir conduits and the highest 
contents of hydrocarbon saturation. The reservoir conduits 
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are preferentially distributed in the southern part of the 
study region where the B-3 units have the highest values of 
porosity and lowest content of shale volume. The shale min-
eralogy consists mainly of smectite and mixed-layer illite/
smectite and therefore induces a detrimental impact on the 
reservoir quality. Consequently, the facies of the lowest con-
tent of clays have the best reservoir quality. Therefore, the 
reservoir quality of the Cenomanian rock units decreases 
upward from B-3 to AR/G. Furthermore, the occurrence of 
shale streaks would be an effective seal for the hydrocarbon 
because of its dominant smectite content resulting in a very 
effective seal capacity.
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