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Abstract
Adsorbed gas plays a key role in organic-rich shale gas production due to its potential to contribute up to 60% of the total 
gas production. The amount of gas potentially adsorbed on organic-rich shale is controlled by thermal maturity, total organic 
content (TOC), and reservoir pressure. Whilst those factors have been extensively studied in literature, the factors governing 
desorption behaviour have not been elucidated, presenting a substantial impediment in managing and predicting the perfor-
mance of shale gas reservoirs. Therefore, in this paper, a simulation study was carried out to examine the effect of reservoir 
depth and TOC on the contribution of adsorbed gas to shale gas production. The multi-porosity and multi-permeability 
model, hydraulic fractures, and local grid refinements were incorporated in the numerical modelling to simulate gas storage 
and transient behaviour within matrix and fracture regions. The model was then calibrated using core data analysis from 
literature for Barnett shales. Sensitivity analysis was performed on a range of reservoir depth and TOC to quantify and inves-
tigate the contribution of adsorbed gas to total gas production. The simulation results show the contribution of adsorbed gas 
to shale gas production decreases with increasing reservoir depth regardless of TOC. In contrast, the contribution increases 
with increasing TOC. However, the impact of TOC on the contribution of adsorbed gas production becomes minor with 
increasing reservoir depth (pressure). Moreover, the results suggest that adsorbed gas may contribute up to 26% of the total 
gas production in shallow (below 4,000 feet) shale plays. These study findings highlight the importance of Langmuir iso-
thermal behaviour in shallow shale plays and enhance understanding of desorption behaviour in shale reservoirs; they offer 
significant contributions to reaching the target of net-zero CO2 emissions for energy transitions by exhibiting insights in the 
application of enhanced shale gas recovery and CO2 sequestration — in particular, the simulation results suggest that CO2 
injection into shallow shale reservoirs rich in TOC, would give a much better performance to unlock the adsorbed gas and 
sequestrate CO2 compared to deep shales.
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Introduction

Shale gas resources have been identified as an important 
component in current clean geo-energy, which plays an 
important role in the energy transition to net-zero target of 
carbon dioxide emission. Therefore, in recent years, there 
has been increasing interest in the commercial development 

of shale gas resources worldwide; in 2018, shale gas 
accounted nearly 65% of The United States (U.S.) total gas 
production (IEA 2019), and 21% in China (Dai, Qin et al. 
2019). This significant breakthrough in the exploitation of 
shale gas resources has extended to other countries such as 
Canada and Australia. However, shale gas reservoirs have 
presented new challenges due to their ultra-low permeabil-
ity and recovery factors (Bybee 2009). Consequently, it is 
essential to enhance the matrix permeability to achieve eco-
nomical production from shale reservoirs.

The advanced technologies of horizontal drilling and 
multi-stage hydraulic fracturing techniques create and 
establish the conductivity between fractures and matrix 
with induced fractures network. These technologies enable 
the oil and gas industry to achieve the shale gas reservoirs’ 
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potential with commercial production. Similar to coalbed 
methane, shale gas reservoirs hold a tremendous amount 
of gas on the surface of organic minerals which can be 
referred to as the adsorbed gas (Kang et al. 2010). The 
adsorbed gas has been a key parameter in shale gas res-
ervoirs evaluation and development and may count up to 
60% of the total gas in place (Wu et al. 2014). Unlock-
ing adsorbed methane on organic-rich shale surface has 
attracted great attention in industry due to its potential to 
produce considerable amounts of gas.

The adsorption and desorption phenomenon has been 
investigated in a large, growing body of literature. Although 
several studies have widely focused on adsorption behaviour 
(Ji, Zhang et al. 2012, Gasparik et al. 2013, Hardy 2019), 
desorption behaviour has not been completely elucidated, 
presenting a substantial impediment in the efficient manage-
ment and performance predictions of shale gas reservoirs. 
Of the few studies identifying factors governing desorp-
tion in shale gas production, some have focused only on the 
impact of hydraulic fracture parameters on both free and 
adsorbed gas (Freeman, Moridis et al. 2013, Pan and Con-
nell 2015). Researchers have investigated the influencing 
reservoir parameters on shale production (Bumb and McKee 
1988, Mengal and Wattenbarger 2011) — however, the 
multi-porosity and diffusion models have not been consid-
ered in their studies. Further investigations considering the 
aforementioned models (Zhang, Du et al. 2009, Wasaki and 
Akkutlu 2015a, b) have neglected the effect of total organic 
content (TOC) and the impact of reservoir pressure.

Currently, research regarding the parameters governing 
the contribution of adsorbed gas to shale production is lack-
ing. Whilst several sensitivities studies have been carried 
out in the literature to evaluate the desorption behaviour, 
however, to the best of our knowledge, no single study exists 
which has considered the multi-permeability and diffusion 
models to investigate the impact of reservoir depth on the 
production of adsorbed gas considering TOC. Therefore, 
there is a pressing need to combine all these models to exam-
ine the impact of reservoir depth (i.e. pressure) coupled with 
TOC on adsorbed gas production performance in shale gas 
reservoirs.

In this work, we employ multi-porosity and multi-per-
meability model incorporating with Langmuir isotherms 
and instant sorption option to quantify the contribution 
of adsorbed gas to total gas production. In particular, this 
research seeks to investigate the factors influencing adsorbed 
gas production in shale reservoirs. The sensitivity analysis 
aims to provide a greater understating of transient and des-
orption behaviour with respect to reservoir depth and TOC. 
The results of this paper could provide important insights 
into the selection of optimal depth to inject CO2 in shale 
reservoirs which can potentially enhance both CH4 recovery 
and CO2 sequestration.

This study has been divided into five parts: the first part 
includes this introductory section. The second consists of 
a brief overview focusing on the key theory of shale gas 
reservoirs production and modelling. Thirdly, the method-
ology used for this study including model development and 
calibration will be covered. The fourth section presents the 
simulation results and discussion. Finally, the conclusion 
gives a summary of the findings and implications.

Theory

Shale gas production

Shale gas mainly exists in three different forms: (a) free gas 
in the fractures with various length scale and in the intercon-
nected micro-pores of the organic content (Godec, Koperna 
et al. 2014); (b) adsorbed gas on the organic surfaces; and 
(c) dissolved gas in the reservoir fluids (Kang et al. 2010). 
The primary production profile of a single shale well dra-
matically declines after a few years of high initial production 
rate. As the reservoir pressure declines, adsorbed gas begins 
to be desorbed from the organic matter surface contributing 
to the total production with a considerable amount account 
up to 60% of the total gas in Wu et al. 2014). This stage 
of production extends and contributes significantly to the 
cumulative production.

Figure 1 shows the gas primary production profile for the 
base case from our simulation results. Therefore, the contri-
bution of adsorbed gas in production has been considered as 
a pintail of shale reservoir long-term production (Bumb and 
McKee 1988). However, challenges arise when quantifying 
and predicting the recoverable adsorbed gas due to complex 
transport of desorbed gas within organic and matrix micro-
pores towards fractures and then to the producing wells. 
The production from the adsorbed gas has been to be found 
difficult to be produced compared with the free gas, as a 
result of different mechanisms of storage (adsorption) and 
the transport mechanism (surface diffusion) through shale 
pores system (Wua et al. 2015). Moreover, the adsorbed gas 
tends to behave differently in terms of density and accumula-
tion (Ambrose, Hartman et al. 2012, Ma et al. 2016).

The prospective production from adsorbed gas is influ-
enced by many factors such as reservoir permeability and 
the fracture network (Pan and Connell 2015). The initial res-
ervoir pressure and the amount of total organic content are 
playing the main role in the adsorption capacities (Ansari, 
Merletti et al. 2019). The adsorption capacities of shales and 
TOC show a direct linear correlation, where the adsorbed 
gas typically increases with increasing TOC (Weniger, 
Kalkreuth et al. 2010). With increasing the thermal matu-
ration, the adsorption capacities are found to increase as a 
result of generated microporosity from the organic matter 
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(Gasparik, Bertier et al. 2013). In addition, it has been 
proven that clay minerals can also adsorb gases and vapours 
(Lu, Li et al. 1995). In respect to pressure, the adsorption 
capacity, hence the original adsorbed gas in place, yields a 
general trend of increasing with pressure. Fig. 2 shows how 
the adsorbed CH4 typically relates in a non-linear correla-
tion to pressure in different shales samples. However, the 
adsorption capacity tends to increase slowly at high pres-
sure. This observed change in adsorption behaviour at high 
pressure environment could be attributed to the completion 
of mono-layer adsorption, which is typically followed by the 
equilibrium saturation (Nuttal, Eble et al. 2005).

Multi‑porosity and multi‑permeability model

Shale gas reservoirs have two distinct types of porosity, the 
fractures and matrix porosity. The matrix pores are in nano-
scale and only occupied by free gas. The analysis of three-
dimensional high-resolution imaging has recently showed 
a large and interconnected pores of organic pockets within 
shale matrix (Kang et al. 2010). The organic pores have a 

much smaller length compared to the inorganic matter (typi-
cally less than 10 nm) (Adesida et al. 2011a) and are more 
likely than matrix to be interconnected (Verba et al. 2016). 
The contribution of organic pores lies in the range of 34 
to more than 50% to the total pore volume (Schettler and 
Parmely 1991, Passey, Bohacs et al. 2010, Hardy 2019). 
According to the complex mechanisms by which gas is 
trapped in shale structure, in this work, a multi-porosity and 
multi-permeability model became essential to simulate gas 
transport behaviour from sub-matrix cells to the primary 
matrix cells towards the natural and/or the induced fractures, 
and then to the wellbore.

Gas adsorption isotherm

In shale reservoirs, the original gas in place is estimated in 
terms of gas content for both free and adsorbed gas. The 
relative contribution of free vs adsorbed gas varies with the 
total organic content, reservoir pressure and temperature, 
pore size distribution, and rock texture (Bustin, Bustin et al. 
2008). The free gas reserve is defined using shale porosities 

Fig. 1   The production profile of 
free and adsorbed gas for Bar-
nett shale reservoir calculated 
by our predictive simulation 
model

Fig. 2   Methane adsorption 
isotherms analysis at a range of 
pressure values calculated for 
New Albany Shale and Ohio 
Shale (Nuttal, Eble et al. 2005)
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(fractures, organic, and inorganic). In this study, Langmuir 
isotherm (monolayer molecules of the adsorbed gas) was 
used to define the shale gas adsorption and desorption pro-
cess. Langmuir isotherms can be expressed as shown in Eq. 
(1) (Merey and Sinayuc 2016):

where

Vp	� is the predicted amount of adsorbed gas at gas pressure 
P,

Vl	� is Langmuir’s volume,
Pl	� is Langmuir’s pressure at which 50% of gas is adsorbed.

Commonly, Langmuir isotherm is the most applied 
kinetic model for shale gas adsorption and desorption pro-
cess (Li, Mehmani et al. 2013); it is a simple and practical 
model which is based upon two main assumptions. Firstly, 
molecules of free and adsorbed gas are in a state of dynamic 
equilibrium at constant temperature. Secondly, the adsorp-
tion thickness is a monolayer molecule of the adsorbed 
gas (Yu, Sepehrnoori et al. 2016). In contrast, Emmet and 
Teller (BET) isotherm is a model in which infinite number 
of multi-layer adsorption is taken into account (Clarkson, 
Bustin et al. 1997).

Whilst Langmuir isotherm has been proven in previous 
study to fit accurately over a range of pressure and tem-
perature (Clarkson, Bustin et al. 1997), it may not be always 
valid for organic-rich shale of a large effective pore size 
greater than 10 nm (Chai, Yang et al. 2019). Therefore, in 
this work, it was decided not to consider the effect of multi-
layer adsorption. The main reason for this is that organic 
porosity of 2% was defined in our predictive model, which 
is an indication of small effective organic pore size typi-
cally < 10 nm (Kang et al. 2010). Consequently, multi-layer 
adsorption model consideration in this study will result in 
underestimating in free gas volume that occupies the organic 
pores. Moreover, in respect to surface diffusion, the upper 
layer may not necessarily contribute if the lower layer is not 
completely formed (Brunauer and Emmett 1937). Hence, 
the formation of multi-layers of adsorption may not play a 
significant role in our undertaken investigation.

Gas transport mechanism

Gas transport in shale reservoirs is a complex flow process 
as a result of different gas storage mechanisms and pore 
size distribution. Gas flow mechanism in shale reservoirs 
varies in organic from inorganic pores and is significantly 
different from that in conventional gas reservoirs (Wua, Li 
et al. 2015). Typically, within shale pores system, gas flow 

(1)Vp =
VlP

Pl + P

comes from the matrix region to fractures region to feed 
the wells (Shi et al. 2013). With regard to the channel size, 
Darcy’s law can be used to simulate the free gas flow within 
the fractures network (Schepers et al. 2009a). In contrast, 
the capillary size is considerably much smaller in the matrix 
pores; therefore, the free gas transport is subjected to diffu-
sion transport mechanism (Wasaki and Akkutlu 2015a, b). 
Finally, in inorganic pores, where the gas is adsorbed on 
the surface organic matter, desorption process governs gas 
transport to fractures and to inorganic matrix pores. Conse-
quently, accurate simulation of shale gas reservoirs needs to 
consider the effects of different flow and storage mechanisms 
associated with the different pore types described above. 
Therefore, a combination of desorption, diffusion, and Darcy 
flow mechanisms were considered in our simulation study.

Methodology of reservoir modelling

Model development

The numerical reservoir simulation technique has been 
one of the effective tools used to analyse the realistic flow 
mechanism of free and desorbed shale gas. In this study, 
Eclipse-300 compositional reservoir simulator was used to 
simulate gas production for the Barnett shale reservoir. The 
numerical simulation model of the Barnett shale reservoir 
was generated using data in public domain (Table 1). The 
key input parameters were defined in the model within the 
range which consists with that presented in literature for the 
realistic shale. Tables 2 and 3 show the reservoir param-
eters and Langmuir constants of CH4 for Barnett shale gas 
reservoir (Frantz, Sawyer et al. 2005, Grieser et al. 2006, 
Gale, Reed et al. 2007, Du et al. 2009, Adesida et al. 2011a, 
Mengal and Wattenbarger 2011, Ambrose, Hartman et al. 
2012, Shi et al. 2013, Wu and Aguilera 2013, Kim, Cho et al. 
2017, Hardy 2019).

Many previous simulation studies used the traditional 
dual-porosity model which neglects the transient behav-
iour within matrix region (Schepers et al. 2009a, Eshkalak 
et al. 2014). To accurately simulate the storage and tran-
sient behaviour of the matrix region, multi-porosity and 

Table 1   The fracture data used for the Barnett model

Parameter Value Unit

Hydraulic fracture spacing 300 feet
Hydraulic fracture height 200 feet
Hydraulic fracture width 0.15 feet
Total number of fractures 25
Fracture half length 350 feet
Number of stages 5
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multi-permeability models were employed in our predic-
tive model. Thus, our model can predict gas flow from sub-
matrix cells to the primary matrix cells towards the natural 
and/or the induced fractures, and then to the wellbore.

Mass accumulation and flow within matrix region are 
dominated by the adsorption and desorption process. There-
fore, an accurate capture of adsorption-desorption behaviour 
is of crucial importance for shale gas modelling. The instant 
sorption option was used in our model to offer an effective 
way to represent the gas volumes (free and adsorbed) simul-
taneously within the organic matrix pores.

In this model, a horizontal producer well and five stages 
of hydraulic fractures were generated in the middle of the 
reservoir segment intersecting. Table 1 shows the fracture 
parameters used for the simulation model. For more accurate 
gas flow simulation, a local grid refinement option was also 
generated around the fractures. Given that the gas is non-
wetting phase in inorganic matter (Daigle et al. 2015), con-
ceptually, two relative permeability curves were assigned in 
this case study for shale bulk and organic matter separately.

The shale reservoir of interest in this work is the Bar-
net shale reservoir, which is a fine-grained and rich-organic 
sediment located in the USA. Barnett shale reservoir was 

discovered in 1981 (Kenomore, Hassan et al. 2018). Cur-
rently, it is one of the most prolific shale gas producers in 
the USA. For numerical modelling, a segment of Barnett 
shale reservoir was simulated using 3D reservoir model with 
dimensions of 1,750 × 1,100 ×200 feet. The multi- porosity 
model has a grid size of 40 × 13 cells in X, Y directions and 
7 cells in Z direction. The cells in Z direction were sub-
divided into 1 + 1+ 5, representing fracture, matrix and 
sub-matrix cells respectively. Fig. 3 shows by a 2D view the 
matrix and fractures for Barnett shale model represented by 
fluid in place regions 1 and 2, respectively; the figure also 
illustrates the induced fracture stages and the refined grid 
cells.

The first stage of prediction was carried out to compare 
the fractions of adsorbed gas to the total gas production at 
various reservoir depths ranging from 3,000 to 11,000 feet 
at a fixed value of TOC. Afterwards, sensitivity cases were 
generated for every reservoir depth with varying TOC from 
4 to 8% to capture the contribution of produced adsorbed gas 
and the corresponding effect of TOC for each case.

Calibration of the shale mechanistic model

In our simulation model, the initial conditions, adsorption 
capacities, the fractions of free, and adsorbed gas volumes 
to the total gas in place at given reservoir pressures, and the 
recoverable volume were adopted to match the typical data 
for the Barnett shale reservoir.

To calibrate the shale mechanistic model, static and 
dynamic simulations were conducted to match the gas con-
tent and the recovery factor of Barnett shale. The original 
gas in place is estimated in terms of gas content for both free 
and adsorbed gas. Shale porosities (fractures and inorganic) 
describe the free gas whereas Langmuir isotherms define 
the relation between the adsorption capacity and pressure at 
constant temperature. Overall, to estimate the total original 
gas in place for our predictive model, the gas content (scf/
ton) was estimated by Barnett shale reservoir data given in 
literature.

For model calibration and result robustness, our base 
simulation model was applied to couple Langmuir isotherms 
and volumetric calculations, estimating the gas content for 
free and adsorbed gas at different values of reservoir pres-
sure. The estimation of adsorbed gas content was made by 
realistic Langmuir isotherms published in literature (Frantz, 
Sawyer et al. 2005, Mengal and Wattenbarger 2011).

In order to validate the predictive model, the simulated 
fractions of adsorbed and free gas volumes to the total gas in 
place against the fractions extracted from core data analysis 
were matched for the Barnett shale reservoir. This is shown 
in Fig. 4 (Lancaster et al. 1992).

To increase the reliability of validation, it was carried out 
in terms of volume fractions instead of gas, eliminating the 

Table 2   The reservoir properties of Barnett shale reservoir

Reservoir parameter Value, reference Unit

Matrix porosity 2–6 (Frantz. 2005) %
Fracture porosity 1–6 (Du, Zhang et al. 2009) %
Organic porosity 2 (Hardy 2019) %
Matrix permeability 0.0001–0.005 (Grieser, Shelley et al. 

2006; (Wu and Aguilera 2013)
mD

Fracture permeability 0.001 (Kim, Cho et al. 2017) mD
Organic permeability 0.0015 (Du et al. 2009) mD
Adsorption capacity 50–200 (Du et al. 2009) sfc/ton
TOC 4–8 (Frantz. 2005) %
Organic density 166 (Ambrose, Hartman et al. 2012) lb/ft3

Bulk density 156 (Ambrose, Hartman et al. 2012) lb/ft3

Pressure gradient 0.43–0.52 (Adesida et al. 2011a) psi/ft
Reservoir temperature 200 (Mengal and Wattenbarger 

2011)
F°

Depth 6000–9000 (Frantz et al. 2005) ft
Gross thickness 100–1000 (Frantz et al. 2005) ft=
Diffusion coefficients 0.1116 (Shi et al. 2013) ft2/day

Table 3   Langmuir constants 
of CH4 for Barnett shale gas 
reservoir (Frantz, Sawyer et al. 
2005, Mengal and Wattenbarger 
2011)

Langmuir 
constants of 
CH4

Value Unit

VL 880 scf/ton
PL 400 psi
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effect of crushed porosities and in the measured samples. 
Figure 5 displays an accepted match between the estimated 
fractions from the calibrated model and by core analysis.

For further validations, the estimated recoverable 
reserve across the typical range of pressures and TOC 

that resulted from the calibrated model were adopted to 
lie in the range of 10 to 20% as shown in Fig. 6 which 
typically matches the reported recovery factors of Barnett 
shale (Frantz, Sawyer et al. 2005).

Fig. 3   2D view of the Barnett shale reservoir model

Fig. 4   Typical gas content 
measured by core analysis for 
Barnett shale reservoirs at depth 
of 7640 feet and 4% of TOC 
reproduced from (Lancaster 
et al. 1992)
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Results and discussion

Effect of reservoir pressure on adsorbed gas 
production

In order to investigate the impact of reservoir pressure on 
the adsorbed gas production, our predictive model quanti-
fied the contribution of adsorbed and free gas for 40 years 
in regard to increasing in reservoir depth from 3,000 to 
11,000 feet (i.e. pressure) within TOC range of 4 to 8%. 
The results obtained from the sensitivity runs show that 

adsorbed gas production strongly decreased with increas-
ing reservoir depth regardless of TOC, as shown in Fig. 7. 
For example, at a given TOC of 4%, the contribution of 
adsorbed gas production decreased from 18 to 1% with 
increasing reservoir depth from 3,000 to 11,000 feet.

Based on the simulation results, it can be concluded 
that desorption phenomenon becomes insignificant storage 
mechanism in deep shale reservoirs, particularly for low 
TOC shales. Our findings are also supported by the experi-
mental results (Ansari, Merletti et al. 2019), who reported 
that adsorbed gas contributed by 21% of the total produced 
gas at 800 psi which is equivalent to 1,770 feet with Barnett 

Fig. 5   The simulated fractions 
of adsorbed and free gas vol-
umes are compared to fractions 
measured by core analysis for 
Barnett shale reservoirs at depth 
of 7640 feet and 4% of TOC

Fig. 6   the recovery factors esti-
mated by our calibrated model 
at 8% of TOC
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shale pressure gradient. Their observations also suggest that 
the adsorbed gas likely contributes to 50% of total gas pro-
duction at the abandonment pressure.

It is understandable that desorption process is mainly 
controlled by pressure decline in matrix pores (Yu and Sep-
ehrnoori 2014); therefore, in high-pressure shales, since very 
low-pressure decline takes place due to ultra-low matrix 
permeability, the adsorbed gas is less likely to be desorbed 
from the organic matter surface. It can be seen from Fig. 8 
that the reservoir pressure declined approximately by only 
30% from the initial pressure across 40 years of continuous 
production. As shown in Fig. 7, for shale reservoirs deeper 
than 5,000 feet, the contribution of the adsorbed gas is less 
than 12% across 40 years of production; hence, it can be 
concluded that the free gas flow within matrix pores to the 

induced fractures is the dominant contributor of this stage 
of production. This explains that fracture and matrix perme-
abilities have been found to be the key significant parameters 
at early and late times of shale gas production (Dahaghi and 
Mohaghegh 2011, Yu and Sepehrnoori 2014, Pan and Con-
nell 2015).

Our results imply that adsorbed gas plays a minor role 
in deep shale reservoirs production. Consequently, this 
work underscores the importance of Langmuir isothermal 
behaviour to manage and predict the performance of shale 
gas production in shallow shale plays. Moreover, the results 
prove that an enhancement in shale matrix permeability can 
lead to a higher adsorbed and free gas cumulative produc-
tion since the pressure difference between the adsorbed and 
free gas increases.

Fig. 7   Fractions of produced 
adsorbed gas to the total cumu-
lative production at different 
reservoir depths at a range of 
4–8% of TOC

Fig. 8   The simulated pressure 
decline profile for 4% TOC and 
4000 psi initial pressure
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Effect of TOC on adsorbed gas production

In this study, a range of 4 to 8% of TOC was considered to 
analyse the effect of increasing TOC on the adsorbed gas 
production within a range of 3,000 to 11,000 feet of reservoir 
depth. As shown in Fig. 9, the predicted adsorbed gas from 
the simulation model shows that increasing TOC increases 
the contribution of adsorbed gas to the total gas production 
for a given reservoir depth. For example, increasing TOC 
from 4 to 8% results in increasing the cumulative adsorbed 
gas production from 195 to 335 MMSCF at the same reser-
voir depth of 5,000 feet.

The observed correlation between TOC and the adsorbed 
gas production could be attributed to the fact that the amount 
of gas originally adsorbed on the surface of organic matter 
in rich-organic shales reservoirs is a function of the pres-
sure and the volume of organic matter in shale matrix. How-
ever, the impact of TOC on the contribution of adsorbed gas 
production becomes minor with increasing reservoir depth. 
This observation seems to be consistent with that presented 
in literature, for instance, the simulation results study pre-
sented by Pan et al. (Pan and Connell 2015), which argued 
that the increasing of adsorbed gas (i.e. total organic con-
tent) increases the cumulative production from both free and 
adsorbed gas. However, our study proves that the amount of 
the desorbed gas has less contribution to the total produc-
tion in deep shale reservoirs compared to shallow reservoirs.

This combination of findings offers several contribu-
tions to the existing knowledge by providing insight into 
the characterisation, development, and prediction of shale 
gas reservoirs with respect to pressure and TOC. Also, this 
work has important implications related specifically to the 

application of enhanced shale gas recovery by CO2 injection. 
Our results suggest that CO2 injection in shallow shale (rich 
in TOC) reservoirs would give a much better performance 
to unlock adsorbed gas compared to deep shales, since the 
desorbed gas is more likely to be desorbed and the injected 
stream of CO2 could be potentially sequestrated.

Conclusions and implications

This work aimed to examine the effect of the reservoir depth 
coupled with TOC on the adsorbed gas production. A sensi-
tivity study was performed to examine the desorption behav-
iour in shale reservoirs. The results of this study show that 
reservoir depth has a significant effect on the contribution 
of adsorbed gas to shale gas production. Regardless of TOC, 
adsorbed gas production decreases with increasing reser-
voir depth. Whilst this contribution increases with increasing 
TOC, the impact of TOC on the contribution of adsorbed gas 
production becomes minor with increasing reservoir depth. 
These results suggest that adsorbed gas may play an impor-
tant role (12–26%) in total gas production in shallow shale 
plays below 4,000 feet.

This study highlights the importance of Langmuir iso-
thermal behaviour in shallow shale plays and contributes to 
existing research by providing insight into characterisation, 
development, and prediction of shale gas reservoirs with 
respect to reservoir depth and TOC; it presents a signifi-
cant contribution to the energy transition to net-zero target 
of CO2 emissions by demonstrating important insights into 
the application of enhanced shale gas recovery and CO2 
sequestration. Based on the simulation results (shallow 

Fig. 9   the cumulative produc-
tion from adsorbed gas volumes 
with a range of 4–8% TOC
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shale reservoirs have been proven in our study to produce 
more adsorbed gas compared to deep shales), injecting CO2 
into shallow shale reservoirs (rich in TOC) would give an 
improved outcome to unlock the adsorbed gas and seques-
trate CO2.
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