Skip to main content

Advertisement

Log in

Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study aims to determine how the distribution of Carpinus betulus L. (Linnaeus 1763) has changed from LGM to the present and the future. For this purpose, the species fossil pollen data, occurrence data, and bioclimatic variables obtained from WorldClim were used in this study. Representative Concentration Pathway (RCP) 2.6, 4.5, and 8.5 scenarios and Community Climate System Model (CCSM4) model were used for future projection. The PCA method was applied to these variables, and nine variables were determined for species distribution models (SDMs). Models were produced with MaxEnt 3.4.1, and ArcGIS 10.5. Among the nine bioclimatic variables, the BIO18 parameter had the highest contribution to the resulting prediction pattern. The accuracy of the models was measured as 0.83 with the AUC test and 0.80 with the TSS test. According to the obtained results, the most suitable distribution areas of Carpinus betulus in the Last Glacial Maximum (LGM) were the Black Sea region and Western Anatolia. In the future, distribution patterns of Carpinus betulus may shift to the north by decreasing the available present distribution areas in Anatolia and its surroundings. When the models produced according to different climate scenarios for the future are examined, it is predicted that the species will preserve most of the distribution areas in Anatolia according to the RCP 2.6, and will lose most of its distribution areas based on the RCP 4.5. The suitable distribution area will almost disappear according to the RCP 8.5. Hence, these results should be taken into account to improve conservation and management plans for Carpinus betulus and considering biodiversity, and model results will make an important contribution to the future distribution of hornbeams habitat in Anatolia and its surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The primary fossil pollen records analyzed during the current study are available via the Neotoma Paleoecology Database repository, https://www.neotomadb.org, and one fossil pollen data from a personal communication Biltekin (2018). Current distribution data of C. betulus is obtained from the Global Biodiversity Information Facility (GBIF) database, and Flora of Turkey and the East Aegean Islands (from Davis 1965-1985; Davis et al. 1988; Özhatay et al. 1999; Özhatay and Kültür 2006; Güner et al. 2008; Özhatay et al. 2009; Özhatay et al. 2011).

References

  • Ahmadi K, Alavi SJ, Amiri GZ, Hosseini SM, Serra-Diaz JM, Svenning JC (2020) The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian forest region (Iran). Int J Biometeorol 64:1451–1462

    Article  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

    Article  Google Scholar 

  • Akhani H, Djamali M, Ghorbanalizadeh A, Ramezani E (2010) Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pak J Bot 42(1):231–258

    Google Scholar 

  • Alavi SJ, Ahmadi K, Hosseini SM, Tabari M, Nouri Z (2019) The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Reg Environ Chang 19(5):1495–1506

    Article  Google Scholar 

  • Alfano MJ, Barron EJ, Pollard D, Huntley B, Allen JR (2003) Comparison of climate model results with European vegetation and permafrost during oxygen isotope stage three. Quat Res 59(1):97–107

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232

    Article  Google Scholar 

  • Avcı M (2011) Moleküler Biyocoğrafya: Gelişimi, kapsamı, paleobiyocoğrafya ve biyolojik çeşitlilik açısından bir değerlendirme. In: Ekinci D (ed) Fiziki Coğrafya Araştırmaları, Türk Coğrafya Kurumu, İstanbul 241-266

  • Bassis J, Petersen S, Mac Cathles L (2017) Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542:332–334

    Article  Google Scholar 

  • Beug HJ, Bottema S (2015) Late Glacial and Holocene vegetation history at Lake Yeniçaǧa Northern Turkey. Veg Hist Archaeobotany 24:293–301

    Article  Google Scholar 

  • Biltekin D (2018) Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Can J Earth Sci 55:505–513. https://doi.org/10.1139/cjes-2017-0170

    Article  Google Scholar 

  • Biltekin D, Popescu SM, Suc JP, Quézel P, Jiménez-Moreno G, Yavuz N, Çağatay MN (2015) Anatolia: a long-time plant refuge area documented by pollen records over the last 23 million years. Rev Palaeobot Palynol 215:1–22

    Article  Google Scholar 

  • Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecology and Diversity 1(2):147–160. https://doi.org/10.1080/17550870802349146

    Article  Google Scholar 

  • Browicz K (1982-1994) Chorology of trees and shrubs in South-West Asia and adjacent regions vols 1–9. Polish Academy of Sciences, Institute of Dendrology

  • Christmas MJ, Breed MF, Lowe AJ (2016) Constraints to and conservation implications for climate change adaptation in plants. Conserv Genet 17(2):305–320. https://doi.org/10.1007/s10592-015-0782-5

    Article  Google Scholar 

  • Çiner A, Sarıkaya MA (2013) Buzullar ve iklim değişikliği: geçmiş, günümüz ve gelecek. Ed. Volkan Ediger,.In: Ediger V (ed) Türkiye’de İklim Değişikliği ve Sürdürülebilir Enerji, ENIVA Vakfı Yayınları, İstanbul 19-58

  • Coşkun M (2020) İklim değişimeleri ve küresel ısınma. In: Alım M; Doğanay S (ed) Yer Bilimi, Pagem Akademi, Ankara 271-303

  • Dagtekin D, Şahan EA, Denk T, Köse N, Dalfes HN (2020) Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One 15(11):e0242280

    Article  Google Scholar 

  • Davis PH (1965-1985) Flora of Turkey and the East Aegean islands (Vol.1-9). University Press Edinburgh, Edinburgh

  • Davis PH, Mill R, Tan K (1988) Flora of Turkey and the East Aegean islands (Vol.10). Edinburgh University Press, Edinburgh

  • DeLeo JM (1993) Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis 318-325 IEEE

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Duan RY, Kong XQ, Huang MY, Fan WY, Wang ZG (2014) The predictive performance and stability of six species distribution models. PLoS One 9(11):e112764

    Article  Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Chang Biol 24(3):1150–1163. https://doi.org/10.1111/gcb.13925

    Article  Google Scholar 

  • Elith JH, Graham CP, Anderson R, Dudík M, Ferrier S, Guisan A, Li J (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2):129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Follieri M (2010) Conifer extinction in Quaternary Italian records. Quat Int 225(1):37–43. https://doi.org/10.1016/j.quaint.2010.02.001

    Article  Google Scholar 

  • Follieri M, Magri D, Sadori L (1986) Late pleistocene. Zelkova extinction in Central Italy New Phytologist 103(1):269–273. https://doi.org/10.1111/j.1469-8137.1986.tb00613.x

    Article  Google Scholar 

  • Global Biodiversity Information Facility (GBIF) (2020) https://doi.org/10.15468/dl.zq28yq. 6 May 2020

  • Gucel S, Ozkan K, Çelik S, Yucel E, Ozturk M (2008) An overview of the geobotanical structure of Turkish Pinus sylvestris and Carpinus betulus forests. Pak J Bot 40(4):1497–1520

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16(12):1424–1435. https://doi.org/10.1111/ele.12189

    Article  Google Scholar 

  • Günal N (1997) Türkiye’de başlıca ağaç türlerinin coğrafi dağılışları, ekolojik ve floristik özellikleri. Çantay Kitabevi, İstanbul

  • Güner A, Özhatay N, Ekim T, Başer K (2008) Flora of Turkey and East Agean Islands (Vol 11). Edinburg University Press, Edinburg

  • Gürkan H, Demircan M, Eskioğlu O, Yazıcı B, Sümer UM, Kömüşçü AÜ, Arabacı H, Aksoy M (2018) 1971-2017 dönemi Türkiye iklim değerlendirmesi. Türkiye Ulusal Jeodezi ve Jeofizik Birliği Bilimsel Kongresi. 30 Mayıs-2 Haziran İzmir-Türkiye

  • Hammen VDT, Wijmstra TA, Zagwijn WH, Turekian KK (1971) The floral record of the late Cenozoic of Europe. The Late Cenozoic Glacial Ages 391-424. In Turekian KK (ed.) The Late Cenozoic Glacial Ages, Yale Univ. Press, New Haven 390-424

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5):773–785

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1-2):87–112. https://doi.org/10.1006/bijl.1999.0332

    Article  Google Scholar 

  • IPCC (2014). Climate change 2014 synthesis report, contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change (ed. by Core Writing Team, R Pachauri & L Meyer) Switzerland, Geneva

  • IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

  • Jiménez-Moreno G, Suc JP (2007) Middle Miocene latitudinal climatic gradient in Western Europe: evidence from pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 253(1-2):208–225. https://doi.org/10.1016/j.palaeo.2007.03.040

    Article  Google Scholar 

  • Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4(5):560–563. https://doi.org/10.1098/rsbl.2008.0049

    Article  Google Scholar 

  • Koc DE, Svenning JC, Avcı M (2018a) Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from Last Glacial Maximum to the future. Eurasian. J For Sci 6(3):69–82. https://doi.org/10.31195/ejejfs.435962

    Article  Google Scholar 

  • Koc DE, Dalfes N, Avcı M (2018b) Changes in the distribution of plants in Anatolia from Last Glacial Maximum to present. VIII. Quaternary Symposium of Turkey, Istanbul, Turkey, 2-8 May

  • Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P (2006) Late Miocene to Early Pliocene vegetation of Southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeoclimatol Palaeoecol 238:321–339. https://doi.org/10.1016/j.palaeo.2006.03.031

    Article  Google Scholar 

  • Leroy SAG, Kakroodi AA, Kroonenberg S, Lahijani HK, Alimohammadian H, Nigarov A (2013) Holocene vegetation history and sea level changes in the SE corner of the Caspian Sea: relevance to SW Asia climate. Quaternary Science Reviews Volume 70(28):47. https://doi.org/10.1016/j.quascirev.2013.03.004

    Article  Google Scholar 

  • Li G, Du S, Wen Z (2016) Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci Rep 6:30009. https://doi.org/10.1038/srep30009

    Article  Google Scholar 

  • Magri D (2010) Persistence of tree taxa in Europe and Quaternary climate changes. Quat Int 219(1-2):145–151. https://doi.org/10.1016/j.quaint.2009.10.032

    Article  Google Scholar 

  • Oliveira M, Hamilton S, Calheiros D, Jacobi C, Latini R (2010) Modeling the potential distribution of the invasive Golden Mussel Limnoperna Fortunei in the Paraguay river system using limnological variables. Brazilian. J Biol 70(3):831–840

    Google Scholar 

  • Özhatay N, Kültür Ş (2006) Check-list of additional taxa to the Supplement Flora of Turkey. III Turkish Journal of Botany 30(4):281–316

    Google Scholar 

  • Özhatay N, Kültür Ş, Aksoy N (1999) Check-list of additional taxa to the supplement flora of Turkey II. Turk J Bot 23(3):151–170

    Google Scholar 

  • Özhatay N, Kültür Ş, Aslan S (2009) Check-list of additional taxa to the supplement Flora of Turkey IV. Turk J Bot 33(3):191–226. https://doi.org/10.3906/bot-0805-12

    Article  Google Scholar 

  • Özhatay FN, Kültür Ş, Gürdal MB (2011) Check-list of additional taxa to the supplement Flora of Turkey V. Turk J Bot 35(5):589–624. https://doi.org/10.3906/bot-1101-20

    Article  Google Scholar 

  • Pardi MI, Smith FA (2012) Paleoecology in an era of climate change: how the past can provide insights into the future. In: Louys J (ed) Paleontology in ecology and conservation. Springer, Berlin, Heidelberg, pp 93–116. https://doi.org/10.1007/978-3-642-25038-5_6

    Chapter  Google Scholar 

  • Parker K, Markwith S (2007) Expanding biogeographic horizons with genetic approaches. Geography Compas 1(3):246–274. https://doi.org/10.1111/j.1749-8198.2007.00018.x

    Article  Google Scholar 

  • Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116(6):6 special issue: Plants and Climate Change (November 2015): 849-864. www.jstor.org/stable/26525801

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peterson GM (1983) Recent pollen spectra and zonal vegetation in the Western USSR. Quat Sci Rev 2:281–321. https://doi.org/10.1016/0277-3791(83)90013-6

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Popescu S (2006) Late Miocene and early Pliocene environments in the Southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeogr Palaeoclimatol Palaeoecol 238(1):64–77. https://doi.org/10.1016/j.palaeo.2006.03.018

    Article  Google Scholar 

  • Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Xu G, Pei S (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch an extremely endangered conifer from Southwestern China. Global Ecology and Conservation 10:139–146

    Article  Google Scholar 

  • Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier, Paris. 571

  • Rasmussen K, Thyrring J, Muscarella R, Borchsenius F (2017) Climate-change-induced range shifts of three allergenic ragweeds (Ambrosia L.) in Europe and their potential impact on human health. PeerJ 5:e3104. https://doi.org/10.7717/peerj.3104

    Article  Google Scholar 

  • Ribeiro MM, Roque N, Ribeiro S, Gavinhos C, Castanheira I, Quinta-Nova L, Albuquerque T, Gerassis S (2019) Bioclimatic modeling in the Last Glacial Maximum, Mid-Holocene and facing future climatic changes in the strawberry tree (Arbutus unedo L.). PLoS One 14(1):e0210062. https://doi.org/10.1371/journal.pone.0210062

    Article  Google Scholar 

  • Salamon-Albert E, Csiszar A, Bartha D (2018) Site conditions and functional traits affect regeneration dynamics of European hornbeam (Carpinus betulus L.) in forest canopy gaps. Turk J Bot 42(6):701–709

    Article  Google Scholar 

  • Sarıkaya, MA (2009) Late Quaternary Glaciation and paleoclimate of Turkey inferred from cosmogenic 36Cl dating of moraines and glacier modeling. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA. 283

  • Sarıkaya MA, Ciner A (2015) Late Pleistocene glaciations and paleoclimate of Turkey. Maden Tetkik ve Arama Dergisi 151(151):107–127

    Google Scholar 

  • Sarıkaya MA, Zreda M, Çiner A, Zweck C (2008) Cold and wet Last Glacial Maximum on mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat Sci Rev 27(7-8):769–780

    Article  Google Scholar 

  • Şenkul Ç, Doğan U (2013) Vegetation and climate of Anatolia and adjacent regions during the Last Glacial period. Quat Int 302:110–122. https://doi.org/10.1016/j.quaint.2012.04.006

    Article  Google Scholar 

  • Sikkema R, Caudullo G, de Rigo D (2016) Carpinus betulus in Europe: distribution, habitat, usage and threats. In: San-MiguelAyanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (ed) European Atlas of Forest Tree Species, Publ. Off. EU, Luxembourg 73-75

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 1:14–22

    Google Scholar 

  • Suc JP (1980) Contribution à la connaissance du Pliocène et du Pléistocène inférieur des régions méditerranéennes d’Europe occidentale par l'analyse palynologique des dépôts du Languedoc-Roussillon (Sud de la France) et de la Catalogne (Nord-Est de l'Espagne). Ph.D. Thesis, Montpellier University

  • Suc JP (1995) Structure of West Mediterranean vegetation and climate since 5.3 ma. Acta Zool Cracov 38:3–16

    Google Scholar 

  • Suc JP, Popescu SM (2005) Pollen records and climatic cycles in the North Mediterranean region since 2.7 Ma. Geological Society 247(1):147–158. https://doi.org/10.1144/GSL.SP.2005.247.01.08

    Article  Google Scholar 

  • Suc JP, Diniz F, Leroy S, Poumot C, Bertini A, Dupont L, Clet M, Bessais E, Zheng Z, Fauquette S, Ferrier J (1995) Zanclean (~Brunssumian) to early Piacenzian (~early–middle Reuverian) climate from 4° to 54° north latitude (West Africa, West Europe and West Mediterranean areas). Med Rijks Geol Dienst 52:43–56

    Google Scholar 

  • Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96(6):1117–1127. https://doi.org/10.1111/j.1365-2745.2008.01422.x

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Taleshi H, Jalali SG, Alavi SJ, Hosseini SM, Naimi B, Zimmermann NE (2019) Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Reg Environ Chang 19(8):2711–2728

    Article  Google Scholar 

  • Tanoğlu A (1947) Türkiye'nin irtifa kuşakları. Türk Coğrafya Dergisi 9-10:37–63

    Google Scholar 

  • Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linn Soc 105(1):231–248. https://doi.org/10.1111/j.1095-8312.2011.01788.x

    Article  Google Scholar 

  • Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J Ecol 99(1):254–264. https://doi.org/10.1111/j.1365-2745.2010.01741.x

    Article  Google Scholar 

  • Türkeş M (2013) İklim değişiklikleri: Kambriyen’den Pleyistosene, Geç Holosen’den 21. yüzyil’a. Aegean Geographical Journal 22(1):1–25

    Google Scholar 

  • Türkeş M (2014) Kuraklık olaylarının iklim değişikliği ve çölleşme açısından önemi ve Türkiye’deki 2013-2014 Kuraklığının Sinoptik Klimatolojik/Meteorolojik ve Atmosferik Bağlantıları. Hidropolitik Akademi İklim Değişikliği ve Kuraklık Çalışmaları, Ankara, Turkey

  • Ülker ED, Tavşanoğlu Ç, Perktaş U (2018) Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’model of Pleistocene biogeography. Biol J Linn Soc 123(2):338–347

    Article  Google Scholar 

  • Ustaoğlu B (2011) Türkiye’de A2 Emisyon Senaryosuna Göre Ortalama Yağış Tutarlarının Olası Değişimi (2010-2099). In: Ekici D (ed) Fiziki Coğrafya Araştırmaları Sistematik ve Bölgesel, Türk Coğrafya Kurumu, İstanbul 473-484

  • Ustaoğlu B, Karaca M (2014) The effects of climate change on spatiotemporal changes of hazelnut Corylus avellana cultivation areas in the Black Sea Region Turkey. Applied Ecology and Environmental Research (AEER) 12(2):309–324

    Article  Google Scholar 

  • Ustaoğlu B, Ikiel C, Dutucu AA, Koç DE (2021) Erosion susceptibility analysis in Datça and Bozburun Peninsulas. Turkey. Iranian Journal of Science and Technology, Transactions A: Science 45(2):557–570

    Article  Google Scholar 

  • Wei L, Shanshan Z, Yu C, Qiuling W, Wanxiu A (2021) State of China’s climate in 2020. Atmospheric and Oceanic Science Letters 100048. https://doi.org/10.1016/j.aosl.2021.100048

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

  • Yaltırık F (1982) Carpinus betulus. In: Davis P, Coode M, Cullen J (ed) Flora of Turkey and the East Aegean Islands (Vol.7), Edinburgh University Press, Edinburgh 683-684

  • Yılmaz E (2019) Türkiye’de aylık sıcaklık ve aylık sıcaklık farklarındaki eğilimler ve sıcaklık eğilim grupları (monthly temperature, temperature difference trends and trends groups in Turkey). Int J Hum Sci 16(2):393–427

    Google Scholar 

  • Zhang X, Li G, Du S (2018) Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China. Ecol Eng 113:27–34. https://doi.org/10.1016/j.ecoleng.2018.01.009

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and reviewers for their constructive comments and useful recommendations that helped improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Evrim Koç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Responsible Editor: Haroun Chenchouni

Supplementary information

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 19 kb)

ESM 3

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, D.E., Biltekin, D. & Ustaoğlu, B. Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arab J Geosci 14, 1186 (2021). https://doi.org/10.1007/s12517-021-07444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07444-1

Keywords

Navigation