Skip to main content
Log in

Dynamic responses of unsaturated half-space soils to a strip load at different boundary conditions

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Based on the mixed theory of three-phase porous media, the dynamic response of unsaturated soils under a strip load is addressed under the two different boundary conditions of water/air permeable and water/air impermeable. Using the Fourier transform, the dynamic governing equations of unsaturated soils are established, and the general solution is derived in the frequency domain. The effects of the saturation, frequency, and boundary conditions on the dynamic behavior of the unsaturated soil are analyzed. The results show that for the unsaturated soil these parameters have an important influence on the dynamic characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Biot MA (1956) Theory ofpropagation of elastic waves in a fluid-saturated porous media. I. low-frequency range; II. Higher-frequency range. J Acoust Soc Am 28(2):168–191

    Article  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous medium. J Appl Phys 33(4):1482–1498

    Article  Google Scholar 

  • Bishop AW, Blight GE (1963) Some aspects of effective stress in saturated and partly saturated soils. Géotechnique 13(3):177–197

    Article  Google Scholar 

  • Bolzon G, Schrefler BA, Zienkiewicz OC (1996) Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique 46(2):279–289

    Article  Google Scholar 

  • Cai YQ, Chen Y, Cao ZG, Sun H, Guo L (2015) Dynamic responses of a saturated poroelastic half-space generated by a moving truck on theuneven pavement. Soil Dyn Earthq Eng 69:172–181

    Article  Google Scholar 

  • Chao G, Smeulders DMJ, Van Dongen MEH (2006) Dispersive surface waves along partially saturated porous media. J Acoust Soc Am 119(3):1347–1355

    Article  Google Scholar 

  • Cai YQ, Li BZ, Xu CJ (2006) Analysis of elastic wave propagation in sandstone saturated by twoimmiscible fluids. Chin J Rock Mech Eng 25(10):2009–2016

    Google Scholar 

  • Chen WY, Chen GX, Xia TD, Chen W (2014) Energy flux characteristics of seismic waves at the interface between soil layers with different saturations. Sci China Technol Sci 57(10):2062–2069

    Article  Google Scholar 

  • Chen WY, Chen GX, Liu ZJ et al (2015) Propagation of Rayleigh wave in unsaturated soil at different boundary conditions. ShuiLi XueBao 46(11):1329–1336

    Google Scholar 

  • Chen SL, Liao ZP (2002) Study on mechanic models of two-phase media. Earthq Eng Eng Vib 22(4):1–8

    Google Scholar 

  • Degrande G, Roeck GD, Broeck VDP et al (1998) Wave propagation in layered dry, saturated and unsaturated poroelastic media. Int J Solids Struct 35(34):4753–4778

    Article  Google Scholar 

  • Fredlund DG (1993) Soil mechanics for unsaturated soils. Wiley, pp 286-321

  • Hung HH, Yang YB (2001) Elastic waves in visco-elastic half-space generated by various vehicle loads. Soil Dyn Earthq Eng 21(1):1–17

    Article  Google Scholar 

  • Huang Y, Zhang YH (2000) Lamb problem of saturated soil under three-dimensional non-axisymmetric conditions. Sci China (Series E) 30(4):375–384

    Google Scholar 

  • Heider Y, Avci O, Markert B, Ehlers W (2014) The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction. Soil Dyn Earthq Eng 63(8):120–137

    Article  Google Scholar 

  • Jones DV, Le Houedec D, Petyt M (1997) Ground vibration in the vicinity of a rectangular load acting on aviscoelastic layer over a rigid foundation. J Sound Vib 203(3):307–319

    Article  Google Scholar 

  • Jiang J, Zhou H (2007) Dynamic response of viscoelastic half-space under moving loads. China J Theor Appl Mech 39(4):545–553

    Google Scholar 

  • Lo WC (2008) Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. Adv Water Resour 31(10):1399–1410

    Article  Google Scholar 

  • Lu Z, Fang R, Yao HL, Dong C, Xian S (2018) Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load. Int J Numer Anal Methods Geomech 42(9):1057–1077

    Article  Google Scholar 

  • Li WH, Wang WQ (2019) Vibration response analysis of an unsaturated soil foundation. J Vib Shock 38(12):182–190

    Google Scholar 

  • Lo WC, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 41(2):1–20

    Article  Google Scholar 

  • Philippacopoulo AJ (1988) Lamb’s problem for fluidsaturated, porous media. Bull Seismol Soc Am 78(2):908–923

    Google Scholar 

  • Steeb H, Kurzeja PS, Schmalholz SM (2014) Wave propagation in unsaturated porous media. Acta Mech 225(8):2435–2448

    Article  Google Scholar 

  • Sharma MD (2015) Propagation and attenuation of Rayleigh waves in a partially-saturated porous solid with impervious boundary. Eur J Mech A Solids 49:158–168

    Article  Google Scholar 

  • Schrefler BA, Zhan X (1993) A fully coupled model for water flow and airflow in deformable porous media. Water Resour Res 29(1):155–167

    Article  Google Scholar 

  • Tabatabaie YJ, Valliappan S, Zhao CB (1994) Analytical and numerical solutions for wave propagation in water-saturated porous layered half-space. Soil Dyn Earthq Eng 13:249–257

    Article  Google Scholar 

  • Vinh PC, Aoudia A, Giang PTH (2016) Rayleigh waves in orthotropic fluid-saturated porous media. Wave Motion 61(3):73–82

    Article  Google Scholar 

  • Vardoulakis I, Beskos DE (1986) Dynamic behavior of nearly saturated porous media. Mech Mater 5(1):87–108

    Article  Google Scholar 

  • VanGenuchten MTH (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Wang Y, Gao GY, Yang J, Song J (2015) The influence of the degree of saturation on dynamic response of a cylindrical lined cavity in a nearly saturated medium. Soil Dyn Earthq Eng 71(8):27–30

    Article  Google Scholar 

  • Xu CJ, Shi YY (2004) Characteristics of wave propagation in unsaturated soils. Rock Soil Mech 25(3):354–358

    Google Scholar 

  • Xu MJ, Wei DM (2011) 3D non-axisymmetrical dynamic response of unsaturated soils. Eng Mech 28(3):78–85

    Google Scholar 

  • Yang J (2005) Rayleigh surface waves in an idealised partially saturated soil. Geotechnique 55(5):409–414

    Article  Google Scholar 

  • Zhang SP, Ronald YS, Zhang JH (2020) Vertical time-harmonic coupling vibration of an impermeable, rigid, circularplate resting on a finite, poroelastic soil layer. Acta Geotech 16:911–935. https://doi.org/10.1007/s11440-020-01067-8

    Article  Google Scholar 

  • Zhou XM, Xia TD (2007) Characteristics of Rayleigh waves in half-space of partially saturated soil. Chin J Geotech Eng 29(5):750–754

    Google Scholar 

  • Zhao HB, Chen SM, Li LL et al (2012) Influence of fluid saturation on Rayleigh wave propagation. Sci Sin Phys Mech Astron 42(2):148–155

    Article  Google Scholar 

  • Zhang M, Shang W, Zhou ZC et al (2017) Propagation characteristics of Rayleigh waves in double-layer unsaturated soils. Rock Soil Mech 38(10):2931–2938

Download references

Acknowledgements

The authors thank the Chinese Natural Science Foundation (Grant No.51978320) and the Qinghai Province Science and Technology Department Project (Grant No. 2018-ZJ-749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Appendix

Appendix

The elements Jij and \( {\overline{J}}_{ij} \) (i, j = 1, 2, 3, 4) in the matrix [J]and \( \left[\overline{J}\right] \) can be expressed as follows:

$$ {J}_{11}=2\mu {\lambda}_0,\kern0.5em {J}_{12}=2\mu {S}_1{\lambda}_1^2+\lambda - a\chi {f}_{w1}-a\left(1-\chi \right){f}_{a1},\kern0.5em {J}_{13}=2\mu {S}_2{\lambda}_2^2+\lambda - a\chi {f}_{w2}-a\left(1-\chi \right){f}_{a2},\kern0.5em {J}_{14}=2\mu {S}_3{\lambda}_3^2+\lambda - a\chi {f}_{w3}-a\left(1-\chi \right){f}_{a3};\kern0.5em {J}_{21}=- i\mu {\lambda}_0^2/\xi - i\mu \xi, \kern0.5em {J}_{22}=-2\mu {S}_1 i\xi {\lambda}_1,\kern0.5em {J}_{23}=-2\mu {S}_2 i\xi {\lambda}_2,\kern0.5em {J}_{24}=-2\mu {S}_3 i\xi {\lambda}_3;\kern0.5em {J}_{31}=0,{J}_{32}={f}_{w1},{J}_{33}={f}_{w2},{J}_{34}={f}_{w3};{J}_{41}=0,{J}_{42}={f}_{a1},{J}_{43}={f}_{a2},{J}_{44}={f}_{a3}. $$
$$ {\overline{J}}_{11}=2\mu {\lambda}_0,\kern0.5em {\overline{J}}_{12}=2\mu {S}_1{\lambda}_1^2+\lambda - a\chi {f}_{w1}-a\left(1-\chi \right){f}_{a1},\kern0.5em {\overline{J}}_{13}=2\mu {S}_2{\lambda}_2^2+\lambda - a\chi {f}_{w2}-a\left(1-\chi \right){f}_{a2},\kern0.5em {\overline{J}}_{14}=2\mu {S}_3{\lambda}_3^2+\lambda - a\chi {f}_{w3}-a\left(1-\chi \right){f}_{a3};\kern0.5em {\overline{J}}_{21}=- i\mu {\lambda}_0^2/\xi - i\mu \xi, \kern0.5em {\overline{J}}_{22}=-2\mu {S}_1 i\xi \lambda, \kern0.5em {\overline{J}}_{23}=-2\mu {S}_2 i\xi {\lambda}_2,\kern0.5em {\overline{J}}_{24}=-2\mu {S}_3 i\xi {\lambda}_3;\kern0.5em {\overline{J}}_{31}=0,\kern0.5em {\overline{J}}_{32}=-{\lambda}_1{f}_{w1},\kern0.5em {\overline{J}}_{33}=-{\lambda}_2{f}_{w2},\kern0.5em {\overline{J}}_{34}=-{\lambda}_3{f}_{w3};\kern0.5em {\overline{J}}_{41}=0,\kern0.5em {\overline{J}}_{42}=-{\lambda}_1{f}_{a1},\kern0.5em {\overline{J}}_{43}=-{\lambda}_2{f}_{a2},\kern0.5em {\overline{J}}_{44}=-{\lambda}_3{f}_{a3}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Lw., Ma, Q. & Ma, Y. Dynamic responses of unsaturated half-space soils to a strip load at different boundary conditions. Arab J Geosci 14, 947 (2021). https://doi.org/10.1007/s12517-021-07152-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07152-w

Keywords

Navigation