Skip to main content
Log in

The trace and rare earth element contributions to the understanding of Chouichia iron-copper deposits in Northern Tunisia: metal sources interrelated with magmatism and metamorphism

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Chouichia ore deposits are one of the most important polymetallic Cu-Fe-rich mineralizations located in the front of the thrust zone of the Tunisian Tellian belt. This mineral occurrence is carried by veins and breccias hosted by the Upper Cretaceous to Oligocene-Lower Miocene sediments in the Fej Et Tamer tectonic corridor. Geochemical work carried out on host rock and mineral samples shows an enrichment and fractionation of REEs with Eu negative anomalies due to interactions of hydrothermal fluids with Eu-depleted magmatic rocks presumably lying in the subsurface. Co/Ni ratios help distinguish three pyrite generations. Pyrite I disseminated in the host rock is sedimentary-syngenetic, formed at low temperature (Co/Ni < 1), whereas Co contents of late pyrites (Pyrites II and III) associated with hydrothermal venues are particularly high, up to 26,000 ppm, never mentioned before at Chouichia, but corroborate elsewhere results documented for this mineral in literature. Magmatic fluid imprints are marked by Co/Ni >1 and confirmed by varying Y/Ho ratios (range 19.625 to 36.5). Trace element amounts normalized to the average contents of trace metals in primitive mantle testify to a metal source from the upper crust and upper mantle with high enrichments of ore bodies in As, Sb, Cu, Pb, Ag, Au, W, and Mo. Marked depletions in Hf, Zr, and Sc indicate their high fractionation degree in both mineralizing and magma fluids and/or igneous rock/fluid interaction effects in the subsurface. Positive anomalies of magmaphile trace element markers such as Mo and W support high-temperature mineralizing fluids driven by magmatism. These geochemical characters easily allow the classification of Chouichia veins as a hydrothermal affiliation deposit type where fluids are imprinted by magmatism and metamorphism. Deep-rooted faults in the Fej Et Tamer tectonic corridor have had an essential role in metal transfer, fluid conveying to the surface, and mineral formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraitis PK, Pattrick RAD, Vaughan DJ (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process 74:41–59

    Article  Google Scholar 

  • Abu Elatta SA, Gehad MRM (2018) The hydrothermal uranium and some other metal deposits of the extensional faulting during the advanced opening of the Red Sea, Central Eastern Desert, Egypt. Beni-Suef University. Journal of Basic and Applied Sciences 7(4) December 2018:752–766

    Google Scholar 

  • Abu Elatta SA, Assran HM, Ahmed AA (2013) Preliminary study on HFSE mineralization in the peralkaline granites of Nusab El Balgum area, South Western Desert. Egypt Geomaterials 3(3):90–101. https://doi.org/10.4236/gm.2013.33012

    Article  Google Scholar 

  • Agangi A, Hofmann A, Wohlgemuth–Ueberwasser CC (2013) Pyrite zoning as a record of mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Econ Geol 108(6):1243–1272

    Article  Google Scholar 

  • Allen DE, Seyfried WE (2005) REE controls in MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochimica et Cosmochimca Acta 69:675–683

  • Alouani R (1991) Le Jurassique du Nord de la Tunisie. Marqueurs géodynamiques d'une marge transformante: turbidites, radiolarites, plissements et métamorphisme. Thesis 3rd Cycle. (Tunis II): 202p

  • Alouani R, Tlig S (1988) Métamorphisme bimodal et dolomitisations successives dans deux mégaséquences superposées au Jebel Hairech (Tunisie nord-occidentale). C R. Acad Sci, Paris, II 30:1373–1380

    Google Scholar 

  • Bach W, Roberts S, Vanko DA, Binns RA, Yeats CJ, Craddock PR, Humphris SE (2003) Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system. Manus Basin, Papua New Guinea. Mineral Deposita 38(8):916–935

    Article  Google Scholar 

  • Bajwah ZU, Seccombe PK, Offier R (1987) Trace element distribution, Co : Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22(4):292–300

    Article  Google Scholar 

  • Bau M, Dulski P (1995) Comparative study of yttrium and rare-earth elements behaviors in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol 119:213–223

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations, oxidative scavenging of cerium on hydrous Fe oxide. Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155(1–2):77–90

    Article  Google Scholar 

  • Bau M, Moller P, Dulski P (1997) Yttrium and lanthanides in Eastern Mediterranean seawater and their fractionation during redox-cycling [J]. Mar Chem 56:123–131

    Article  Google Scholar 

  • Bau M, Usui A, Pracejus B, Mita N, Kanai Y, Irber W, Dulski P (1998) Geochemistry of low-temperature water-rock interaction: evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishikinuma iron-spring, Hokkaido, Japan. Chem Geol 151:293–307

    Article  Google Scholar 

  • Bellon H (1976) Séries magmatiques néogènes et quaternaires du pourtour de la Méditerranée occidentale, comparées dans leur cadre géochronologique. Unpublished Thesis Sciences, Orsay, 360 p

  • Belousov I, Large RR, Meffre S, Danyushevsky LV, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499

    Article  Google Scholar 

  • Ben Aïssa L, Alouani R, Ben Aïssa W (2018) Tectono-magmatic events and genesis of Fe-Pb-Zn resources in Nefza area, NW Tunisia. Arab J Geosci 11(2018):608. https://doi.org/10.1007/s12517-018-3910-y

    Article  Google Scholar 

  • Ben Haj Ali M, Jédoui Y, Dali T, Bensalem H, Memmi L (1985) Carte géologique de la Tunisie 1:500 000 République Tunisienne. Ministère de l'économie nationale. Office nationale des mines. Département de la géologie. Service géologique national. Tunis

  • Bilal BA (1991) Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltametry. Z. Naturforsch. 46a, 1108-1116

  • Bralia A, Sabatini G, Troja F (1979) A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineral Deposita 14(3):353–374

    Article  Google Scholar 

  • Burollet PF (1973) Importance des facteurs salifères dans la tectonique tunisienne. Livre jubilaire M. Solignac. Ann. Min. et Géol. Tunis, n° 26 : 111–120

  • Campbell FA, Ethier VG (1984) Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan orebodies. Can Miner 22:503–506

    Google Scholar 

  • Cohen CR, Schamel S, Boyd-Kaygi P (1980) Neogene deformation in Northern Tunisia: origin of the Eastern Atlas by microplate-continental collision. Geol Soc Am Bull 91:205–237

    Article  Google Scholar 

  • Craddock PR, Bach W, Seewald JS, Rouxel OJ, Reeves E, Tivey MK (2010) Rare earth element abundances in hydrothermal fluids from the Manus basin, Papua, New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim Cosmochim Acta 74(19):5494–5513. https://doi.org/10.1016/j.gca.2010.07.003

  • Crampon N (1971) Etude géologique de la bordure des Mogods, du Pays de Bizerte et du Nord des Hédil (Tunisie septentrionale). Thèse Sciences, Nancy, III Tomes: 703 p

  • Dewey JE, Helman ML, Turco E, Hutton DHW, Knott D (1989) Kinematics of the western Mediterranean. In: Coward MP, Dietrich D, Park RG (eds) Alpine tectonics, vol 45. Geol. Soc. Spec. Publication, London, pp 265–283

    Google Scholar 

  • Dias AS, Früh-Green GL, Bernasconi SM, Barriga F (2011) Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Marine Geology 279 (1-4):128-140

  • Douville E, Bienvenu P, Charlou JI, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare-earth elements in fluids from various deep-sea hydrothermal systems [J]. Geochim Cosmochim Acta 63:627–643

    Article  Google Scholar 

  • Dusel-Bacon C, Foley NK, Slack JF, Koenig AE, Oscarson RL (2012) Peralkaline- and calc-alkaline-hosted volcanogenic massive sulfide deposits of the Bonnifield district, East-Central Alaska. Econ Geol 107:1403–1432

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1981) Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth and Planetary Science Letters 55(1):163–170. https://doi.org/10.1016/0012-821X(81)90095-9

    Article  Google Scholar 

  • Fantone I, Grieco G, Strini A, Cavallo A (2014) The effect of Alpine metamorphism on an oceanic Cu-Fe sulfide ore: the Herin deposit, Western Alps, Italy. Periodico di Mineralogia 83:345–365

    Google Scholar 

  • Fitzgerald CE, Gillis KM (2006) Hydrothermal manganese oxide-deposits from baby bare seamount in the northeast. Pacific Ocean Marine Geol J 225(1–4):145–156

    Article  Google Scholar 

  • Frontboté L, Gorzawski H (1990) Genesis of the Mississippi Valley- type Zn–Pb deposit of San Vicente, Central Peru: geologic and isotopic (Sr, O, C, S, Pb) evidence. Econ Geol 85:1402–1437

    Article  Google Scholar 

  • Gao YB, Li K, Qian B, Li WY, Zheng MC, Zhang CG (2016) Trace elements, S, Pb, He, Ar and C isotopes of sphalerite in the Mayuan Pb–Zn deposit, at the northern margin of the Yangtze Plate, China. Acta Petrol Sin 32:251–263 (in Chinese with English abstract)

    Google Scholar 

  • Garbe-Schönberg CD (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standard by ICP-MS. Geostandards and Geoanalytical Research 17 (1):81-97

  • Gavelin S, Gabrielson O (1947) Spectrochemical investigations of sulphide minerals from the ores of the Skellefte district. Sevriges Geol. Undersök., Ser. C, no.491, Arsbok 41, no. 10: 1–45

  • Garnit H, Kraemerb D, Bouhlel S, Davolic M, Barca D (2020) Manganese ores in Tunisia: genetic constraints from trace element geochemistry and mineralogy. Ore Geol Rev 120(103451):1–29

    Google Scholar 

  • Geng H, Gu X, Zhang Y (2018) Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth Sci Res J 22(4) Bogotá Oct/Dec

  • Genna D, Gaboury D (2015) Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration. Econ Geol 110:2087–2108

    Article  Google Scholar 

  • Goldberg ED, Koide M, Schmitt RA, Smith RH (1963) Rare Earth Distribution in the Marine Environment. J Geophys Res, Vol. 68, N° 14, 15 July, 1963: 4209–4217

  • Goodfellow WD, Lydon JW, Turner RJW (1993) Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits: Geological Association of Canada Special Paper 40, p. 201-253

  • Gottis CH (1962) Stratigraphie, structure et évolution structurale de la Kroumirie et de ses bordures, Livre Jubilaire à la mémoire de P. Fallot, Mémoire Hors-Série, Géol., Fr. t.1 : 645–656

  • Gottis C, Sainfeld P (1952) Les gîtes métallif6res tunisiens, XIXth Int. Geol. Congr. Algiers, Region. Monogr., Second Series 2: 110 pp

  • Govindaraju K (1989) Compilation of working values and sample description for 272 geostandards. Geostandards News-Letters (special issue) 13:1–113

    Article  Google Scholar 

  • Green GR, Solomon M, Walshe JL (1981) The formation of the volcanic-hosted massive sulfide deposit at Rosebery, Tasmania. Econ Geol 76:304–338

    Article  Google Scholar 

  • Guichard F, Church TM, Treuil M, Jaffrezic H (1979) Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta, Vol. 43, issue 7, July 1979: 983–997

  • Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 59:4329–4350

    Article  Google Scholar 

  • Halloul N (1989) Géologie, pétrologie et géochimie du bimagmatisme néogène de la Tunisie septentrionale (Nefza et Mogods): implications pétrogénétiques et interprétation géodynamique. Unpublished Thesis, University of Clermont Ferrand, 300 p

  • Herrmann AG (1970) Lanthanides (57-71th chapters); Handbook of geochemistry, II. (Editor KH Wedopohl), Springer-Verlag, Berlin

  • HΦgdahl OT (1966-1968) Distribution of the rare earth elements in seawater. NATO Research Grant No. 203, Semiannual Progress Reports, Nos. 3,4,5,6. Central Inst. Ind. Res., Blindern, Norway. (Unpublished)

  • HΦgdahl OT, Melson S, Bowen VT (1968) Neutron activation analysis of lanthanide elements in seawater. In: RA Baker editor, Trace inorganics in water. Adv. Chem. Series 73, ACS, Washington, DC: 308-325

  • James RH, Elderfield H (1996) The chemistry of ore-forming fluids and mineral precipitation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology 24:1147–1150

    Article  Google Scholar 

  • Jochum KP, Seufert HM, Spettel B, Palme H (1986) The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta 50(6):1173–1183

    Article  Google Scholar 

  • Kumar A, Birua SNS, Pande D, Nath AR, Ramesh Babu PV, Pandit SA (2009) Radioactive quartz-pebble conglomerates from western margin of Bonai granite pluton, Sundargarh district, Orissa — A new find. Journal of the Geological Society of India 73 (4):537-542

  • Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ Geol 102(7):1233–1267

    Article  Google Scholar 

  • Large RR, McGoldrick P, Bu USW, Cooke DR (2004) Proterozoic stratiform sediment-hosted zinc-lead-silver deposits of northern Australia. In. Deb M and Goodfellow WD eds., Sediment-hosted lead-zinc sulfide deposits: attributes and models of some major deposits in India: Australia and Canada: New Delhi, India, Narosa Publishing House, p. 1-23

  • Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104(5):635–668

    Article  Google Scholar 

  • Li ZD, Xue CJ, Wu Y, Dong XF, Wang SC, Yu RA, Chen JQ (2015) The nappe hosted Hoshbulak MVT Pb-Zn deposit, Xinjiang, China: a review of the geological and stable isotopic constraints. Ore Geol Rev, 70: 47–60

  • Linnen RL, Linnen IM, Samson AE, Williams-Jones AR, Chakhmouradian AR (2014) Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry, 21: 543–568

  • Liu SA, Li D, Li S, Teng FZ, Ke S, He Y, Lu Y (2014) High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. J Anal At Spectrom 29:122–133

    Article  Google Scholar 

  • Loftus G, Solomon M (1967) Cobalt, nickel and selenium in sulfides as indicators of oregenesis. Mineral Deposita 2:228–242

    Google Scholar 

  • Lydon JW (1996) Characteristics of volcanogenic massive sulphide deposits. Interpretations in terms of hydrothermal convection systems and magmatic hydrothermal systems: Boletin Geologico y Minero, v. 107, no. 3–4, p. 215–264

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research, Solid Earth, Volume 112, Issue B3, March 2007: 1–21

  • MacIntyre D (1995) Sedimentary exhalative Zn-Pb-Ag, in selected British Columbia mineral deposit profiles, volume 1—metallics and coal. Lefebure DV and Ray GE Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20:37–39

    Google Scholar 

  • Mankov SE, Dimitrov DK (1972) Au sujet de la nature du minerai dans le gisement de cuivre-fer de jebel Chouichia - Tunisie septentrionale. Annales Ecole Supérieure Mines et Géologie, Sofia, XVII, Fascicule II: 97–106

  • Mao GZ, Hua RM, Gao JF, Zhao KD, Long GM, Lu HJ, Yao JM (2006) REE composition and trace element features of gold-bearing pyrite in Jinshan gold deposit, Jiangxi Province. Mineral Deposits 25:412–425 (In Chinese with English abstract)

    Google Scholar 

  • Marignac C, Aïssa DE, Bouabsa L, Kesraoui M, Nedjari S (2016) The Hoggar Gold and Rare Metals Metallogenic Province of the Pan-African Tuareg Shield (Central Sahara, South Algeria): An Early Cambrian Echo of the Late Ediacaran Murzukian Event?. In: Bouabdellah M., Slack J. (eds) Mineral Deposits of North Africa. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-31733-5_15

  • Mei JM (2000) Chemical typomorphic characteristics of pyrites from Zhilingtou gold deposit, Suichang, Zhejiang. Gescinece 14:51–55 (In Chinese with English abstract)

    Google Scholar 

  • Michael GG, Daniel LM, Jan MP, Suzanne JP (2016) The world-class Howard’s pass SEDEX Zn–Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Mineral Deposita 51:319–342

    Article  Google Scholar 

  • Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53(3):745–750

    Article  Google Scholar 

  • Michard A, Albarède F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high temperature solutions from East Pacific Rise hydrothermal vent field (13° N). Nature 303:795–797. https://doi.org/10.1038/303795a0

    Article  Google Scholar 

  • Mills R, Elderfield H (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge. Geochim Cosmochim Acta 59:3511–3524

    Article  Google Scholar 

  • Mitra A, Elderfield H, Greaves MJ (1994) Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar Chem 46:217–235

    Article  Google Scholar 

  • Mookherjee A, Philip R (1979) Distribution of copper, cobalt and nickel in ores and host-rock Ingladhal, Karnataka, India. Mineral Deposita 14(1):33–55

    Article  Google Scholar 

  • Mukherjee I, Large R (2017) Application of pyrite trace element chemistry to exploration for SEDEX style Zn–Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geol Rev 81:1249–1270

    Article  Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters 148 (1-2):329-340

  • Oksuz N (2011) Geochemical characteristics of the Eymir (SorgunYozgat) manganese deposits, Turkey. J. Rare Earths 9(3):287–296

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA (2010) Fluid and magmatic processes in the formation of the Ary-Bulak ongonite massif (eastern Transbaikalia). Russ Geol Geophys 51:1110–1125

    Article  Google Scholar 

  • Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale. Thèse d’État, École Normale Supérieure, Paris 1978:312 p

  • Pfaff K, Hildebrandt LH, Leach DL, Jacob D, Markl G (2010) Formation of the Wiesloch Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineral Deposita 45:647–666

    Article  Google Scholar 

  • Price BJ (1972) Minor elements in pyrites from the Smithers Map Area, British Columbia and exploration applications of minor element studies. Univ. British Columbia, Unpublished M.Sc. Thesis, Vancouver, British Columbia

  • Quchev A, Kamenov BL, Stefanov ST, Popov A (1973) Recherches de minéralisations plombo-zincifères dans la province 'Néogène" et de gîtes cuprifères et mercuriels en Tunisie septentrionale. Rapp. Technoexportstroy-Proremi- Bulgarie - O.N.M. Tunis, 178 p

  • Raymond OL (1996) Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geol Rev 10:231–250

    Article  Google Scholar 

  • Richard DR, Jing T, Michael LS, Louis EB, Irving PH (2005) Raman scattering in HfxZr1−xO2 nanoparticles physical review B 71, 115408

  • Rollinson H (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112(2009):352

    Google Scholar 

  • Rouvier H (1977) Géologie de l'Extrême-Nord tunisien : tectoniques et paléogéographies superposées à l'extrémité orientale de la chaine Nord-Maghrébine. Thèse Etat, Paris, 703p

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Sainfeld P (1952) Les gîtes plombo-zincifères de Tunisie. 2 Volumes ; Texte: 285 p., 4 Tableaux; Atlas: 60 cartes, 7 pl

  • Sangster DF (2002) The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead–zinc deposits: field and laboratory evidence. Mineral Deposita 37:149–157

    Article  Google Scholar 

  • Sasmaz A, Turkyilmaz B, Ozturk N, Yavuz F, Kumral M (2014) Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from Elazig-Malatya region Eastern, Turkey. Ore Geol Rev, 56 (2014): 352–372

  • Schmidt K, Garbe-Schönberg D, Bau M, Koschinsky A (2010) Rare earth element distribution in >400 °C hot hydrothermal fluids from 5°S, MAR: the role of anhydrite in controlling highly variable distribution patterns. Geochim Cosmochim Acta 74:4058–4077

    Article  Google Scholar 

  • Seccombe PK (1977) Sulphur isotope and trace metal composition of stratiform sulphides as an ore guide in the Canadian Shield. J Geochem Explor 8:117–137

    Article  Google Scholar 

  • Sheng J, Li Y, Fan S (1999) A study of minor elements in minerals from polymetallic deposits in the central part of the Daxinggan mountains [J]. Mineral Deposits 18:153–160 (in Chinese with English abstract)

    Google Scholar 

  • Shuang L, Yang XY, Yu H, Weidong S (2014) Petrogenesis and mineralization of the Fenghuangshan skarn Cu–Au deposit. Tongling ore cluster field, Lower Yangtze metallogenic belt, Ore Geology Reviews 58:148–162

    Google Scholar 

  • Slim N (1981) Etude minéralogique de gisements de cuivre et de plomb-zinc de Tunisie du Nord. Ph.D. Thesis 3rd Cycle, University Paris VI, 240 p

  • Slim-Shimi N (1992) Minéralogie et géochimie des gîtes polymétalliques de la zone des nappes. Conditions de dépôts et implications génétiques. Thèse Sciences, Université Tunis II : 270p

  • Slim-Shimi N, Moëlo Y, Tlig S, Levy C (1996) Sulfide geochemistry and genesis of Chouichia and Ain el Bey copper deposits in northern Tunisia. Mineral Deposita 31:188–220

    Article  Google Scholar 

  • Slim-Shimi N, Tlig S (1993) Mixed-type sulfide deposits in Northern Tunisia, regenerated by in relation to paleogeography and tectonism. Journal of African Earth Sciences (and the Middle East). Volume 16, Issue 3, April 1993: 287–307

  • Steadman JA, Large RR (2016) Synsedimentary, diagenetic, and metamorphic pyrite, pyrrhotite, and marcasite at the Homestake BIF-hosted gold deposit, South Dakota, USA: insights on Au–As ore genesis from textural and LA-ICP-MS trace element studies. Econ Geol 111:1731–1752

    Article  Google Scholar 

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70–78

    Article  Google Scholar 

  • Taylor SR, McClennan SM (1985) The continental crust: its composition and evolution Blackwell Scientific Publications, Oxford, UK (1985), 312p

  • Temur S, Bölücek C, Akgül M, Orhan H (2008) Chemical characteristics of pyrites in the Derince sulfide seposit (Elazı, Eastern Turkey) Geochemistry International; Silver Spring Vol. 46, N° 7: 730–741

  • Tepper JH, Nelson BK, Bergantz GW, Irving AJ (1993) Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoïds by melting of mafic lower crust with variable water fugacity. Contrib Mineral Petrol 113:333–351

    Article  Google Scholar 

  • Tlig S (1991) Rare earth element redistribution and fractionation during secondary mineral formation: examples from reef carbonate karst (Jebel Stah, Tunisia) and from oceanic basalts (site 417A, Northern Atlantic). Journal of African Earth Sciences (and the Middle East) 13(2):173–182

    Article  Google Scholar 

  • Tlig S, Erraoui L, Ben Aissa L, Alouani R, Tagorti MA (1991) Tectogenèses alpine et atlasique : deux événements distincts dans l'histoire géologique de la Tunisie. Correlation avec les événements clés en Méditerranée. C. R. Acad. Sci. Paris, Ser. II 312(1991):295–301

    Google Scholar 

  • Tlig S, Rais J, Alouani R, Mzoughi M (2013) A transition from carbonate shelf to pelagic platform/ basin environments of deposition: rifting and depositional systems in the Jurassic of Northern Tunisia. Amer Assoc Petrol Geologists Bull v 97:1051–1070. https://doi.org/10.1306/01111311128

    Article  Google Scholar 

  • Usui A, Mita N (1995) Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido. Japan Clays Clay Miner J 43(1):116–127

    Article  Google Scholar 

  • Wang C, Yang L, Bagas L, Evans NJ, Chen J, Du B, Yang Q (2017) Mineralization processes at the giant Jinding Zn-Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in situ trace element analysis of pyrite and marcasite. Geological Journal 53 (4):1279-1294

  • Xianwu B, Ruizhong H, Jiantang P, Kaixing W (2004) REE and HFSE geochemical characteristics of pyrites in Yaoan gold deposit: Tracing ore-forming fluid signatures [J]. Bulletin of Mineralogy, Petrology and Geochemistry. 23: 1–4 (in Chinese with English abstract)

  • Yang R, Zhang X, Liu L, Yuan S, Xu L (2009) Implication for gold source in the Xiajing Group of Neoproterozoic Qingbaikouan System, Jinping County, Guizhou Province, China [J]. Acta Geol Sin 83:505–514 (in Chinese with English abstract)

    Google Scholar 

  • Zhang X, Yang R, Wang W, Wei H (2011) The geochemical characteristics and significance of trace element and REE in Pinqiu gold deposits, southeastern Guizhou [J]. J Mineral Petrol 31:63–69 (in Chinese with English abstract)

    Google Scholar 

  • Zheng J, Yu D, Yang Z (2010) A study on the trace element geochemical characteristics of pyrite and arsenopyrite in Bake gold deposit, East Guizhou Province [J]. Acta Mineral Sin 30:107–114 (in Chinese with English abstract)

    Google Scholar 

  • Zheng Y, Zhang L, Chen YJ, Hollings P, Chen HY (2013) Metamorphosed Pb–Zn–(Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions, Ore Geology Reviews, Volume 54, 2013, Pages 167-180, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2013.03.009

  • Zhou J, Zheng R, Zhu Z, Chen J, Sheng B, Li X, Luo L (2008) Geochemical characteristics of trace elements of pyrite and its implication to the metallogenesis in the Lala copper deposit [J]. J Mineral Petrol 28:64–71 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Physics of Lamellar Materials and Hybrid Nanomaterial Research Unit, University of Carthage, Department of Physics, Faculty of Sciences of Bizerte, Tunisia. The authors warmly thank the editors and anonymous reviewers for their constructive comments thus improving the final version of the manuscript. Fruitful discussions with Colleagues from the Department of Geology (Mabrouk Boughdiri, Rabah Alouani), Faculty of Sciences of Bizerte and Pr. Maurizio Barbieri from Sapienze University (Rome, Italy) also gave significant support to the main interpretations and concluding remarks. The authors are also grateful towards the Bureau Veritas Mineral Laboratories, Vancouver, Canada Ltd., for ICP-MES trace element analyses and gold assays and determinations by AAS, the Laboratories of Carthage University-Faculty of Sciences of Bizerte for TEM analyses, and the Technicians from the ETAP petroleum company for SEM-EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Ben Aissa.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aissa, R., Ben Aissa, W., Ben Haj Amara, A. et al. The trace and rare earth element contributions to the understanding of Chouichia iron-copper deposits in Northern Tunisia: metal sources interrelated with magmatism and metamorphism. Arab J Geosci 14, 783 (2021). https://doi.org/10.1007/s12517-021-07095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07095-2

Keywords

Navigation