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Abstract
High-quality hydrocarbon source rocks are present in the upper Cretaceous layer in the western slope of the Songliao Basin. Oil
and gas have accumulated in these rocks at the shallow edge of the basin, which has led to the formation of oil sand resources.
This study uses the back-propagation (BP) neural network method to predict the distribution of oil sand reservoirs and is the first
study of its kind in China. First, based on the basic data collected by core sample, well log and geochemical analyses, and the
reasonable selection of samples, the cores are divided into mudstone, siltstone, fine sandstone, medium sandstone, and sand,
according to lithology. Second, a three-layer BP neural network model is constructed with two hidden S-type layers and one
linear output layer. Third, through a comparison of the effect of different numbers of training sessions of the sample data, we
demonstrate that the accuracy of the model can be increased to 90% after training the network 100,000 times. Then, the log-
derived data of rocks with unknown lithologies are input into the neural network to predict whether they contain oil sands. We
show that the BP neural network method can predict the distribution of oil sand reservoirs in the target horizon of the study area,
and the results are consistent with research results on the corresponding sand reservoirs and sedimentary facies. Thus, we
conclude that it is feasible to use the BP neural network method to predict the distribution of oil sand reservoirs.
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Introduction

As an unconventional oil and gas reservoir, oil sands have
great potential. The amount of oil resources in oil sand

worldwide is approximately 3.74 × 1012 barrels (Kramers
and Mcssop 1987). In recent years, the reserves of conven-
tional oil and gas resources have begun to decline sharply with
the continuous development of these oil and gas resources. To
solve this problem, a large number of scholars have carried out
research on unconventional energy resources, including oil
sand resources. Zhao et al. and Jin et al. (Zhao et al. 2008;
Jin et al. 2008) studied the formation of oil sand deposits and
the source of crude oil. Different reservoir-forming models of
oil sand deposits have been established. Shan et al. (Shan et al.
2007) established the distribution range of China’s oil sand
resources and pointed out that the oil sands are mostly distrib-
uted in sandstone reservoirs associated with rivers, lakes, and
deltas.

At present, the evaluation of sandstone reservoirs includes
many aspects, such as petrology, petroleum geology, logging,
and petroleum engineering. The geological techniques used to
evaluate the reservoir mainly include microscope observa-
tions, SEM observations, and X-ray diffraction analysis. In
petroleum engineering, the reservoir is evaluated by observing
capillary pressure curves obtained during high-pressure
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mercury tests. Logging can achieve quantitative or semiquan-
titative evaluation of reservoirs by calculating the values of
physical properties.

Although the geological causes, storage conditions, and
distribution patterns of oil sands have been investigated, a
breakthrough in the evaluation and prediction of oil sand res-
ervoirs has not yet been made, and no relevant research results
have been published. Oil sand, as a unique sedimentary rock,
can be evaluated by referencing the evaluation method of
sedimentary rock reservoirs.

With the increasingmaturity of neural network technology,
many kinds of neural networks have been used to automati-
cally judge the lithology of a formation, with good results
(Zhang and Pan 2009; Zhang 2010). This logging identifica-
tion method is used in low porosity and low permeability,
dense sandstone and volcanic rock reservoirs (Yang et al.
2013).

In addition, Wang et al. (Wang et al. 2008) identified and
predicted the presence of carbonate rock reservoirs mainly
through artificial neural networks. Their research focused on
identifying the degree of crack development in the rock. Yin
et al. (Yin et al. 2013) predicted coal seam gas penetration
using BP neural networks. The results obtained by the BP
neural network model matched measured data well. Zhu
et al. (Zhu et al. 2015) used a simulation model based on an
improved neural network to predict the permeability of tight
sandstone reservoirs. Zhou et al. (Zhou et al. 2017) evaluated
the gas content of the Upper Triassic continental shale reser-
voir in the western Sichuan Basin using a BP neural network
model. An ideal application effect was also achieved.

In this study, the BP neural network method is used to
identify oil sand reservoirs. The purpose of this study is to
establish a fast and accurate oil sand layer identification meth-
od to guide oil sand exploration in less-explored areas.

Geological setting

The Songliao Basin is an important oil and gas basin in China.
However, conventional oil and gas resources have begun to
decrease sharply, while the area is rich in unconventional en-
ergy resources represented by oil sand resources. Jia (Jia
2007) showed that the western slope of the Songliao Basin
is rich in oil sand resources and has potential for development.
The calculated geological resource is approximately 4.75×108

t, making it an important oil sand resource distribution area in
China. A large number of scholars have carried out oil sand
research and accumulated a considerable amount of basic re-
search findings in this basin. At present, we have elucidated
the geological conditions, sedimentary environment, and

sedimentary system of the research area, but no in-depth and
systematic study on the evaluation and prediction of oil sand
reservoirs has been performed yet.

The chosen study area is located in an overlap zone on the
western slope of the Songliao Basin. It is adjacent to the
Taikang uplift zone in the northern Songliao Basin, the
Taobao–Shuanggang high slope break zone in the southern
Songliao Basin, and the Longhupao–Honggangzi terrace and
the central sag (Fig. 1). In total, 100 wells were drilled in the
study area before 2015 (Zhao 2015). The drilled formations
mainly consist of Quaternary sediments, the Upper
Cretaceous Nanjing Group (K2n), and the Yaojia Group
(K2y). The oil and gas target layer is located in mainly the
2nd and 3rd sections of the Upper Cretaceous Yaojia Group
(K2y

2 and K2y
3), which corresponds to the Salto oil layer. Oil

accumulation in the study area mainly occurred during the
subsidence period, and the mineral deposits were buried to
depths of less than 220 m. The Yaojia Formation, which de-
veloped during the Upper Cretaceous (K2y) period, corre-
sponds to delta front and pro-delta facies (Liu 2013; Luo
2013; Zhao 2015).

The highest-quality source rocks in the middle-shallow lay-
er of the Qingshankou Formation (K2qn) in the central sag
(Songliao Basin) reached the peak hydrocarbon generation
stage in the middle and late stages of the subsidence period.
In the late stage of the Yanshanian movement and early stage
of the Himalayan movement (70–65 Ma), the generated oil
and gas quickly and laterally migrated long distances via tec-
tonic compression. This resulted in the formation of oil and
gas migration channels in some shallow faults and along the
sand bodies connected by faults. Oil and gas migrated to then
accumulated in areas with good source-reservoir-cap assem-
blages. The evolution of the crude oil, including biodegrada-
tion, rinsing, and oxidation, changed its viscosity and resulted
in a poorer fluidity, which in turn allowed it to accumulate in
the shallow edge of the basin more easily (Luo 2013; Zhao
2015). Therefore, the distribution characteristics of the shal-
low oil and gas resources in the western slope of the Songliao
Basin exhibit a pattern controlled by a far source (Liu 2013;
Luo 2013).

There are mainly feldspar lithic sandstone and lithic feld-
spar sandstone and very little feldspathic quartz sandstone and
arkosic sandstone in the study area. The rocks can be divided
according to grain size into mudstone, siltstone, fine sand-
stone, medium sandstone, and some fine conglomerate.
There are visible gas-liquid inclusions in some quartz parti-
cles, and some alteration is visible on the feldspar surfaces,
resulting in a rough surface texture. Polysynthetic twinning is
also visible, and the biodetritus mainly possesses an oolitic
morphology (Fig. 2a), where the centers are felsic and the
outer layers are ring calcite. There is a small amount of gran-
ular and flaky dark minerals and black mica particles with
nonuniform particle sizes in a scattered distribution. A banded

�Fig. 1 Location of the structure in the study area [modified from Zhao
et al. 2017]
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distribution of dark minerals is also visible (Fig. 2), which is
mainly argillaceous cement between the particles; a small
amount of this material is calcareous cement, and a small

amount of the matrix is clay minerals (Fig. 2b). The particles
are angular to subangular and exhibit moderate and poor
sorting.

Fig. 2 Thin-section photographs of samples from cores in the research area [modified from Zhao et al. (2017)]
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There is a relatively low claymineral content in the shallow
oil sand reservoirs in the study area, and the clay minerals are
mixed layers of illite, montmorillonite, and a small amount of
kaolinite (Zhao 2015; Zhao et al. 2017) (Fig. 2c, d). There are
mainly intergranular pores, secondary intragranular dissolved
pores, and secondary enlargement pore types in the oil sand
reservoirs in the study area. The measurement of the surface

porosity and pore size is mainly based on thin section obser-
vations. In the laboratory microscopic imaging system, the
pores and cracks are filled with dye, and the number and sizes
of the dye-filled pores are identified and measured. Then,
through the area ratio calculation, the calculated values of
the pore face ratio and aperture can be obtained. The surface
porosity is approximately 15%, the maximum pore size is 0.1–

Table 1 Number of training
samples Lithology Quantitative processing results Quantity Proportion (%)

Mudstone 1 324 25.17

Siltstone 2 234 18.18

Fine sandstone 3 219 17.02

Medium sandstone 4 202 15.70

Oil sand 5 308 23.93

Total 1287 100

Table 2 The data selected for the training samples (part)

AC (μs/m) CAL (mm) GR (API) RT (Ω·m) DEN (g/cm3) PORC (%) Lithology Quantitative
processing results

88.69 118.7 66 20.9 2.056 22.237 Siltstone 2

83.41 115.3 53 22 2.039 18.145 Siltstone 2

89.71 115.6 63.5 21.1 2.104 23.029 Siltstone 2

92.32 114.8 63 20.6 2.094 25.055 Siltstone 2

81.41 113.3 64 29 2.101 16.597 Siltstone 2

83.14 121 60 8.5 1.97 17.937 Mudstone 1

84.50 121 54.5 8.5 1.97 18.994 Mudstone 1

85.96 121.1 52.5 8.8 1.965 20.124 Mudstone 1

83.82 121.6 55 8.6 1.962 18.462 Mudstone 1

81.72 121.6 53 8.4 1.949 16.836 Mudstone 1

82.10 121.7 53 8.6 1.971 17.135 Mudstone 1

82.55 121.7 50.5 8.4 1.991 17.48 Mudstone 1

89.20 189.6 67 16.5 2.105 22.639 Fine sandstone 3

85.00 189.6 65.5 16.9 2.052 19.38 Fine sandstone 3

88.31 199.6 66.5 17.3 2.033 21.947 Fine sandstone 3

88.74 178 59 17.1 2.033 22.28 Fine sandstone 3

97.21 96.4 68.5 13.7 2.273 24.844 Oil sand 5

89.45 96.4 72 14.9 2.296 22.83 Oil sand 5

87.24 96.3 74 26.7 2.239 21.114 Oil sand 5

87.67 96.2 72.5 33.5 2.257 21.45 Oil sand 5

87.48 96.3 70.5 31.1 2.285 21.299 Oil sand 5

87.53 96.1 70.5 21.9 2.271 21.338 Oil sand 5

88.98 96 69.5 16.8 2.233 22.467 Oil sand 5

87.75 103.6 64.5 9.9 2.025 21.515 Medium sandstone 4

90.55 108.6 72 10.1 2.135 23.685 Medium sandstone 4

89.56 108.7 68.5 10 2.155 22.915 Medium sandstone 4

85.92 108 67 10.1 2.148 22.09 Medium sandstone 4

88.69 108 65.5 10.8 2.131 22.242 Medium sandstone 4

88.69 118.7 66 20.9 2.056 22.237 Siltstone 2
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0.2 mm, the pore throat coordination number is 2–3, and the
pores exhibit good connectivity.

Methodology

The BP neural network, which was proposed in 1986 by a
group of scientists led by Rumelhart and McCelland
(Rumelhart et al. 1986), is a neural network trained by the
BP of errors. It is a type of feed-forward neural network,
which is also known as a multilayer perceptron, and uses an
error BP algorithm to perform the training.

There have been applications of this technique in the
field of geology, as performed by foreign scholars
(Murnion 1996; Suwansawat and Einstein 2006) and
Chinese scholars (Xue and Pan 1999; Zhao and Gui 2005;
Zou et al. 2006; Yan et al. 2008; Yang and Xia 2013; Zhang
et al. 2017; Bi et al. 2019; Shi et al. 2019), but BP neural

networks rarely have been used in oil sand reservoir distribu-
tion prediction.

Application

In this study, the BP neural network method was used to
identify the oil sand layer. The BP neural network learns and
trains the corresponding relationship between well logging
data and core logging data to determine the implicit nonlinear
correspondence pattern. By selecting the training samples of
the typical wells in the study area, after sorting and screening,
the most reasonable training samples are selected to establish
the neural network training model. After the network training
is completed, the oil sand layer prediction can be performed
based on the unknown area of the existing logging data.

In the study area, there are five lithologies: mudstone, silt-
stone, fine sandstone, medium sandstone, and oil sand.

Table 3 The training sample data
after normalization (part) AC CAL GR RT DEN PORC Lithology Quantitative

processing results

0.3175 0.34216 0.53043 0.18888 0.36043 0.39935 Siltstone 2

0.2765 0.323 0.30435 0.20162 0.34508 0.24846 Siltstone 2

0.3251 0.32469 0.48696 0.19119 0.40379 0.42856 Siltstone 2

0.3443 0.32018 0.47826 0.1854 0.39476 0.50326 Siltstone 2

0.2604 0.31172 0.49565 0.28273 0.40108 0.19138 Siltstone 2

0.2744 0.35513 0.42609 0.045191 0.28275 0.24079 Mudstone 1

0.2852 0.35513 0.33043 0.045191 0.28275 0.27977 Mudstone 1

0.2966 0.35569 0.29565 0.048667 0.27823 0.32144 Mudstone 1

0.2798 0.35851 0.33913 0.04635 0.27552 0.26015 Mudstone 1

0.2629 0.35851 0.30435 0.044032 0.26378 0.20019 Mudstone 1

0.2660 0.35908 0.30435 0.04635 0.28365 0.21122 Mudstone 1

0.2696 0.35908 0.26087 0.044032 0.30172 0.22394 Mudstone 1

0.3213 0.74183 0.54783 0.13789 0.4047 0.41417 Fine sandstone 3

0.2891 0.74183 0.52174 0.14253 0.35682 0.294 Fine sandstone 3

0.3146 0.7982 0.53913 0.14716 0.33966 0.38866 Fine sandstone 3

0.3179 0.67644 0.4087 0.14484 0.33966 0.40094 Fine sandstone 3

0.3787 0.21646 0.57391 0.10545 0.55646 0.49548 Oil sand 5

0.3232 0.21646 0.63478 0.11935 0.57724 0.42122 Oil sand 5

0.3065 0.2159 0.66957 0.25608 0.52575 0.35794 Oil sand 5

0.3098 0.21533 0.64348 0.33488 0.54201 0.37033 Oil sand 5

0.3083 0.2159 0.6087 0.30707 0.5673 0.36476 Oil sand 5

0.3087 0.21477 0.6087 0.20046 0.55465 0.3662 Oil sand 5

0.3197 0.21421 0.5913 0.14137 0.52033 0.40783 Oil sand 5

0.3104 0.25705 0.50435 0.061414 0.33243 0.37273 Medium sandstone 4

0.3314 0.28523 0.63478 0.063731 0.4318 0.45275 Medium sandstone 4

0.3240 0.28579 0.57391 0.062572 0.44986 0.42435 Medium sandstone 4

0.2963 0.28185 0.54783 0.063731 0.44354 0.39393 Medium sandstone 4

0.3175 0.28185 0.52174 0.071842 0.42818 0.39954 Medium sandstone 4

0.3175 0.34216 0.53043 0.18888 0.36043 0.39935 Siltstone 2
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Mudstone is often characterized by high natural gamma ray
values, low resistivity values, and well diameter enlargement.
Sandstone generally exhibits low natural gamma ray values, a
variation in apparent resistivity, and small well diameters. In
addition to sharing many general characteristics with sand-
stone, oil sand sometimes displays small increases in natural
gamma.

There are 84 wells with logging data in the study
area, and many types of logging data were collected.
Among the data types, the natural gamma ray (GR,
API), apparent resistivity (RT, Ω·m), density (DEN,
g/cm3), neutron porosity (PORC, %), interval transit
time (AC, μs/m), and calliper (CAL, mm) logging data
best reflect the oil sand layer in the training samples.
Other logging data types that are insensitive to the oil
sand layer are eliminated.

Samples of each of the five lithologies were evaluated, and
4361 sets of well logging data in the study area were selected
as the overall samples.

First, samples of the same type are merged. Samples of the
same type have similar characteristics. The number of such
samples will affect only the number of training sessions of the
network and will not affect the convergence of the network. If
a sample size is too large, the proportion of the training fo-
cused on that sample will increase, which will cause network
overfitting, resulting in the insufficient training of other sam-
ples, which is not conducive to the stability of the network.
When merging samples of the same type, the number of the
different types of samples should be approximately equal.
Because there are many mud rock samples from the study
area, they are properly combined.

Second, the anomalous samples are deleted. Samples of the
same lithology should have similar ranges of logging data
(AC, CAL, GR, RT, DEN, and PORC). Some samples should
be excluded because factors such as the logging instrument
itself and the formation around the wellhead may cause the
logging data to deviate from a reasonable range. Thus, the
training samples are representative after the merging,

Fig. 3 The establishment process of the BP neural network in this study
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eliminating and supplementing processes. Very few singular
samples may be used in neural network training. They can be
ignored if the proportion of such samples is less than 5% of the
total number of training samples (Zhang and Pan 2009).

Finally, obvious samples are included. When an abnormal
sample is deleted, it may result in an insufficient number of
training samples of a certain type, and a sample with obvious
lithology characteristics should be added to the training
sample.

After the samples were merged, eliminated, and supple-
mented, there were 1287 sets of actual training samples
(Table 1). The proportion of various types of rock samples
in the training data was basically consistent with the
proportion of formation lithology composition. Some
of the data selected for the training samples are shown
in Table 2. The normalized training sample data are
shown in Table 3.

By considering the requirements of training accuracy and
the computer configuration, we constructed a three-layer BP
neural network model, which consisted of two S-type hidden
layers and one linear output layer. Before network training,
learning termination conditions were set, such as the maxi-
mum number of trainings, training accuracy, maximum num-
ber of failures, root mean square error, and minimum gradient
requirements. The training process stops when any learning

termination condition is met. The establishment process of the
BP neural network is shown in Fig. 3.

Results

In this practical research, we carried out many tests, setting the
training frequency to 10,000, 20,000, 50,000, and 100,000
times. By choosing reasonable training samples, after
100,000 network trainings, an accuracy rate of nearly 90%
can be achieved (Fig. 4). The increased accuracy rate was
not significant compared with the results from 50,000 training
sessions (Table 4). Therefore, the training network was deter-
mined to be adequate. This network can meet the needs of
research and can be used as a BP neural network to predict
the distribution of oil sands in the study area. Figure 5 shows
the result of the network prediction in a single well.

After inputting the other (processed, screened, and normal-
ized) logging data in the study area into the BP neural

Fig. 4 Accuracy of the network
after 100,000 training iterations

Table 4 Network prediction accuracy results

Training times 10,000 20,000 50,000 100,000

Prediction accuracy (%) 72.73 81.62 86.29 88.98
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Fig. 5 Results of network
prediction
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network, the predicted thickness of the oil sand at each well
was obtained (Table 5). Then, a distribution map of oil sand
thickness in the study area was drawn according to the pre-
dicted values (Fig. 6). Figure 6 shows that oil sand is widely
distributed in the study area and that the areas with the thickest
oil sand reservoirs are in the central, northern, and southern
parts of the study area. The distribution trend is consistent with
sedimentary facies research results (Luo 2013; Zhao 2015),
which prove the feasibility of predicting the thicknesses of oil
sand reservoirs by using a BP neural network.

Discussion

(1) The advantages and disadvantages of lithology predic-
tion by using a BP neural network.

The BP neural network method obtains the recognition
mode with its own unique sample training ability. Compared
with the conventional logging interpretation method, the BP
network model has great advantages in lithology prediction.
As an effective method, the prediction results of the BP neural
network can be used as a supplement to the conventional
logging interpretation results or as a reference during interpre-
tation. This method exhibits self-organization, self-learning,
adaptation, fault tolerance, and anti-jamming characteristics.
The input training data are unlimited in theory and can make
full use of logging information. The calculation results are not
related to the experience of interpreters; instead, the

recognition results are objective and reliable. With learning,
it is not necessary to establish a theoretical model in advance
or to establish the mapping relationship between logging re-
sponse and reservoir parameters adaptively by providing sam-
ples, overcoming the difficulty of nonlinear mathematical
modelling in traditional logging interpretation methods.

The disadvantage of this method is that a large and exten-
sive training sample is required. In the face of practical prob-
lems, there is often a situation in which there are too few
training samples, which will directly affect the prediction ef-
fect of the network. Therefore, for neural network systems to
have the desired effect, it is necessary to carefully select train-
ing samples based on the principles of extensiveness, repre-
sentativeness, and comprehensiveness with respect to the geo-
logical patterns and remove samples with no geological
significance.

(2) Rationalizing the selection of training samples can help
improve the compliance rate of forecast results.

A BP neural network is trained after it is built. The process
of training is actually the process of adjusting the connections
between neurons and the process of the neurons themselves
adjusting to store information. These adjustments are entirely
dependent on the training samples. Therefore, the representa-
tiveness and rationality of the training samples should not be
ignored. Thus, in the training process of the neural network, a
training sample should include some unreasonable samples.
However, if too many unreasonable samples are included, the
output of the neural network will deviate too much, resulting
in a decrease in the prediction compliance rate.

(3) The success rate of network training can be improved by
appropriately increasing the number of training
processes.

At the beginning of training, the information stored in each
neuron and the connections between the neurons are randomly
specified by the program. Although the initial value can be
specified artificially, the initial values of different forecast
networks are not the same. Through multiple training compar-
isons, a reasonable initial value can be derived. After artificial
designation, the success rate of network training can be im-
proved. In this study, it was concluded that 100,000 training
sessions meet the requirements of neural network training by
comparing the training effects of different training sessions.

(4) The promotion of neural networks.

In this work, the ultimate goal of constructing a neural
network is to predict the distribution of oil sand reservoirs in
the uncored sections of the study area based on logging infor-
mation. The vertical change in lithology of the uncored

Table 5 Oil sand thickness in each well obtained by the BP neural
network (part)

Well number Prediction of oil sand layer thickness (m)

ZK0009 63.89

ZK0024 53.76

ZK0402 64.64

ZK0809 70.86

ZK1509 58.03

ZK1608 68.01

ZK1609 66.75

ZK1640 55.63

ZK2308 75.57

ZK2408 54.98

ZK3903 56.62

ZK3924 63.68

ZK5640 62.14

ZK5688 56.37

ZK6456 51.08

ZK6488 52.12

ZK8088 43.26
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Fig. 6 The distribution of oil sand
thicknesses obtained from the BP
neural network
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sections can be judged according to the observation data of a
single well. The comparative analysis of many wells is often
of practical significance to determine the horizontal change in
lithology. For an oil region, the BP neural network method
can be used to establish a suitable artificial neural network
interpretation system. At the same time, attention should be
paid to the impact of regional geological conditions. For the
establishment and training of the network and the prediction
of the results, geological factors should be used.

(5). The comparison of lithology prediction between the BP
neural network method and conventional lithology pre-
diction method.

Compared with conventional lithology prediction methods,
the prediction accuracy of the BP neural network method does
not have outstanding advantages. However, from the point of
view of the convenience of the method, the BP neural network
method has the following advantages: the model is easily con-
structed, the number of learning samples can be conveniently
changed at any time, and the network structure can be
rapidly adjusted at any time. In addition, the BP neural
network method requires less human interference. It
makes full use of computational analysis and can great-
ly reduce the burden of researchers. In lithology predic-
tion, the BP neural network method can be used as an
effective method to supplement other manual prediction
methods. With the development of computer technology
and software technology, neural network methods are
bound to continue improving, and the simulation of in
situ formations will become increasingly detailed; thus,
neural network methods may become widely used by oil
exploration researchers.

(6). The comparison with previous studies that used a BP
neural network to predict other rock layers.

Some previous studies have indicated that the use of a BP
neural network based on conventional logging data can accu-
rately predict the distribution of sandstone and carbonate res-
ervoir rock. The compliance rate can reach more than 90% in
comparisons with core observation data and oil test data. In
the prediction of the lithology of complex reservoirs such as
igneous rock, some results are approximately 90% ac-
curate, while some logging responses indicate a compli-
ance rate of more than only 80% (Zhang et al. 2002, 2005;
Zou et al. 2006; Zhao 2011; Yang et al. 2013). The results of
this study show that the accuracy of the prediction results is
close to 90% when using the BP neural network to predict the
oil sand reservoirs. This application of oil sand reservoir pre-
diction has achieved good results. The accuracy rate of oil
sand reservoir prediction exceeds the accuracy rate of com-
plex reservoir prediction.

Conclusions

1. Through the selection of sample data and the construction
and debugging of a BP neural network, the accuracy of
the training samples in the BP neural network constructed
by this research for identifying the oil sand reservoirs in
the target layer in the study area is nearly 90%.

2. After the other well logging data in the study area, which
were processed, screened, and normalized, were input in-
to the BP neural network, the predicted distribution map
of oil sand thickness was obtained. The distribution trend
was consistent with a regular sedimentary facies distribu-
tion pattern.

3. The BP neural network method can accurately predict the
distribution of oil sand reservoirs, which demonstrates
that it may be a valuable tool for future studies.
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