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Abstract
Land use/land cover change (LUCC) and climate changes are responsible for degradation of any ecosystem in arid and
semi-arid regions. Studying the ecological variations is particularly essential for any type of sustainable development, in
which LUCC considers as one of the chief inputs. The main objective is to evaluate the impacts of LUCC and climatic
changes on the Ecosystem Vulnerability (ESV) using remote sensing and some statistical models around the Yellow
River, Ningxia, China. Eleven classes of LUCC were identified during 1995 and 2019: village land, bare land, grassland,
industrial land, irrigated land, swamp land, tidal flat, transportation land, urban land, water bodies, and water channels.
Grassland may be decreased annually with percentage − 5.873% due to some human activities and environmental
changes in climate from one season to another. About 24.23 km2 and 24.86 km2 was converted from grassland to
industrial lands and irrigated lands, respectively. ESV has been calculated using LULC, DEM, slope, soil, and geology.
About 45% and 60% of 1995 and 2019, respectively, undergone moderate vulnerability. The annual rate of ESVI
decreased in low and reasonable but it was increased in moderate, high, and extreme showing – 4.166% as a total
percentage of annual vulnerability. High vulnerability area needs proper management. Majority of vegetation area is
located in zone under the moderate vulnerability zone; in contrast, grasslands were subjected to high vulnerability. Areas
around the Yellow River were subjected to drought and flooding due to climatic change affecting negatively on the
production of crops. Also, the desert lands of the study area have been turned to agriculture according to statistical
model. Population growth, industrial development, and governmental policies for ecosystem protection were responsible
for major changes. This study is more beneficial for decision-making in eco-environmental protecting and planning.
Results of this study could help planners in formulating effective strategies for better management of ecosystem.
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Introduction

Fundamental changes of any environment may be attributed
to natural or anthropogenic activities. Due to the change in
global climate, the land surface temperature (LST) has in-
creased, which has affected land use/land cover change
(LUCC), vegetated areas, water resources, etc. Choudhury
et al. (2019) stated that changes in climatic changes are re-
sponsible for various environmental problems. LST refers to
the temperature of the earth surface including the temperature
of bare soil, the canopy of vegetation, etc. Climate change has
had an important effect on water resources in Africa princi-
pally on the west coast where the demand for water is high for
agriculture. Rivers, lakes, and wetlands which are the princi-
pal surface water resources of the region suffered devastating
consequences by the drought of the early 1970s
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(Kandissounon et al. 2018). This may cause adverse impacts
on socio-economic, biological, climatic, and hydrological as-
pects of the environment. Recently, with more development
protocols of the Chinese government focused on Northwest
China, North Ningxia becomes one of the most important
provinces in China especially in the field of agriculture and
industry.

Population growth, migration, and urbanization lead to
negative change on the Yellow River community. Vaidya
et al. (2018) stated that people altered the harvesting patterned
and its varieties from traditional to market valuable crops.
Land use and land cover change is a very important issue
considering in many parts of the globe. Cities near the
Yellow River have been populated by humans who were in-
terested with farming activities. Poor communities of devel-
oping country as Ningxia are hardest hit by the impacts of
climate change (Rahman et al. 2016).

Nowadays, utilization and exploitation of energy have neg-
atively affected the ecosystem balance; therefore, the ecosys-
tem in North Ningxia is more sensitive to change and stress
(Li and Liu 2008). For effective assessment of ecosystem
vulnerability (ESV), firstly, vulnerability concepts have been
altered according the scope of the study. Susceptibility of
ecosystem is a function of contact, sensitivity, and adaptive
capability. Exposure components characterize the stressors
and the entities under stress, sensitivity mechanisms illustrate
the first-order effects of the pressures, and adaptive capability
constituents describe replies to the properties of the stresses
(Saaty and Vargas 1991). A variety of models have been de-
veloped to assess the vulnerability: Integrated Assessment Act
(IAA), analytical hierarchy process (APH), and forecast
weighing method (IWM) (Li et al. 2009). This present study
selected a spatial model to evaluate the ecosystem vulnerabil-
ity (ESV) of the area around the Yellow River, North Ningxia.

Recently, remote sensing and geographic information sys-
tem (GIS) have been integrated as a strong technology to
assess LUCC and ESV. Remote sensing techniques have been
successful in mapping and detecting land use/cover changes.
The spatial and temporal distribution of land use/cover using
satellite images is critically significant to identify and explain
the phenomenon of global environmental change (Ozesmi and
Bauer 2002). Depending on remote sensing images, spatial
interpolation was applied for resolving many problems of pre-
diction. One of the difficulties facing ecological changes is the
truth of area exactly calculating the actual data (Azpurua and
Ramos 2010). So, spatial interpolation models can be well-
defined as a series of statistical methods used to predict the
values of phenomena in sites where accurate measurements
are little.

The innovation of the present study is represented by sim-
ulation and extracting the sensitivity area to flood and drought
based on LUCC and climatic change. Therefore, the objec-
tives of this study are to (1) assess the ecosystem sensitivity

affected by LUCC and climate changes using statistical sim-
ulation and data of remote sensing technology; (2) to study the
LUCC from 1995 to 2019 using satellite data, assess the tran-
sition of LULC and land use dynamics, establish an
Ecosystem Vulnerability Index (ESVI) based on some ecolog-
ical variables; and finally, (3) to establish a statistical model
for assessing the changes in water, vegetation, and drought as
an indicator of climatic change.

Materials and methods

Study area

North Ningxia is located at longitude 105° 45- E to 107° 00- E
and latitude 38° 20- N to 39° 30- N (Fig. 1). The Yellow River
Irrigated District is the greatest significant residence of agri-
cultural production in Ningxia with an arid and semi-arid cli-
mate. It is composed of the alluvial plans along the Yellow
River and the diluvia piedmont of Helan. The Yellow River
irrigation is one of the large irrigation areas with advantageous
flow irrigation conditions, and also a major production base of
commodity grain in Northwest China. In 1984, Ningxia is the
first to achieve self-sufficiency of food in the northwest re-
gion. Around the Yellow River, the crops mainly are includ-
ing wheat, rice, potato, and minor cereals accounting more
than 80% of the planting area of farm crops.

Remote sensing analysis

Data collection and image preprocessing

Landsat images were acquired from http://glovis.usgs.gov.
The study area was located in one scene: path 129, raw 34.
Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper (ETM and Operational Land Imager (OLI) images
were acquired in 1995, 2000, 2005, 2010, 2015, and 2019,
respectively. Atmospheric correction method is used to cor-
rect primarily the wavelengths of visible near infrared and
shortwave infrared information (Abd El-Hamid et al. 2019).
The geographical coordinates are unified by the latitude and
longitude coordinate system Xian_1980_GK_CM_105 E,
and the projection mode is the horizontal axis Mercator pro-
jection. Finally, the study area was selected by image subset
for further analysis. A flowchart was presented showing de-
tails of the methodology (Fig. 2).

Classification of LUCC

Firstly, unsupervised classification was primarily applied to
categorize the classes based on their spectral properties. The
land use/cover was classified using supervised classification
based on the land cover classification system and field
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observation as ground truth. Finally, the derived classes were
mapped and analyzed using ArcGIS 10.5 software to measure
the alteration of land uses and regulate the quantity, position,
and degree of gain or loss for each specific class.

LULC transition

Conversion matrix was used to differentiate the changes of
each class at the expense of others and its general structure.
Entries on the diagonal (that is, Pjj) indicate the amount of land
use/cover category which remained persistence of class j be-
tween the time period and used to calculate the gains and the
losses of land use/cover classes whereas the off-diagonal en-
tries show the size of the area that transitioned from category
“i” to a different category “j” during the time interval
(Aldwaik and Pontius 2012). For ease of reference, the equa-
tions and notation used to compute various components are
presented as follows: the land use data is mapped and evalu-
ated using two remote sensing images in 1995 and 2019.

p11 ⋯ p1n
⋮ ⋱ ⋮
pn1 ⋯ pnn

0
@

1
A

0≤p11<1

∑n
i¼1pijx ¼ 1; i; j ¼ 1; 2;……:; n

�

where Pij is the land area in transition from land scape i to j.

Land use dynamics

To detect the change from 1 year to another, a comprehensive
analysis method was applied in the present study. The com-
prehensive index model of land use grade is associated mainly
with the principle that the natural complex of land is under the
change of social factors (Jiyuan 1992). The model was classi-
fied into five categories depending on the degree of change
from one period to another as shown Table 1. The higher the
degree of land use, the greater the degree of human interfer-
ence and the worse the recoverability. From the index, the
land use utilization index and land use degree classification
index are used to evaluate the overall change characteristics of
the land use category and then reflect the coupling association
amongst the natural environment and human impact on the
land use structure (Xiulan 2010; Jinpeng et al. 2010; Sisi et al.
2012).
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Fig. 1 Map showing the location
of the study area
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In the formula, L represents the comprehensive index of
land use degree, L 100–400; the closer the L is to 400, the
higher the degree of development and utilization;Ai represents
the classification index of land use type. Ci represents the
percentage of land use type area; △Lb-a represents the change
in the comprehensive index of land use change; La and Lb
represent the comprehensive land use degree index of a and
b time periods;Cia andCib represent the area percentage of the
i-type land type in the two periods a and b; R represents the
rate of change in land use. R > 0 is the development stage; R <
0 is the decay stage; R = 0 is the stabilization or adjustment
stage. According to the grading standards of land use degree

index, the land use degree of construction land is the fourth
level, including land for residents, mining, industry, transpor-
tation, etc.; the third level is farmland such as cultivated land;
the second level is forest land, grassland, and water bodies.
The first level is sand and other land types (El-Hamid et al.
2019).

Ecosystem vulnerability

The ecosystem of any area may be affected by natural and
anthropogenic activities. To estimate the sensitivity of
ecosystem, thematic maps of geology, DEM, soil, slope,
and land use/cover were prepared from OLI image. The
weight of every variable based on the weights of variables
indicates the importance in relation to others (Tricart
1977). In natural susceptibility, all variables give similar
weight; however, in ecological vulnerability, all variables
were particular changed weight depending on their sensi-
tivity or efficiency in the study area (Grigio et al. 2004).
Ecosystem vulnerability includes natural and ecological.
The degree of vulnerability for all units was from 0.0 to
3.0 (Table 2). The vulnerability was classified as extreme,

Fig. 2 Flowchart showing the
methodology of the present study

Table 1 Levels of comprehensive index degree

Intensity level Land-use type Value

Unused level Unused land and intertidal zone 1

Light utilization level Water 2

Low utilization level Grass, swamp and tidal 3

Strong utilization level Irrigated land 4

High-strength utilization level Construction land 5
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high, moderate, reasonable, and low vulnerability. The
weights of variables show the importance of any variable
in relation to others (Medjahed et al. 2016). Vulnerability
was classified into five classes: low vulnerability that less
than or equal to 1.00, reasonable vulnerability that ranges
1.1 to 1.5, moderate vulnerability that ranges from 1.51 to
2.00, high vulnerability which ranges from 2.1 to 2.50,
and extreme vulnerability that is more than or equal to
2.51 (Choudhary et al. 2018).

Vulnerability ¼ DEM½ � þ Geology map½ � þ Soil map½ � þ LU=LC map½ � þ Slope½ �
5

ð4Þ

Spatial interpolation method

The spatial interpolation model assessed here is calculated
using ArcGIS10.5 software. Regression lines are helpful to
know what interstitial values we could not practically know.
It is useful to predict future values theoretically and can be
trusted in statistical ways. Statistical models vary from simple
linear to complexity nonlinear according to the nature of the
phenomenon to be modeled. Models were proposed for pre-
diction vegetation; water and bare lands of the study area are
shown in equations. The accuracy and validation of statistical
interpolation models depend on the coefficient of determina-
tion (R2). It is expressed by the ratio of total squares of regres-
sion divided by total squares. The value ranges between the
correct one and zero and is calculated by the following equa-
tion.

R2 ¼
∑n

i¼1 Oi−O
� �

f i− f
� �h i2

∑n
i¼1 Oi−O

� �2
∑n

i¼1 f i− f
� �2 ð5Þ

where n is he number of predicted value and fi denoted to our
estimation of observed value Oi. And so, O and f are mean
values of observed and estimation, respectively.

Results and discussion

LULC in 1995 and 2019

Based on supervised classification, eleven major land use
classes were identified and mapped from both dates of satellite
imageries to determine the changes and transformation (posi-
tion and rate). These classes are village land, bare land, grass
land, industrial land, irrigated land, swamp land, tidal flat,
transportation land, urban land, water bodies, and water chan-
nels. These classes are demonstrated in Fig. 3. The majority
area of the study areas are grassland. Grasslands are areas
where the vegetation is dominated by grasses. Grassland
varies in height from very short, as in chalk grassland, to quite
tall. Annual changes in LULC were shown in Table 3. In the
study area, grassland represents 65 and 59% of the study area
in 1995 and 2019, respectively. It may be decreased with
percentage − 5.873% due to some human practices and cli-
mate change from one season to another. Inventory of grass-
land to prohibit grazing is an effective measure for ecological
recovery in the semi-arid desert steppe. Therefore, grassland,

Table 2 Weight of each variable in Ecosystem vulnerability

Factor Type/degree Weight

LULC Bare land 1

Grass land 1.5

Industrial 2.8

Irrigated land 1.3

Swamp land 1.4

Tidal flat 1

Transportation 1.7

Urban land 3

Village land 2.9

Water bodies 0.5

Water channel 0.5

Slope (%) 0–2.9 0.5

2.9–8.2 1

8.2–15.26 2

15.26–25.24 2.5

25.24–74.84 3

Elevation 1025–1205 0.5

1205–1284 1

1284–1410 1.5

1410–1581 2.5

1581–1775 3

Soil type Calcareous soil 2

Desert sandy soil 2.3

Calcareous stony soil 1.8

Residual solon chalk 1.7

Surface rust irrigation 1.7

Meadow saline soil 1.4

Alluvial soil 2.5

Salinized fluvo soil 2.6

Yellow river 0.5

Irrigated silt 1.6

New accumulated soil 1.9

Geology Alluvial deposit 3

Denudation low soil 2.8

Denudation high soil 1.5

Lime stone weathering 2.6

Yellow River 0.5
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construction of artificial grassland, scientific breeding, live-
stock improvement, prohibition, suspension, and rotation of
grazing should be taken into consideration to improve the
animal husbandry industry and help farmers and herdsmen
to become rich. In this way, we can relieve that grassland
can improve the ecological system’s capability for self-
organization and adjustment (Woodward et al. 2001).
Urbanization may impact negatively on vegetation.
Urbanization exerts intensive anthropogenic pressure on these
areas. These places are highly modified and impacted by a
large number of human activities (Mustafa et al. 2019). The
industrial activities may be increased from 1995 to 2019 with
percentage 2.595%. Industrial practices have a negative influ-
ence in various ways, such as air emissions and accidental
spills into the environment. Industry of the study area covers

coal mining and coal industry product. Therefore, industry
development promotes the growth and urban extension but
at the same time brings about a degradation of land. The
growth in urban regions originates from both the growth in
migration to the cities and the fertility of urban populations.
Much of urban migration is determined by rural popula-
tions’ desire for the advantages that urban areas offer.
Urban benefits include greater opportunities to receive ed-
ucation, health care, and services such as entertainment.
The urban poor have fewer opportunities for education
than the urban no poor, but still they have more chance
than rural populations. Urbanization happens either
organically or planned as a result of individual,
cooperative, and government action. Living in a city can
be culturally and economically helpful since it can deliver

Table 3 Quantitative evaluation
of land use changes during the
period from 1995 to 2019

Class Area Area increase/
decrease

Change Yearly rate

(km2) 1995 (km2) 2019 (km2) (%) (%)

Bare land 13.92149 14.54816 0.626677 0.0667 0.00278221

Grass land 609.057 553.9372 − 55.1198 − 5.873 − 0.2447110

Industrial 1.108919 25.46738 24.35846 2.595 0.108142368

Irrigated land 184.3029 209.4387 25.13581 2.678 0.111593496

Swamp land 46.71449 40.89034 − 5.82415 − 0.62 − 0.02585703

Tidal flat 17.49095 26.1969 8.705954 0.927 0.038651145

Transportation 6.559587 5.882825 − 0.67676 − 0.072 − 0.0030045

Urban land 4.95691 5.791154 0.834244 0.088 0.003703729

Village land 11.61304 15.92496 4.311922 0.459 0.0191433

Water bodies 37.84963 33.47814 − 4.37149 − 0.465 − 0.0194077

Fig. 3 Land use/cover map of land use in 1995 and 2019
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better probabilities for access to the labor market, better
education, housing, and safety conditions, and reduce the
time and expense of commuting and transportation. Land
desertification stated by Zhu and Cui (1995) was not found
in this study area, but land degradation in a total area of
55.62 km2, counting coal residue increase (36.20%), veg-
etation degradation, and soil salinity (52.25%) was actually
observed in Yinchuan, Shizuishan, and Pinglguo counties.
The degradation rate was measured as 4.62 km2/year. The
irrigated land may be increased with percentage 2.67%
from 1995 to 2019. The increase of these irrigated lands
gives the chance for numerous crops to be cultivated in the
area and raise the income of the district. Li and Zhou
(2009) stated that the rapid expansion of built-up area in
Ningxia is nevertheless undeniable for its very high growth
rate (131.4% in 11 years). The third is the rapid decrease of
bare ground, which decreased 2652 km2 or 51.7%. On the
other hand, regular irrigation method should be followed to
decrease the amount of water for cultivation. According to
LULC, 22% of the study area did not change from 1995 to
2019. It may be not exploited due to climate change. Forty-
seven percent of the study area may be subjected to drilling
processes.

LUCC transition

Major transition around the Yellow River from 1995 to 2019
was shown in Fig. 4. These transitions reflect the developmen-
tal activities in the study area.

Gain transition of LUCC

Among of LULC, seven classes were increased from 1995 to
2019; bare, industrial, irrigated, tidal flat, urban, village, and
water channel as shown in Table 4. About 11.79 km2 of bare
lands is reserved and will not be changed and 2.02 km2 of bare
lands was converted to grass land. During the 24th year, small
change was observed as a result of no exploitation of bare
lands. For industrial lands, about 1.07 km2 is not changed
and about 24.23 km2 was converted from grassland to indus-
trial lands. Major transition of grasslands to industrial reflects
the trend of population toward the industrial activities on ac-
count of grasslands. Due to the nature of the area, a large
amount of area was converted to mining and industrial affect-
ing negatively on vegetation and other types of LULC. About
180.47 km2 of irrigated lands is remaining constant and will
not be changed but about 24.86 km2 of grassland was convert-
ed into irrigated lands. About 15.10 km2 of tidal flat is con-
stant and 2.38 km2 was converted to water bodies. These new
water bodies are used to reserve the agriculture area especially
irrigated lands. For urban and village lands, 16.45 km2 is
remaining constant; on the other hand, a low remarkable con-
version has been occurred during the period of the study. All

positive transition from 1995 to 2019 can affect negatively
agriculture sector. Urbanization influencing vegetation is vital
because this vegetation cover provides numerous critical eco-
system services and preserves a high level of biodiversity.

Loss transition of LUCC

Among of LULC, four classes were decreased from 1995 to
2019: grass, swamp, transportation, and water bodies as shown
in Table 4. About 545.28 km2 of grassland is reserved and not
changed and 2.11 km2 of grassland converted to bare lands. For
swamp land, about 30.01 km2 is remaining constant and about
7.25 km2 was converted to grassland as shown in Fig. 4. About
27.53 km2 of water bodies is remaining constant and will not be
changed but about 2.44 and 2.38 km2 of water bodies was
converted to swamp and tidal flat, respectively. For
transportation, about 5.87 km2 is remaining constant and no
major transition occurred. The newly added traffic land is
mainly transferred from grassland, and the newly added
residential land is also transferred to the grassland, and the
cultivated land also accounts for a certain proportion.
Comprehensive consideration considers the area and proportion
of ecological land use and believes that the ecological
environment loss caused by the development and construction
of industrial land and residential areas are relatively large. Spruce
et al. (2020) stated that the more transitional LUCC classes were
as expected particularly dynamic, including the shifting cultiva-
tion, scrub/shrub/herbaceous, and deciduous forest/scrub classes
that can be related to cultivation practices. Among them, the area
of damaged for forest land and industrial and construction is
relatively large, and the development and construction of resi-
dential land have caused certain damage to cultivated land.
Remarkable decrease in vegetation covers as a result of industri-
alization and climatic change of the study area. Land use dynam-
ics may reflect the conversion of land use types as a result of
recent changes (Mustafa et al. 2019).

Land use dynamics

Land use dynamic shows some developments of the area
around the Yellow River from 1995 to 2019. The land use
types of the area around the river were greatly changed from
1995 to 2019. As shown in Table 5, the comprehensive indi-
ces of land use in the two phases of 1995 and 2019 were
317.27 and 326.21, respectively: in the range of 100-400,
indicating that land use has been in a reasonable development
stage; the comprehensive land use index from 1995 to 2019
has continued to increase with a value 8.93, and the degree of
change in land use is greater than zero, indicating that the
second phase is more developed and utilized. From the in-
crease in the comprehensive index of land use degree, it is
known that the construction has gradually entered a stable
stage, and the land use pressure has gradually declined.
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Ecosystem vulnerability

Depending on some ecological factors, DEM, slope, LUCC,
soil type, and geology of the study area, the ecosystem vul-
nerability index was calculated by the integration of some

factors in the ecosystem as shown in Fig. 5. All factors were
weighted according to the importance and according to previ-
ous study. DEM is a vital tool in determining the vulnerability
of DEM and is responsible for extracting some factors asso-
ciated with topographic conditions as slope and elevation. The

Fig. 4 Transition map of LU/LC, change of all classes to grass, and major changes from 1995 to 2019

Table 4 Transition matrix of land use around the Yellow River

Bare
land

Grass Industrial Irrigated Swamp
land

Tidal
flat

Transportation Urban
land

Village
land

Water
bodies

Water
channel

2019

Bare land 11.79 2.02 - 0.19 0.42 - 0.02 0.04 - 0.07 0.01 14.55

Grass 2.11 545.28 0.04 0.97 4.47 - 0.22 0.01 - 0.82 0.02 553.94

Industrial - 24.23 1.07 0.13 - - - 0.03 - - - 25.47

Irrigated 0.03 24.86 - 180.47 3.35 0.01 0.14 0.02 0.02 0.48 0.05 209.44

Swamp - 7.25 - 0.19 30.01 - - - - 3.44 0.01 40.89

Tidal flat - 0.02 - 0.01 5.63 15.10 0.01 - - 5.44 - 26.20

Transportation - - - 0.01 - - 5.87 - - - - 5.88

Urban land - 0.83 - 0.05 - - 0.04 4.86 - - - 5.79

Village land - 2.18 - 1.90 0.01 - 0.23 - 11.59 0.01 0.01 15.92

Water bodies - 0.84 - 0.27 2.44 2.38 0.01 - - 27.53 0.01 33.48

Water channel - 1.55 - 0.11 0.39 - 0.02 - - 0.05 4.85 6.96

1995 13.92 609.06 1.11 184.30 46.71 17.49 6.56 4.96 11.61 37.85 4.94 938.52
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sensitivity of ecosystem rises as the slope increases causing
destruction to surrounding regions. Soil was classified into
eleven class: calcareous soil, desert sandy soil, calcareous
stony soil, residual solon chalk, surface rust, irrigation mead-
ow saline soil, alluvial soil, salinized fluvo soil, Yellow river,
new accumulated soil, and irrigated silt. Majority of the study
area was classified as surface rust and irrigation soil. Soil plays
a critical role in delivering ecosystem services. Managing to
change an ecosystem development in sustenance of one mod-
ifiable ecosystem service can either provide co-benefits to
other services or require trade-offs (Robinson et al. 2013).
Geology of soil is classified as alluvial deposit, denudation
low soil, denudation high soil, lime stone weathering, and
Yellow River. Majority of soil geology is related to denuda-
tion low soil and lime stone weathering. Spatial analysis of
ecosystem vulnerability index in 1995 shows that maximum
area in safe and stable zone as 13.7% area in moderate vul-
nerability and 31.9% area in reasonable vulnerability zone,
which shows that about 45% area of the total study area is
safe zone. On the other hand, ecosystem vulnerability index in
2019 shows that maximum area in safe zone as 30.45% area in
moderate vulnerability and 29.75% area in reasonable vulner-
ability zone, which shows that about 60% area of the total
study area is safe zone. About 4.5% and 14.6% of areas goes
in high vulnerability in 1995 and 2019, respectively, which
really needs proper management. The low vulnerability area is
47.04% 19.05% for 1995 and 2019, respectively, which in-
clude the Yellow River and other water bodies in the study
area. The extreme vulnerability area is 2.7% and 6.13% of the
total study area in 1995 and 2019, respectively, which is close
to water bodies as shown in Fig. 6. Annual rate of extreme and
high vulnerability shows positive increase with a percentage
0.14% and 0.41%, respectively, from 1995 to 2019 as shown

in Table 6. Majority of vegetation area in zone under the
moderate vulnerability zone; On the other hand, grasslands
were subjected to high vulnerability. Low vulnerability and
sensible vulnerability area are the safest area in the study area,
which is under several amount of vegetation, urban, industrial,
and bare lands. Vulnerability assessment is most easily asso-
ciated with ecosystem like food production from agricultural
land use, meat industry, fruit industry, fiber or timber produc-
tion to forestry and cropland and energy production to the area
used for bioenergy crops and oil and natural gas exploration,
costal andmanufacturing area. Climatic changes represent as a
vital role in ecological vulnerability (Liu and Shi 2019). The
services of ecosystem service really depends on biophysical
growing conditions (Boori et al. 2015), in addition to increas-
ing vegetation coverage, enhancing the capability for soil and
water conservation, and strengthening controls on nonpoint
contamination. However, strengthening environmental pro-
tection alone without improving socioeconomic and ecologi-
cal unfamiliarity can only be a temporary degree. Therefore, it
is essential to study the problems of socioeconomic and raise
public environmental awareness as well as scientific under-
standing (Choudhary et al. 2018).

Change and unchanged areas around the Yellow
River

According to the importance of Yellow River, drilling and
drying were calculated as shown in Table 7. Drilling may be
reflected in the reclamation and cultivation of some surround-
ing areas. Thirty-one percent of the study area may be also
subjected to some drying. Drying processes are related to
some human activities as industrial or other anthropogenic
activities. As the Yellow River is almost the sole source of
water resources for this region, the great impact of cropland
expansion and urbanization has been recognized as one major
cause that results in serious shortage of water resource in the
lower reach of the Yellow River (Yang et al. 2004). Technical
support for precision should be provided for employing pre-
cision agriculture and formulating poverty alleviation policies
(Hong and Abd El-Hamid 2020).

Statistical modeling of Yellow River changes

The geostatistical techniques are the best spatial interpolation
method to produce environmental change and also for the
prediction standard error calculation. According to climatic
change, some areas have been exposed to drying around the
Yellow river as shown in Fig. 7. Results indicate that the
model calculate (R2) was in the sequence 0.9334 > 0.8844 >
0.6375 for vegetation, bare, and water, respectively. Where
(Y) is the prediction, (X) is the year. The highest R2, the most
accurate method to predict the status of environmental chang-
es in the study area, is shown in Fig. 6. Depending on random

Table 5 Change of land
use dynamic from 1995
to 2019

LULC 1995 2019

Bare land 1.483344 1.550117

Grassland 194.6864 177.0672

Industrial 0.59078 13.56784

Irrigated land 78.55042 89.26337

Swamp land 14.93238 13.07068

Tidal flat 5.591019 8.373895

Transportation 3.494643 3.134096

Urban land 2.640811 3.085257

Village land 6.186889 8.48408

Water bodies 8.065809 7.134238

Water channel 1.053445 1.483725

L 317.27 326.21

Δ Lb-a 1995–2019

8.93

R 0.0281 0.0274
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points in LULC, three equations were selected with high sig-
nificant representing the change in water as flood, arid as
drought, and vegetation. Red line represents the status of
drought, from the model obvious increase in drought from 1
year to another. Through the high line under the known

periods of drought, the lower the curve down is a period of
scarcity of water in this year and between them and the high
line above which decreases and the desert free space becomes
a green reclaimed area year after year decline the curve of the
desert and the agricultural land curve rises blue water, floods

Fig. 5 Factors affecting on the ecosystem sensitivity
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Fig. 7 Spatial mapping of change and unchanged during the period of the study area

Fig. 6 Ecosystem Vulnerability Index (ESVI) percentage (%) of ecosystem vulnerability index in 1995 and 2019

Table 6 Area (km2) with
percentage of ecosystem
vulnerability

Class Area (km2) Percentage (%) Annual rate (%)

1995 2019 1995 2019

Low vulnerability 411.65 166.787319 47.04034 19.05888 − 1.16588

Reasonable vulnerability 279.561 260.352304 31.94618 29.7506 − 0.09146

Moderate vulnerability 119.971 266.51116 13.7094 30.45438 0.697731

High vulnerability 40.128 127.813851 4.585533 14.60536 0.417504

Extreme vulnerability 23.79 53.651422 2.718546 6.130776 0.142181

Total annual rate of ecosystem vulnerability from 1995 to 2019 − 4.16667
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and floods if the decline remains in drought because the desert
land turns to agriculture.

Conclusions

Assessment of ecosystem vulnerability considers a vital factor
for qualifying and achieving ecosystem stability. This study
examined the effect of LULC and climatic change on the
ecosystem in North Ningxia using ecosystem sensitivity index
(ESV) for the period 1995 to 2019. It is clearly that the study
area is subjected to major changes in LUCC from 1995 to
2019. These changes may be related to natural and anthropo-
genic activities. Climatic change is the main factor that con-
trolling the change in ecosystem of the study area. Grassland
occupies the largest area in 1995 and 2019, but it represents 65
and 59% of the study area in 1995 and 2019, respectively.
About 24.23 km2 and 24.86 km2 was transformed from grass-
land to industrial lands and irrigated lands, respectively. The
results indicated a large presence of area with moderate vul-
nerability 45% and 60% for 1995 and 2019, respectively. The
annual rate of ESVI decreased in low and reasonable but it was
increased in moderate, high, and extreme showing − 4.166%
as a total percentage of annual vulnerability. High and extreme
vulnerability show positive rate from 1995 to 2019 as a result
of anthropogenic activities and urbanization. Therefore, the
current study showed a model of ecosystem vulnerability that
can be used as an important indicator for engineers, govern-
mental institutions, and researchers. It is recommended to ap-
ply this model in the zone with the similar properties of
climate.
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