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Abstract
Efficient detection and analysis of natural sinkholes is essential for human sustainability in karst area. In this work, two
methodologies were applied to detect and quantify natural sinkholes in southwest China, using of DEMs derived from
ASTER and SRTM remote sensing images and topographic maps. The methodologies were a semi-automatic approach and a
field-based approach. The first identifies the sinkholes based on DEM. The latter integrates the field survey, visual interpretation
of high-resolution aerial photographs and topographic maps. The comparison between the semi-automatic approach and field-
based approach generated the threshold values of the sinkhole shape, area, and TPI (topographic position index), which were used
to distinguish true sinkholes and improve the identification accuracy. The result indicated that the semi-automatic approach
produced the best accuracy by using the thresholds area > 60 m2, ellipticity > 0.2, and TPI ≤ 0 with the DEM from the topo-
graphic maps. With these realistic thresholds, the semi-automatic model shows well performance that model accuracy ranges
from 0.78 to 0.95 for DEM resolutions from 3 to 75 m. The morphometric analysis was then obtained by using parameters
derived from the semi-automatic approach and field-based approach. The sinkhole morphometric parameters are area, perimeter,
diameter, shape, orientation, and volume. The results demonstrate (1) morphometric characteristics of sinkholes derived from the
semi-automatic approach are coincident with those from the field-based approach. (2) Sinkholes in the region are relatively old
and skewed to irregular or elliptical shape. (3) Sinkhole diameter and spatial alignments are highly controlled by faults. (4)
Sinkholes argue about solution-only origin in the region.
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Introduction

Sinkholes, which are also termed as dolines by European geo-
morphologists (Sauro 2003), are the most common depres-

sions in karst terrain. Sinkholes are identified as direct conduits
to underground aquifers, and are regarded as the diagnostic
surface feature of karst terrains (Ford and Williams 2013).
Sinkholes are extensively distributed in karst areas worldwide
and affect engineering structures, agriculture, natural resources
and environment, and human sustainability (Gutiérrez et al.
2014; Witze 2014). Sinkhole collapses are one of the most
serious geological hazards in the karst environment.

Many field-based studies, such as formation mechanisms
(Tharp 1999; Salvati and Sasowsky 2002), terminology and
classification (White 1988; Gunn 2004; Waltham et al. 2007;
Gutiérrez et al. 2008), interrelations with the anthropogenic
environment (Delle Rose et al. 2004; Gutiérrez et al. 2014),
and hazard assessment (Van Schoor 2002; Galve et al. 2009;
Taheri et al. 2015) were carried out to investigated sinkholes.
The morphometric analysis of sinkholes is one of the topics
addressed in these scientific literatures (Hyatt and Jacobs
1996; Bruno et al. 2008; Basso et al. 2013). The importance
of morphometric analyses in karst had been well expounded
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by La Valle (1968), Williams (1972) and Drake and Ford
(1972) since the last century. Recently, there are some studies
of sinkholes and their hazard assessment (Youssef et al. 2012;
Elmahdy and Mostafa 2013). These studies showed that high-
resolution satellite images or aerial photographs combined
with geographic information systems (GIS) facilitated re-
searches in large-scale studies. However, it is still a challenge
to delineate sinkholes in finer scales accurately. In the past, it
was dominant that sinkhole delineation were based on visual
interpretation of remote sensing images and field work with
the disadvantages of subjective, time-consuming, minimally
reproducible, and unsuitable for studying large areas (Doctor
and Young 2013). Compared to these manual work (Gutiérrez
et al. 2014), the use of topographic maps, DEMs, LIDAR,
InSAR, and aerial/satellite images offer advantages in various
situations, such as in inaccessible areas, large coverage, and
places covered with water or vegetation. A study in this regard
has identified sinkhole formation and risk using radar data by
Chang and Hanssen (2014). However, few case studies of
sinkhole identification and morphometry with the application
of multi-source DEMs have been done.

Doctor and Young (2013) has expounded that a question-
able result was led by the manual interpretation methodology
based on digital data (including LiDARDEMs) because of the
complicated karst features. Therefore, this paper identifies
sinkholes by a semi-automatic model, which based on
DEMs form the different data sources. The semi-automatic
model is applied by a karst landscape in southwest China at
the center of the Southeast Asian karst region. Since unreal
sinkholes may be identified from a DEM due to artifacts,
especially un-auto-correlated errors from different data
sources, the objectives of this study are (1) to investigate the
use of various DEMs derived from remote sensing data
(ASTER and SRTM) and topographic maps to appropriately
detect and quantify the natural sinkholes; (2) to conduct mor-
phometric analysis of sinkholes using the semi-automatic ap-
proach with the DEM of best performance and compare the
result with that from the traditional field work and visual in-
terpretation of aerial photos.

Study area and data

Study area

This study area is based on one of the most famous karst caves
in Zhijin County of Guizhou Province, China. The area is
171.47 km2 and over 60% carbonate geology with limestones
and dolostones of the Triassic, Permian, Carboniferous, and
Cambrian. The non-karst area is composed of Permian basalt,
shale silicalite, and murdstone. The study area has a well-
developed faulted structure with a NE-SW direction and an
elevation of 917–1693 m. It has a subtropical humid monsoon

climate that has 1172 h of mean annul sunshine time and
14.1 °C of mean annul temperature and 1436 mm of mean
annual precipitation.

Data

The semi-automatic sinkhole identification is supported by
several datasets. The first dataset includes 2.5-m resolution
aerial photos captured during the winter of 2005, 1:200,000
hydrogeological maps, and 1:10,000 topographic maps. The
aerial photos generated a 1:10,000 land use map. The topo-
graphic maps produced a 1-m DEM, which was resampled to
DEMs of 3, 5, 10, 25, 30, 50, 60, 75, and 90 m grid sizes. The
second dataset includes a 30-m spatial resolution ASTER-
DEM (http: http://gdem.ersdac.jspacesystems.or.jp/) and 30-
and 90-m spatial resolution SRTM-DEMs (http://srtm.csi.
cgiar.org). Three-, 60-, and 90-m ASTER-DEMs were
resampled from the original 30-m ASTER-DEM. Three and
60-m SRTM-DEMs were resampled from the original 30-m
SRTM-DEM. The third dataset was generated from extensive
fieldwork in July 2010. The field word data were used to re-
plenish the unidentified features, sinkholes recognized on the
aerial photographs and to verify the land use classifications.

Methodology

For hydrological terrain analysis, a sink-free DEM could be
obtained from the process and recondition of a raw elevation
data (Anderson 1988; Jenson and Domingue 1988; Grimaldi
et al. 2007). A classic hydrological correction uses the sur-
rounding pixels elevation to fill up closed depressions, which
is difficult to keep the true sinkholes during the procedure.
Thus, we propose a semi-automatic approach based on algo-
rithms of Jenson and Domingue (1988) andMaidment (2002).
This approach is preserving true sinkholes, while removing
artificial ones with fieldwork and morphometric analysis
using GIS. In order to discuss the suitability of DEMs, we
compared the ASTERGDEM, SRTM-DEM, and DEMs from
the topographic maps (hereafter, referred to as topographic
DEMs) in this paper. The approach could be concluded as
(1) sinkhole identification from the DEMs; (2) removing wa-
ter area and obvious false sinkhole; (3) exclusion of false
sinkholes by general threshold values of sinkhole area, ellip-
ticity (E), and the topographic position index (TPI); (4) gen-
eration of true sinkhole map by using aerial imagery and field
work; (5) adaptation of the best DEM with the highest
accuracy.

The procedure of step 3 is described here. The true sink-
hole map shows that the sinkhole area ranges from 0.1 to
60 m2. Thus, the value of 60 m2 is set as the general area
threshold. The sharp eccentricity of a sinkhole (E) is cal-
culated as follows:
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where a and b are the one half of the major and minor axis
lengths of a sinkhole, respectively. The E value ranges
from 0 (perfect circle) to 1. Field observation in the
Zhijin karst area indicates that the sinkholes there tend to
be elliptical and elongated, and that E value of 0.2 worked
as a good threshold for determining true sinkholes.

TPI introduced by Weiss (2001) depicts the difference be-
tween elevation at the central point (ZC) and the average ele-
vation at the surrounding points within a certain radius (r).

TPI ¼ zc−
1

nr
∑i∈rzi ð2Þ

where nr is the number of the raster cells of the predetermined
area and i stands for the ith cell. Due to its ability of dividing
morphological classes, TPI < 0 representing negative topo-
graphic position is chosen to identify true sinkholes.

Furthermore, sinkholes detected within 90 m from a
major river centerline are classified as artificial sinkholes.
Sinkholes in karst landscape were also identified based on
their underlying geology. The sinkholes recognized outside
the limestone areas were assigned as artificial and removed
from the dataset.

Based on the result of the field-based and automatic ap-
proaches, a large number of sinkholes were found in the study
area. The accuracy of the DEM was assessed by comparing
the sinkholes extracted from the remote sensing images and
field work with those automatically identified from the DEMs
using the spatial join function of ArcMap. For a quantitative
comparison, the numbers of three classes of sinkholes were
counted: (1) the number of linked records of the reference map
(identified true sinkholes, true positive—TP); (2) the number
of non-linked records of the reference map (non-identified
true sinkholes, false negative—FN); (3) the number of non-
linked records of auto-classified map (artificial sinkholes,
false positive—FP). Note that another commonly used class,
true negative, was found to be almost null in this case.
Accordingly, the accuracy statistic was calculated as follows:

Accuracy ¼ TP

TP þ FNþ FP
*100% ð3Þ

Results

The true sinkhole map digitalized by using aerial imagery and
field inventory shows that there were 531 sinkholes in the
study area (Fig. 1). The comparison between the investigated
sinkholes and those identified through the semi-automatic
method enables evaluation of the different data sources for

delineating karst sinkholes and sinkhole morphometric analy-
sis in similar regions. The resultant difference between the two
approaches reveals the uncertainties of the semi-automatic
method.

Sinkhole identification from different DEM data
by using the semi-automatic approach

As noted, the thresholds for the semi-automatic model are area
= 60m2, E = 0.2, and TPI = 0. In order to assess the model, the
automatically delineated sinkholes were compared with those
identified by the field-based model with the given thresholds.
Figure 2 shows the evaluated accuracy of the model, and
Table 1 shows the detailed performance of the model with
the 3-, 30-, 60-, 90-m DEMs from the different data sources.
The performance of the semi-automatic approach differs from
each other with different data sources. The model accuracy
with the SRTM-DEM and GDEM increases with the grid size
(Table 1, Fig. 2). The model accuracy with the SRTM-DEM
and GDEM ranges from 7 to 55% and from 4 to 30%, respec-
tively. As we can see from Fig. 2, the model performance with
the SRTM-DEM is better than that of the GDEM. The perfor-
mance of the semi-automatic approach with the topographic
DEMs can be divided into two sections: grid sizes of 3–10 m
and secondly 10–90m. At the first section, the accuracy of the
model with the thresholds decreases from 95 to 80%. At the
second section, the model accuracy remains within a range of
75–80% with grid size of 10–75 m and significantly increased
to 99% at the grid size of 90 m. However, since the true
positive value is low (Table 1), the result of 90-m grid size
was not considered as a proper grid size for further morpho-
metric analysis.

In general, if more sinkholes are delineated by the semi-
automatic approach, the chance of identifying true sinkholes
becomes higher (high TP value). However, the chance of de-
tecting artificial sinkholes also increases (high FN value). In
other words, there is a positive correlation between TP and FP
values (Table 1). For example, for the SRTM-DEM and
GDEM, the TP value decreases corresponding to the decrease
in the FP value with the coarsening of the grid size. Especially
for the GDEM, the number of artificial sinkholes (FN) re-
mains large. At the grid size of 3 m, the number of identified
true sinkholes is smaller than that from any other resolutions.
In this paper, the 90-m SRTM data was considered as a prag-
matic implementation of large sinkhole identification with the
proposed thresholds due to their characteristic of fewer arti-
facts and an acceptable amount of identified true sinkholes.
However, the ASTER GDEM is susceptible to noise, leading
to a significant number of visual artifacts with small areas that
do not correspond to the field inventory. This anomaly of the
ASTER GDEM makes it unsuitable for the detection of sink-
holes in the study area.
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Spatial distribution of sinkholes

Sinkhole density is the number of sinkholes per square kilo-
meter in karst area and describes the spatial distribution of

sinkholes. Related to that the area of karst in the study area
is 104.87 km2, the mean densities of field-based and semi-
automatic approach are 5.06 and 4.03 sinkholes/km2, re-
spectively (Table 2). Compared with the density in plateau
karst region in Australia and temperate karst in Austria,
these values are low. The sinkhole density is 122 km−2 in
Hochschwab Pleteau, Australia (Plan and Decker 2006)
and ranges from 91 to 146 in Styria basin based on the
calculation of multiply models (Bauer 2015). The density
values of this study area are comparable with those of
Florida karst, which is known to be very flat, with broad,
shallow sinkholes. In Florida, the sinkhole density values
range from 2.6 to 15.8 in the Suwannee River basin
(Denizman 2003) and obtain a highest value of 7.94 in
the investigated regions of Troester et al. (1984).

A Kernel function was applied to calculate the density of
the sinkhole (deepest point) in a predefined neighborhood.
We set the neighborhood radius as 400 m, corresponding to
the area classes. The resultant sinkhole density of semi-
automatic approach has lower value range (max. 21 sink-
holes/km2) than that of field-based approach (max. 50 sink-
holes/km2). Figure 6 shows the sinkhole density of a part of
the northern study area. The situation that dispersed spatial
distribution occurs from the semi-automatic approach is
also reflected by the comparison between Fig. 3a, b.
Many sinkhole clusters with close distance shown in
Fig. 3a had not been identified by semi-automatic approach
shown in Fig. 3b.

Fig. 1 Maps of the study site in
southwest China, geology, and
hillshaded DEM showing the
terrain. The sinkholes are
identified by aerial photos and the
field inventory. The area in a
white box is shown in Fig. 3,
Fig. 8, and Fig. 10

Fig. 2 Accuracy of sinkhole identification for the semi-automatic ap-
proach with/without the thresholds of area = 60 m2, ellipticity = 0.2 and
TPI = 0
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Morphometry and statistics using different
approaches

We analyzed the morphometric characteristics in the study
area and compared the results of the manually delineated sink-
holes by field-based approach and those identified by the
semi-automatic approach. Because the 3-m topographic
DEM-derived sinkholes from the semi-automatic approach
were found to be accurate, they were used in further analysis.
The statistics associated with the geometric characteristics of

the sinkholes delineated by the different approaches are shown
in Table 2, Fig. 4, Fig. 5, and Fig. 6.

The area of the sinkholes is in a large span with big standard
deviation (Table 2). The area of the sinkholes of field-based
approach and semi-automatic approach skews to area <
17,000 m2 with 93.79 and 97.21%, respectively. There are sev-
eral small sinkholes and fewer large sinkholes, which is the
same as that of temperate karst areas (Brinkmann et al. 2008;
Bauer 2015). With the exclusion of the unusual large sinkholes,
a log transformation was adopted to normalize the area data

Table 1 Numbers of the (1) true
positive (TP), (2) false positive
(FP), and (3) false negative (FN)
identification of DEMs generated
from different resources by the
running of semi-automatic model
with/without the thresholds of
area = 60 m2, ellipticity = 0.2, and
TPI = 0

DEM sources Spatial resolution (m) Thresholds No. of TP No. of FP No. of FN

Topographic 3 N 423 108 216

Y 415 0 27

30 N 391 140 93

Y 379 80 78

60 N 262 269 68

Y 262 0 68

90 N 187 344 51

Y 172 0 0

SRTM 3 N 92 439 996

Y 78 0 952

30 N 138 393 455

Y 131 0 423

60 N 140 393 144

Y 113 0 118

90 N 102 431 82

Y 102 0 82

GDEM 3 N 189 342 5179

Y 78 0 1830

30 N 169 262 1705

Y 157 0 1702

60 N 143 388 515

Y 143 0 515

90 N 125 406 280

Y 125 0 280

Table 2 Summary statistics of sinkholes delineated according to the different approaches

Field-based approach (n = 531) Semi-automatic approach (n = 423)

Min Max Mean SD Min Max Mean SD

Area (m2) 60 147,985 5423 11,761 6.25 52,100 3342.10 4562.25

Perimeter (m) 31.64 2329.89 283.58 295.99 10 3200 278.88 241.76

Diameter (m) 6.15 283.60 46.68 41.69 1.61 199.72 32.51 30.65

Ellipticity 0 0.99 0.78 0.15 0 0.99 0.78 0.15

Orientation (°) 0 179.89 82.67 48.97 1.84 178.86 79.66 50.13

Depth (m) 1 110 15.70 16.41 1 110 17.59 17.41

Volume (m3) 125 2,663,730 60,367.96 223,139.80 2.08 303,555.4 20,543.83 35,901.49

Sinkhole density (km2) 5.06 4.03
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(Figs. 4a and 5a). We divided the sinkholes based on geomet-
rical interval classification into five classes: very small (0–
400 m2), small (400–1900 m2), medium (1900–8300 m2), large
(8300–35,000 m2), and very large (> 35,000 m2) (Fig. 6a).

Perimeter is generally positively related to area, except for
crenulated sinkholes. The perimeter of the sinkholes is also
not normally distributed with extreme outliers (> 900 m). The
normalization is completed with a log transformation (Figs. 4b
and 5b). See Fig. 6b, the sinkholes were classified to four
perimeter categories based on two-step cluster analysis: very
small (< 46 m), small (46–71 m), medium (71–134 m), and
large (> 134 m).

The diameter of the sinkholes is defined as the line drawn
with the most two distant point of the perimeter. Figures 4c and
5c show the skewed distribution of diameter < 100 m and nor-
mal distribution without the outliers. The sinkholes were divid-
ed to three classes using a two-step clustering analysis: short (<
41m), middle (41–98m), and long (> 98 m) diameter (Fig. 6c).

Based on the field work, most of the sinkholes in the study
area tend to be elliptical. Away to discriminate between ellipse
and non-ellipse depression is the use of ellipticity. The ellip-
ticity value in this study area ranges from 0 to 0.99 with amean
value of 0.78 and a standard deviation of 0.15 (Table 2). See
Figs. 4d and 5d, the mathematical distribution of the ellipticity
calculated by different approaches is normally distributed and
skewed to the right that the population is more ellipse than
non-ellipse. As shown in Fig. 6d, two classes were separated
by means of a two-step cluster analysis: 0–0.9, 0.9–0.99.

The orientation is the direction of the diameter. The orienta-
tion in the study area ranges from 0 to 180° (Table 2). Based on
the analysis of the orientation of the two approaches, the orien-
tation population is normally distributed. The bin size of the
rose diagrams in Figs. 4e and 5e is 10°. The orientation slightly
skewed to the value < 80°. A two-step clustering process was
used to examine the population. The orientation value of 80°

splits the data into two cluster: one is sinkholes with orientation
of 0–80° and the other is sinkholes with orientation of 80–180°.
The peak values in the separate groups are both around 40° and
140° for both field-based and semi-automatic approach.

The volume of a sinkhole for the semi-automatic approach
is obtained by calculating the difference of the filled-DEM and
the original DEM. The volume of a sinkhole for the field-based
approach is calculated by assuming a cone shape with the
fieldwork sinkhole depth (Plan and Decker 2006). The resul-
tant volume holds a large range of values as with big standard
deviation as well as the mean value (Table 2). The population
is not normally distributed and there are extreme outliers. We
normalized the data when these outliers are removed and a log
transformation was performed (Figs. 4f and 5f). Figure 6f
shows the classes of sinkhole volume: very small (0–
200 m3), small (200–2000 m3), medium (2000–20,000 m3),
large (20000–200,000 m3), and very large (> 200,000 m3).

In addition, we calculated the depth of a sinkhole by semi-
automatic approach as the maximum difference of the filled-
DEM and the original DEM. As the depth statistics in Table 2,
the depth ranges from 1 to 110 m with mean and SD value of
~ 20 m for both approaches. Figure 7 depicts statistics related
with sinkhole depth. As shown in Fig. 7a) > 60% of the sink-
hole depth derived from both approaches are > 20 m, demon-
strating a predominantly deep morphology. In Fig. 7b), the
area-to-volume ratio shows a similar and dispersed pattern
for both approaches.

Discussion

The impact of DEM resolution

DEM resolution affects the ability to describe true sinkholes,
most of which are small in the study area. It is noticed that

Fig. 3 Spatially distributed sinkhole density of a portion of the study area (highlighted in Fig. 1) by different delineation processes based on Kernel
function: a field-based approach; b semi-automatic approach

412 Page 6 of 14 Arab J Geosci (2018) 11: 412



Fig. 4 The sinkhole a area, b perimeter, c diameter, d ellipticity, e orientation, and f volume distribution of sinkholes delineated by field-based approach:
(1) all sinkholes with skewed nature; (2) sinkholes exclude extreme outliers; (3) normalized and log transformed sinkholes
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Fig. 5 The a area, b perimeter, c diameter, d ellipticity, e orientation, and f volume distribution of sinkholes distribution of sinkholes delineated by semi-
automatic approach: (1) all sinkholes with skewed nature; (2) sinkholes exclude extreme outliers; (3) normalized and log transformed sinkholes
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artificial sinkholes could be generated even from highly accu-
rate elevation models (Li et al. 2011). In the present study, the

cell size of the original DEM from the topographic maps is
1 m, while the smallest sinkhole in the manual dataset is 60m2

Fig. 6 The numbers of sinkholes delineated by different approaches in classes.
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in area. It may be unnecessary to use such a detailed DEM,
which might affect computing speed as well as producing
many small artificial sinkholes due to local data noises.

The resampling process changed the original DEMs to
coarser ones and created a smoother surface by eliminating
fine details (Fig. 8). The mean error (ME) and root mean

square error (RMSE) between a resampled DEM and the orig-
inal one are shown in Fig. 9. As expected, ME between the
original topographic DEM and its coarsened DEMs generally
increases with the grid size. RMSE of the DEMs tends to vary
except for the relatively similar values at the grid size of 60 m,
which can also be seen from the similarly delineated

Fig. 7 The statistics related with sinkhole depth: a sinkhole depth frequency distribution, b distribution of sinkhole volume as a function of area

Fig. 8 Hillshaded maps of a portion of the study area (highlighted in Fig. 1) showing sinkhole connections and the effects of DEM resampling on the
depression identification. Sinkhole locations are those determined by the semi-automatic
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watershed boundaries and channels in Fig. 8. Also, ME and
RMSE of the topographic DEMs show two patterns (Fig. 9):
the values tend to be constant for the grid sizes < 30 m but
more fluctuated at the grid sizes ≥ 30 m. The absolute values
of ME and RMSE for the SRTM-DEM and GDEM tend to be
larger than those for the topographic DEMs at all the grid
sizes. However, the values for the SRTM-DEM change more
drastically than those for the GDEM.

Moreover, the resampling probably restricts the shape of
sinkholes. For instance, some extremely elongated small sink-
holes were likely to be excluded in the resampling process to a
coarser DEM. As mentioned in BResults,^ we can see from
Fig. 1 and Table 1 that the model with/without thresholds gets
lower accuracy at coarser grid sizes (10–90 m in resolution) in
the situation of DEMs derived from topographic maps, since
the grid cells are square in shape with clustering area
characteristics.

The application of morphometric thresholds

The application of the thresholds has improved the accuracy
of the model for all the DEMs. Figure 2 and Table 1 evaluated
accuracy and detailed performance of the model with DEMs
from the different data sources in two scenarios: with or with-
out thresholds. With the implementation of the thresholds, the
model accuracy with the SRTM-DEM and GDEM improves
(Fig. 2). As mentioned in BResults,^ the performance of the
semi-automatic approach with the topographic DEMs were
separated to two sections. At the 3–10-m resolution section,
in contrast to the decline with the thresholds, the accuracy of
the model without the threshold increases from 55 to 65%
with an increasing grid interval. This may reflect the morpho-
metric characteristics of the sinkholes in the study area that are

skewed to the relatively small area class and an elongated
shape; therefore, the number of the recognized true sinkholes
increases with the grid size when there is no threshold. At the
10–90-m resolution section, the accuracy of the non-threshold
model decreases apparently with the increasing of the grid
size. However, the threshold model accuracy varies within a
small range. This stable and good performance of the model
and elimination of artifacts indicate that the thresholds we set
are appropriate. In addition, at the grid size of 90 m, the model
with thresholds shows markedly high accuracy, because the
false positive and false negative sinkholes were removed by
the application of the thresholds (Table 1).

The difference between the fields-based approach
and semi-automatic approach

The morphometric characteristics generally follow those of
the field-based approach. However, compared with the result
of field work, the semi-automatic approach is more effective
in identifying the sinkholes with moderate morphometric
characteristics (not very small nor very large). For big sink-
holes, as shown in Fig. 6a, the majority of sinkholes identified
by the semi-automatic approach are in small and medium
class, and < 40% are in large and very large class. Similarly,
the sinkholes identified by the semi-automatic approach are
less than those by the field-based approach at small sinkholes.
The difference of sinkholes perimeter with relatively short
perimeter (< 134 m) in Fig. 6b and short diameter class in
Fig. 6c is much higher than that of other classes.

The good performance of the semi-automatic approach on
the moderate sinkholes can also be seen from the statistic
characteristics in Table 2. For example, the mean and SD
values of the semi-automatic sinkhole area are much smaller

Fig. 9 Effect of DEM
resampling. ME and RSME are
respectively the mean error and
root mean square error of
resampled DEMs (ASTER
GDEM, SRTM-DEM, and DEMs
from topographic maps) and the
original topographic DEM with a
resolution of 1 m
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than those from the field-based approach. This is re-examined
by the calculated sinkhole volume value. The mean value of
sinkhole volume by field-based approach is three times as big
as that of semi-automatic approach, while the statistical values
of sinkhole depth by the two approaches are not significantly
different with each other. In Fig. 6f, unlike the decreasing in
other classes, the number of sinkholes identified by the semi-
automatic approach in medium volumes class increased com-
pared to that from the field-based approach.

The reason for the higher efficiency of the semi-automatic
approach on the normal sinkholes identification might be re-
lated to the detailed delineation process. As shown in Fig. 10,
the boundaries of the sinkholes with relatively small area are
similarly depicted by the two approaches. For large sinkholes,
the boundary from the semi-automatic approach is smaller
than that from the field-based approach.

The coincidence between sinkholes and geologic
structures

As shown in Fig. 1, large sinkholes tend to occur in inter-
fluves, whereas smaller sinkholes are clustered closer to the
river networks. The elongation of the large sinkhole and the
alignment of small sinkholes generally extend along the NE
direction. It is a striking trend similar to that of the NE trending
faults due to tectonic deformation effect in the study area. This
performance assumed that the spatial alignment and the elon-
gation of sinkhole long axes are influenced by location of the
faults.

To confirm this linkage between buried faults and sinkhole
lines, we measured the distance between the sinkhole centroid
and the nearest fault (Fig. 11) and the orientation between the
sinkholes and faults (Fig. 12). It is noted that the number of

Fig. 10 Results of the two different approaches to delineate sinkhole
boundaries (area highlighted in Fig. 1)

Fig. 11 The distribution of sinkholes and faults: a sinkhole frequency with the distance to the nearest fault. Linear correlation assigned: R2 = 0.88; b
sinkhole area percentage with the distance to the nearest fault. Linear correlation assigned: R2 = 0.89

Fig. 12 Orientation frequency distribution of the sinkholes and the faults
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sinkholes (Fig. 10a) and the area of sinkholes (Fig. 10b) de-
crease with the distance to the neighborhood fault illustrates a
potential structural control in the study area. As noted from
Fig. 12, the bimodal distribution of sinkholes orientation men-
tioned in BResults^ are similar with that of the fault orienta-
tion. The bimodal distribution is such that there is a separation
at 80°. For the orientation curves of sinkhole diameter and
faults, the high sinkhole frequency and peaks of each bimodal
are at ranges of 40°–70° and 140°–170°.

In addition, it is interesting that more than 1/5 of the sink-
holes are in extremely high ellipticity class (Fig. 6d).
Intensively, in the ellipticity class of 0–0.9, there are only 34
sinkholes with the ellipticity value < 0.5. The high sinkhole
ellipticity value reflected that the study area is dominated by
the irregular or non-circular sinkholes. It infers a relatively old
karst landscape in the study area (Brinkmann et al. 2008). This
is not particularly surprising, since the landscape is higher
than 900 m elevation and was inundated in the Triassic,
Permian, and Carboniferous.

Conclusions

Our results suggest that the semi-automatic sinkhole identifi-
cation approach using various DEMs provides an effective
way to analyze sinkholes in broad and/or inaccessible areas.
It reduces manual errors and processing time. The comparison
of results from different datasets can be realized through the
application of fast data acquisition at low cost. Although the
ASTER GDEM is not suitable for research in the study area, it
is not a general criticism of the data and it might perform better
in other areas or for different objectives.

We resampled the DEMs and set thresholds for sinkhole
identification, which aims to (1) exclude the false sinkholes
due to data resources; (2) correspond sinkholes morphometric
characteristics with different landscapes; (3) improve the ac-
curacy of the model. DEM coarsening should be cautious
because of the fact that small true sinkhole could not been
captured in the DEMs with sizes > 30 m. The thresholds we
set are area = 60 m2, ellipticity = 0.2, and TPI = 0. With these
thresholds, using DEMs derived from the topographic maps
could produce the highest accuracy of the model. The accura-
cy of the semi-automatic model ranges from 0.78 to 0.95 for
the DEM resolutions of 3 to 90 m. To sum up, appropriate
combination of DEM resampling and thresholds allocation
could achieve high model performance.

This study also demonstrates the sinkhole morphometry
derived from different approaches. Some conclusions are
made: (1) The morphometric characteristics of sinkholes de-
rived from the semi-automatic approach are coincident with
those from a field-based approach. The sinkhole morphometry
(area, perimeter, diameter, orientation, ellipticity, and volume)
in the study area covers a large span. (2) Sinkholes are skewed

with irregular or elliptical shape. This indicates that the sink-
holes in the region are relatively old. (3) Sinkhole diameter
and sinkhole alignments are generally parallel with that of the
faults. Tensional faults provided the necessary conduits and
structural conditions for the formation of sinkholes. (4) Area-
to-volume ratio argues about solution-only origin for the sink-
holes in the region. Following the description of Bauer (2015),
the deepening of collapse sinkholes in this study area should
be directly coupled with area widening, because the correla-
tion between area and depth reflects the solutional process
origin of sinkholes. However, as shown in Fig. 12b), the dis-
persed pattern of area-to-volume ratio (Fig. 12b) demonstrates
that the morphogenesis and shape of the sinkholes in our study
area are not only attributed by the solutional origin. Processes
such as raveling and subsidence can also arise the generation
of a sinkhole. Moreover, the sinkhole morphometry based on
our field survey are similar with Caramanna et al. (2008) that
some sinkholes are cylindrical shape with steep-sided walls.

Finally, it is important to mention that the mapping and
examination of the morphometric features of sinkholes always
represents a very difficult task as fieldwork. The semi-
automatic approach is intended to provide a contribution to-
ward an easier and deeper understanding of the local karst
environment as a fundamental basis for the hazard associated
with sinkholes.

Funding information This project is supported by Scientific Research
Starting Foundation for High-level Talents of Huaqiao University
(16SKBS305).

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Anderson MG (1988) Modelling geomorphological systems. Modelling
geomorphological systems. Wiley, Chichester

Basso A, Bruno E, Parise M, Pepe M (2013) Morphometric analysis of
sinkholes in a karst coastal area of southern Apulia (Italy). Environ
Earth Sci 70(6):2545–2559

Bauer C (2015) Analysis of dolines using multiple methods applied to
airborne laser scanning data. Geomorphology 250:78–88

Brinkmann R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly
developing urban environment: Hillsborough County, Tampa Bay
area, Florida. Eng Geol 99(3):169–184

Bruno E, Calcaterra D, Parise M (2008) Development and morphometry
of sinkholes in coastal plains of Apulia, southern Italy. Preliminary
sinkhole susceptibility assessment. Eng Geol 99(3):198–209

Caramanna G, Ciotoli G, Nisio S (2008) A review of natural sinkhole
phenomena in Italian plain areas. Nat Hazards 45(2):145–172

Arab J Geosci (2018) 11: 412 Page 13 of 14 412



Chang L, Hanssen RF (2014) Detection of cavity migration and sinkhole
risk using radar interferometric time series. Remote Sens Environ
147:56–64

Delle Rose M, Federico A, Parise M (2004) Sinkhole genesis and evolu-
tion in Apulia, and their interrelations with the anthropogenic envi-
ronment. Nat Hazards Earth Syst Sci 4(5/6):747–755

Denizman C (2003) Morphometric and spatial distribution parameters of
karstic depressions, Lower Suwannee River Basin, Florida. J Cave
Karst Stud 65(1):29–35

Doctor DH, Young JA (2013) An evaluation of automated GIS tools for
delineating karst sinkholes and closed depressions from 1-meter
LiDAR-derived digital elevation data. 13th sinkhole conference

Drake JJ, Ford DC (1972) The analysis of growth patterns of two-
generation populations: the example of karst sinkholes.

Elmahdy SI, Mostafa MM (2013) Natural hazards susceptibility mapping
in Kuala Lumpur, Malaysia: an assessment using remote sensing
and geographic information system (GIS). Geomat Nat Haz Risk
4(1):71–91

Ford D, Williams PD (2013) Karst hydrogeology and geomorphology.
Wiley, London

Galve J, Gutiérrez F, Remondo J, Bonachea J, Lucha P, Cendrero A
(2009) Evaluating and comparingmethods of sinkhole susceptibility
mapping in the Ebro Valley evaporite karst (NE Spain).
Geomorphology 111(3):160–172

Grimaldi S, Nardi F, Di Benedetto F, Istanbulluoglu E, Bras RL (2007) A
physically-based method for removing pits in digital elevation
models. Adv Water Resour 30(10):2151–2158

Gunn J (2004) Encyclopedia of caves and karst science. Taylor& Francis,
New York

Gutiérrez F, Guerrero J, Lucha P (2008) A genetic classification of sink-
holes illustrated from evaporite paleokarst exposures in Spain.
Environ Geol 53(5):993–1006

Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural
and human-induced geohazards and impacts in karst. Earth Sci Rev
138:61–88

Hyatt JA, Jacobs PM (1996) Distribution and morphology of sinkholes
triggered by flooding following Tropical Storm Alberto at Albany,
Georgia, USA. Geomorphology 17(4):305–316

Jenson SK, Domingue JO (1988) Extracting topographic structure from
digital elevation data for geographic information system analysis.
Photogramm Eng Remote Sens 54(11):1593–1600

La Valle P (1968) Karst depression morphology in south central
Kentucky. Geogr Ann Ser A Phys Geogr:94–108

Li S, MacMillan R, Lobb DA, McConkey BG, Moulin A, Fraser WR
(2011) Lidar DEM error analyses and topographic depression iden-
tification in a hummocky landscape in the prairie region of Canada.
Geomorphology 129(3):263–275

Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI, Inc
Plan L, Decker K (2006) Quantitative karst morphology of the

Hochschwab plateau, Eastern Alps, Austria. Z Geomorphol Suppl
147:29

Salvati R, Sasowsky ID (2002) Development of collapse sinkholes in
areas of groundwater discharge. J Hydrol 264(1):1–11

Sauro U (2003) Dolines and sinkholes: aspects of evolution and problems
of classification. Acta Carsologica 32(2):41–52

Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole
susceptibility mapping using the analytical hierarchy process (AHP)
and magnitude-frequency relationships: a case study in Hamadan
province, Iran. Geomorphology 234:64–67

Tharp TM (1999) Mechanics of upward propagation of cover-collapse
sinkholes. Eng Geol 52(1):23–33

Troester J, White EL, White WB (1984) A comparison of sinkhole
depth frequency distributions in temperate and tropic karst re-
gions. Proceedings of the First Multidiciplinary Conference on
sinkholes, Orlando Florida.(ED. Beck, BF) Balkema,
Totterdam

Van Schoor M (2002) Detection of sinkholes using 2D electrical resistiv-
ity imaging. J Appl Geophys 50(4):393–399

Waltham T, Bell FG, Culshaw M (2007) Sinkholes and subsidence: karst
and cavernous rocks in engineering and construction. Springer
Science & Business Media, Chichester

Weiss A (2001) Topographic position and landforms analysis. Poster
presentation, ESRI User Conference, San Diego, CA

White WB (1988) Geomorphology and hydrology of karst terrains.
Oxford University Press, New York

Williams PW (1972) Morphometric analysis of polygonal karst in New
Guinea. Geol Soc Am Bull 83(3):761–796

Witze A (2014) Florida forecasts sinkhole burden. Nature 504:196–197
Youssef AM, El-Kaliouby HM, Zabramawi YA (2012) Integration of

remote sensing and electrical resistivity methods in sinkhole inves-
tigation in Saudi Arabia. J Appl Geophys 87:28–39

412 Page 14 of 14 Arab J Geosci (2018) 11: 412


	Morphometric analysis of sinkholes using a semi-automatic approach in Zhijin County, China
	Abstract
	Introduction
	Study area and data
	Study area
	Data

	Methodology
	Results
	Sinkhole identification from different DEM data by using the semi-automatic approach
	Spatial distribution of sinkholes
	Morphometry and statistics using different approaches

	Discussion
	The impact of DEM resolution
	The application of morphometric thresholds
	The difference between the fields-based approach and semi-automatic approach
	The coincidence between sinkholes and geologic structures

	Conclusions
	References


