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Abstract
Background Transcatheter aortic valve implantation
(TAVI) has become a commonly applied procedure
for high-risk aortic valve stenosis patients. However,
for some patients, this procedure does not result in
the expected benefits. Previous studies indicated that
it is difficult to predict the beneficial effects for spe-
cific patients. We aim to study the accuracy of various
traditional machine learning (ML) algorithms in the
prediction of TAVI outcomes.
Methods and results Clinical and laboratory data from
1,478 TAVI patients from a single centre were col-
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lected. The outcome measures were improvement of
dyspnoea and mortality. Three experiments were per-
formed using (1) screening data, (2) laboratory data,
and (3) the combination of both. Five well-established
ML techniques were implemented, and the models
were evaluated based on the area under the curve
(AUC). Random forest classifier achieved the highest
AUC (0.70) for predicting mortality. Logistic regression
had the highest AUC (0.56) in predicting improvement
of dyspnoea.
Conclusions In our single-centre TAVI population, the
tree-based models were slightly more accurate than
others in predicting mortality. However, ML models
performed poorly in predicting improvement of dys-
pnoea.

Keywords Machine learning · Transcatheter aortic
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What’s new?

� This is the first study on the prediction of TAVI
outcomes using machine learning (ML) tech-
niques.

� We have shown that ML techniques slightly out-
perform traditional methods in predicting mor-
tality in our patient population; traditional logis-
tic modelling has more prognostic value in pre-
dicting improvement of dyspnoea.

� N-terminal pro-b-type natriuretic peptide, body
mass index, chronic kidney disease epidemiol-
ogy collaboration, creatinine, and patient age
were the most important features in our ML
models.
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Introduction

Aortic valve stenosis (AS) is one of the most common
valvular heart diseases, impacting, in general, the el-
derly population. In the past decade, transcatheter
aortic valve implantation (TAVI) has developed into
a routine treatment for AS patients at elevated risk of
surgery. Although there is strict patient selection for
the TAVI procedure and various planning and treat-
ment support tools are available [1–3], a number of
patients have limited benefit from TAVI [4]. Improved
selection of these patients would allow increased ben-
efit from the procedure and improve decision-making.
Unfortunately, current risk models have only limited
accuracy in predicting TAVI outcomes [5].

Previous clinical prediction models rely on tradi-
tional statistical regression models [6]. Alternatively,
machine learning (ML), which is a computer science
subdiscipline, has shown superior predictive value in
various clinical areas, from detecting Alzheimer’s dis-
ease to identifying lung nodules [7, 8]. A more spe-
cific area of ML is supervised learning: with known
outcomes, ML algorithms can learn automatically to
optimise the prediction of this outcome. Moreover,
ML techniques have outperformed conventional re-
gression models when applied to a large amount of
data [9].

Multiple risk models that have been used that are
dedicated to the prediction of perioperative mortality
and are not TAVI-specific, but intended for surgical
aortic valve replacement such as the EuroSCORE, Eu-
roSCORE II or the STS (Society of Thoracic Surgery)
score [10, 11]. For TAVI, these are poor predictors of
mortality and focus on procedural or 30-day mortal-
ity, as did the TAVI-specific TVT registry score [12].
The prediction of 1-year mortality is even more chal-
lenging [13]. A more recent study also incorporated
predefined features from computed tomography (CT)
in combination with comorbidities to enhance the
model [14].

Fig. 1 Number of patients
without missing data per
feature set for mortality out-
come. For each feature set
added, a lower number of
samples is available due to
missing values in different
patients per set
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We aimed to study the accuracy of various ML algo-
rithms in predicting outcomes after a TAVI procedure.
The accuracy was evaluated in the prediction of mor-
tality and improvement of dyspnoea using a subset of
well-established ML techniques.

Methods

Patient population

The database consists of 1,478 patients who under-
went a TAVI between 2007 and 2018; their median
age is 82.9 years [Q1 78.0–Q3 86.4] and 55% of the
patients are female. The data contain patient charac-
teristics, medical history, symptoms, and test results
prior to and after TAVI. Symptoms are dyspnoea, fa-
tigue, collapse, and angina pectoris. Tests performed
prior to TAVI are echocardiography, computed tomog-
raphy angiography, coronary angiography, electrocar-
diography (ECG), and laboratory tests. Tests done
after TAVI are echocardiography, ECG and laboratory
tests.

The outcomes used are improvement of dyspnoea
and mortality. Dyspnoea is measured using the New
York Heart Association (NYHA) functional score (1–4).
Mortality is defined as a patient who died of a car-
diovascular disease within 1 year after the procedure.
Patients with missing data are excluded. The baseline
and 60-day follow-up NYHA score is known for 766
patients (605 improved, 161 non-improvements) and
mortality is known for 1,400 patients (1,263 survivors,
137 non-survivors). For every outcome parameter,
we performed three experiments: (1) using screen-
ing data; (2) using laboratory data; and (3) using both
screening and laboratory data. The number of pa-
tients for each experiment is different due to missing
values, as presented in Figs. 1 and 2. All variables, as
well as the descriptive statistics, can be found in the
Electronic Supplementary Material (Tables I and II).
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Fig. 2 Number of patients
without missing data per
feature set for symptom
outcome. For each feature
set added, a lower number
of samples is available due
to missing values in differ-
ent patients per set
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Clinical variables

The clinical variables used can be divided into three
sets: patient characteristics, screening data, and lab-
oratory data. The patient baseline characteristics
included age, sex, body mass index (BMI), and ac-
cess route chosen for the procedure. The screen-
ing data consist of the medical history, symptoms,
and echocardiography prior to TAVI. The features
used from this data are the existence of peripheral
artery disease, chronic obstructive pulmonary disease
(COPD), atrial fibrillation, diabetes mellitus (DM) in
the medical history, left ventricular function, and aor-
tic valve area assessed with echocardiography. The
features used from the laboratory data are the pre-
procedural values of N-terminal pro-b-type natri-
uretic peptide (NT-proBNP), haemoglobin, albumin,
chronic kidney disease epidemiology collaboration
(CKD-EPI), and creatinine.

Based upon expert opinions we applied clipping
to the NT-proBNP and creatinine variables, for val-
ues greater than 1,000ng/l and 250mmol/l, respec-
tively. The nominal and categorical data were one-
hot encoded; continuous features were normalised by
removing the mean and scaling to unit variance, as
requisite for many ML techniques [15]. Moreover, the
COPD and DM were dichotomised to take into ac-
count the presence of the disease instead of the de-
gree.

Classification techniques

In this study, we selected a number of well-established
ML techniques, which are: support vector machine
(SVM) [16], random forest classifier (RFC) [17], multi-
layer perceptron (MLP) [18], and gradient tree boost-
ing (GTB) [19]. In addition, traditional logistic regres-
sion (LR) was also applied for comparison, since this
technique is often used in clinical studies. All the im-
plementations used in this project were provided by
scikit-learn [15], except for GTB. We chose the XG-

Boost [19] library because of its GPU implementation,
which speeds up training and optimisation.

To evaluate the models fairly, the database was split
into two sets: a training and a testing dataset. The
training data were used to find the optimal parameters
for the classification task. The testing set was used to
evaluate the trained model in unseen data, to ensure
generalisation of the model and prevent the memori-
sation of the training set (overfitting). In this study, the
models were evaluated with the Monte-Carlo cross-
validation for 100 iterations and stratified splits of 70%
for training and 30% for testing. With this large num-
ber of different training and testing sets, chances of
having over-optimistic results are minimised. More-
over, to optimise the parameters of each model, a ran-
domised grid search with stratified 5-fold cross-vali-
dation was performed using the training set. The hy-
perparameters and ranges used for optimisation, in-
cluding the weight penalisation applied to minimise
the class unbalance issue, are available in the Elec-
tronic Supplementary Material (Tables III and IV).

Results of ML techniques are difficult to interpret.
To elucidate which features may be important in the
ML techniques, the average feature importance for
RFC and GTB was calculated based on the number
of times the feature was selected for splitting and
weighted by the average squared improvement of the
model over all trees [20].

Performance assessment

The median of the area under the curve (AUC) of the
receiver operating characteristic curve (ROC) from 100
iterations, using test sets, was selected to evaluate the
performance of each model. To assess whether the
difference in AUC between highest performing clas-
sifier and the other methods was statistically signif-
icant, the Wilcoxon signed-rank test was performed
for each experiment. p-values< 0.05 were considered
statistically significant.
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Table 1 Median area under the curve [first and third quartiles]
for all experiments. The rows are the machine learning tech-
nique and the columns are the set of features and the kind of

outcome prediction. The highest-performing models and the
models proved to be insignificantly different from those ac-
cording to the Wilcoxon test are highlighted in italics

Improvement of dyspnoea 1-year mortality

Model Screening Laboratory All Screening Laboratory All

GTB 0.52[0.49–0.56] 0.53[0.50–0.55] 0.51[0.47–0.54] 0.65[0.62–0.67] 0.69[0.65–0.72] 0.69[0.66–0.72]

SVM 0.52[0.49–0.55] 0.52[0.48–0.56] 0.53[0.48–0.56] 0.65[0.62–0.68] 0.68[0.64–0.71] 0.69[0.65–0.72]

MLP 0.53[0.50–0.56] 0.52[0.48–0.55] 0.52[0.48–0.56] 0.65[0.62–0.68] 0.66[0.62–0.70] 0.66[0.62–0.71]

RFC 0.52[0.49–0.55] 0.53[0.49–0.56] 0.51[0.46–0.56] 0.66[0.63–0.68] 0.70[0.67–0.73] 0.70[0.67–0.74]

LR 0.54[0.52–0.57] 0.56[0.52–0.58] 0.54[0.51–0.57] 0.66[0.63–0.69] 0.67[0.62–0.70] 0.65[0.61–0.69]

GTB gradient tree boosting, SVM support vector machine, MLP multi-layer perceptron, RFC random forest classifier, LR logistic regression

Fig. 3 Median receiver
operating characteristic
(ROC) curve from 100
Monte Carlo cross-validation
iterations for the prediction
of dyspnoea improvement
using laboratory features.
AUC area under the curve,
GTB gradient tree boost-
ing, LR logistic regression,
MLPmulti-layer perceptron,
RFC random forest classi-
fier, SVM support vector
machine
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Results

The predictive value for improvement of dyspnoea
was statistically significant but absent/low, with the
best median AUC result of 0.56, using only laboratory
features and LR. For mortality prediction, the model
based on RFC was most accurate with an AUC of 0.70
[Q1 0.67–Q3 0.74] and the results are considered to be
significantly different according to the Wilcoxon test.
All results are presented in Tab. 1.

The combination of the feature data sets did not re-
sult in an increased AUC in predicting improvement
of dyspnoea. In mortality prediction, the models us-
ing the data combination showed similar AUCs using
only laboratory features and all features. The median
receiver operating characteristic (ROC) curves for the
prediction of dyspnoea improvement (using the lab-
oratory features) and mortality prediction (using all
features) are displayed in Figs. 3 and 4, respectively.

The most relevant features for mortality prediction
in GTB were determined by the importance of the fea-
tures. In order of relevance, these were: NT-proBNP,
BMI, CKD-EPI, creatinine, and age.

Discussion

In our population of 1,478 patients who underwent
a TAVI procedure, the selected subset of ML tech-
niques had little added prognostic value in predicting
mortality and improvement of dyspnoea compared to
commonly applied LR techniques. In the prediction of
mortality, ML techniques achieved similar scores us-
ing all features and only the laboratory features. The
increase in prognostic value and the improvement of
dyspnoea prediction was rather low, even with the
combination of clinical and laboratory data.

Some recent studies that applied ML have often
shown positive results for prognosis prediction. In
the study of Memarian et al. [21], ML methods were
applied to multimodal data (clinical data, electroen-
cephalography, magnetic resonance imaging) to pre-
dict the outcome of surgery in patients with mesial
temporal lobe epilepsy, achieving a prediction accu-
racy of 95% using SVM-derived classifiers. Frizzell
et al. [22] compared ML methods to LR in predicting
30-day readmission in patients discharged following
hospitalisation for heart failure. Similar to our find-
ings these results did not show an improvement in
prediction accuracy. The prediction of six cardiovas-
cular outcomes (including heart failure and all-cause
death) was assessed by Ambale-Venkatesh et al. [23],
whereby random survival forests and other ML tech-
niques were compared to the standard cardiovascular
scores. They concluded that ML improved the ac-
curacy of cardiovascular event prediction in initially
asymptomatic patients.

Our results confirm that predicting outcomes of
TAVI procedures is challenging. Many factors may
impact the patient’s outcome, many of which are not

considered in the modelling. The inclusion of more
and different kinds of features, such as different ex-
aminations, CT scans, and ECG, is currently a subject
of investigation. By including different sets of features
and more complex models, the predictive value may
increase.

There was no implicit order in the data variables
that we tried to exploit. Also, no variables were trans-
formed into a dense representation. We included all
variables that were considered relevant by clinical ex-
perts. We are aware that one-hot encoding gener-
ates data sparsity. Even though one-hot encoding can
downgrade the performance of some ML methods,
it is an important step for distance-based methods
such as the SVM. In our study, only a small number
of categorical variables (with few classes) were one-
hot encoded to prevent hampering the performance
of methods due to data sparsity.

The methods used in this study are generalisable
to other clinical challenges in which prediction of out-
comes is warranted. It is expected that the application
of ML techniques in combination with clinical knowl-
edge will become increasingly important in coming
years to improve prognostics. Models with higher ac-
curacy may improve outcome prediction after TAVI,
allowing a more individual approach in clinical care.

This study suffered from a number of limitations.
The dataset used in this study may be one of the
largest Dutch single-centre TAVI datasets available.
However, with unbalanced measures (such as a rel-
atively small population that did not survive the
1st year), the effect of the data is reduced. Moreover,
many patients were excluded because of missing data,
which can be mitigated by using imputation tech-
niques. In this study, we chose symptom reduction
using the NYHA classification and 1-year mortality
as outcome measures. Other outcome measures,
however, might be relevant for the TAVI population.

Conclusion

In our population of patients treated with TAVI, ML
techniques were able to predict mortality using the
current set of features. In predicting a reduction of
dyspnoea, the traditional LR technique outperformed
the others. Adding more features or increasing the
dataset size may result in a situation in which ML
techniques have more added value.
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