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branch block) on the surface ECG [2, 3]. Yet, despite better 
clinical outcome and improved cardiac function after CRT 
in the majority of eligible heart failure patients, approxi-
mately 30 % of implanted patients do not seem to benefit 
clinically from this therapy (often termed non-responders) 
[4, 5].

Do genetic factors play a role?

Significant interest exists in the identification of factors that 
predict response to CRT, as these may contribute to tailor-
ing of the treatment of heart failure in the individual patient. 
Several demographic, clinical and procedural variables 
that could be possible predictors of CRT success have been 
intensively investigated. Factors implicated in response to 
CRT include the aetiology of heart failure, gender, QRS 
duration and morphology, and myocardial scar burden [2, 
6]. As far as we could determine, evidence for genetic mod-
ulation of CRT treatment success, or for the development 
of dyssynchrony in heart failure, is non-existent; the nature 
of the dyssynchrony and CRT response phenotype makes 
heritability studies (which typically investigate clustering 
of the phenotype among related individuals) to demonstrate 
this highly challenging to conduct. However, evidence for 
the presence of heritable factors in the predisposition to 
other, related, complex cardiovascular traits, such as heart 
failure [7] and sudden cardiac death [8, 9], indicates that 
a genetic component also likely plays a role in modulating 
susceptibility to these phenotypes. Further support for the 
possible role of genetic factors stems from clear evidence 
of heritability of clinically measurable phenotypes that are 
underpinned by biological processes that likely play a role 
in mediating dyssynchrony or CRT response (often referred 
to as intermediate phenotypes). These include electrocar-
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left ventricular (LV) function and dyssynchrony. However, 
despite better clinical outcome and improved cardiac func-
tion after CRT in the majority of eligible heart failure pa-
tients, a large proportion of implanted patients do not seem 
to benefit clinically from this therapy. In this review we 
consider whether genetic factors may play a role in mod-
ulating response to CRT and summarise the few genetic 
studies that have investigated the role of genetic variation 
in candidate genes.
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Introduction

Patients with heart failure and decreased function often 
develop dyssynchronous contraction of the ventricles 
because of electric activation delay. This further decreases 
systolic function and chamber efficiency and contributes 
to morbidity and mortality [1]. Artificial electrical stimula-
tion to restore synchronous ventricular activation, referred 
to as cardiac resynchronisation therapy (CRT), which was 
developed in the 1990s is now an established treatment for 
heart failure patients with a left ventricular ejection frac-
tion (LVEF) ≤ 35 % and a broad QRS complex (left bundle 
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diographic conduction parameters, including QRS-interval 
duration [10], and parameters of cardiac structure and func-
tion [11]. Besides potentially contributing to the identifica-
tion of patients who will benefit from CRT, the identification 
of the genes involved in determining response to CRT would 
also provide inroads for an increased understanding of the 
molecular pathways underlying reverse cardiac remodel-
ling after CRT, which may eventually provide leads for the 
development of more effective pharmacological therapy. 
Yet, studies aimed at identifying genetic factors have been 
scant and the role of genetic variation in modulation of CRT 
response so far remains largely unexplored (Fig 1).

What is the likely genetic architecture of response to 
CRT?

The genetic architecture of the CRT response phenotype 
is undoubtedly complex as demonstrated for other clinical 
cardiovascular traits such as heart failure [12], atrial fibril-
lation [13] and sudden cardiac death [14]. In addition to its 
complex genetic architecture it will undoubtedly be fur-
ther influenced by comorbidities (such as hypertension and 
diabetes), medication use and environmental factors. This 
multifactorial aetiology and the possible interaction among 

different contributing factors will complicate the identifi-
cation of the genetic factors involved, as genetic associa-
tion studies comparing responders to non-responders may 
be confounded by differences in such exposures. Multiple 
genetic variants, both common and rare (denoting the fre-
quency of the minor allele in the general population), are 
expected to contribute. Common variants, typically defined 
as those with a minor allele frequency > 1 %, are anticipated 
to contribute modestly to CRT response, whereas accord-
ing to the prevailing complex inheritance paradigm, rare 
variants will be associated with larger effects. In terms of 
class of genetic variation, contributing common and rare 
variants may entail single nucleotide variants (the most 
prevalent class of genetic variation among individuals) as 
well as structural variants (including insertion deletions and 
copy number variants) [15]. Modulatory genetic variation 
will ultimately affect CRT response by either affecting the 
function of a protein (in case of genetic variation leading to 
alterations in the amino acid sequence of a protein) or by 
affecting the level of expression of a protein through effects 
on gene expression (in the case of genetic variation affect-
ing regulatory regions of the genome).

KEY MESSAGE The role of genetic variation in modulation of CRT response remains largely unexplored. 
                           There are possible approaches to identify these geneticfactors 

Possible genetic approaches to study the role of genetic factors involved in the response to cardiac
resynchronisation in heart failure patients. CRT cardiac resynchronisation therapy, GWAS genome-wide
association study
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thermore, no data were presented concerning the replication 
of the associations in independent patient sets. The robust-
ness of the reported associations will therefore require vali-
dation in future studies. Notwithstanding, the small effect 
size associated with these variants precludes their applica-
bility in the clinical setting at this point in time.

MicroRNAs

Two recent studies investigated the role of microRNAs 
(miRNAs) in CRT response [27, 28]. MicroRNAs are a 
family of small non-coding RNAs that have an important 
role in the posttranscriptional regulation of gene expression. 
Since miRNAs are also found to circulate in a stable form 
in the blood, they have the potential to serve as biomarkers 
for disease and monitoring of therapy [29]. In one study, 
miRNAs previously shown to modulate heart failure were 
found to be differentially expressed in the plasma of CRT 
responders (defined as a reduction of LVESV > 10 % and 
an increase of LVEF ≥ 10 %) versus non-responders [27]. 
A more recent study provided initial evidence that base-
line miR-30d levels are associated with a favourable CRT 
response (defined as an increase of LVEF ≥ 10 %) [28]. Sub-
sequently, these investigators demonstrated a cardiac origin 
of this miRNA and in cellular studies provided evidence 
for a role in cardiac biology through molecular pathways 
mediating hypertrophy and protective against apoptosis. 
Despite these promising findings, further studies are needed 
to establish the role of circulating miRNAs as a biomarker 
for predicting the success of CRT in heart failure [30].

Pathways involved in dyssynchrony and response to 
CRT

Data on mechanisms underlying dyssynchrony and dif-
ferential response to CRT are currently scarce and there 
would be a clear benefit in this regard if genetic studies 
were to identify possible molecular players. Ion channel or 
gap junction dysfunction that promotes conduction delay 
is clearly a highly likely candidate for the development of 
dyssynchrony. Similarly, structural and contractile proteins 
are likely involved in the development of heart failure fol-
lowing dyssynchrony. It is plausible that these same path-
ways may determine response. Gene expression studies in 
serial biopsies obtained pre- and post-CRT in patients have 
identified changes in the expression of genes encoding com-
ponents of Ca2+ handling, β-adrenergic receptors, contrac-
tile proteins and myocardial natriuretic peptide [31–33]. 
In addition, a study conducted in dogs demonstrated that 
dyssynchrony causes alterations in the myocardial tran-
scriptome that were corrected by CRT [34]. Other experi-

Candidate gene studies

As far as we could determine, three studies have so far 
searched for genetic factors modulating CRT response. All 
three investigated the effect of common genetic variants 
in candidate genes. One study focused on 7 genetic vari-
ants at 5 genes from the renin-angiotensin-aldosterone sys-
tem (RAAS) [16], a pathway that plays a major role in the 
pathophysiology of heart failure through increased vasocon-
striction, sodium and water retention, myocardial fibrosis, 
and ventricular remodelling [17]. The variants selected in 
this study had previously been associated with heart fail-
ure and left ventricular hypertrophy, amongst other traits 
[18]. The study, conducted in 156 patients treated with CRT 
(80 responders, 76 non-responders, matched by age, sex, 
heart failure aetiology, NYHA functional class and LVEF), 
defined CRT response/reverse remodelling as a > 15 % 
decrease in left ventricular end-systolic volume (LVESV) 
at 9 months after CRT. The minor allele frequency of the 
rs5522 common genetic variant in NR3C2, encoding the 
mineralocorticoid receptor, was found to be higher in the 
group that did not display reverse remodelling according 
to the criteria used in the study. The same case-control set 
used in the above study was subsequently used to test an 
additional 5 candidate SNPs that had been previously asso-
ciated with a variety of cardiovascular disease phenotypes 
[19]. Of these, 3 genetic variants (rs3766031-ATPIB1, 
rs5443-GNB3, and rs7325635-TNFSF11) appeared to be 
associated with success of CRT. Following pre-clinical 
observations made in dog [20] and clinical studies [21], 
suggesting a role for β-adrenergic receptors in modulating 
response to CRT, Pezzali and co-workers [22] studied the 
role of 3 genetic variants at the genes encoding the β1 and 
β2 adrenergic receptors (ADRB1-Arg389Gly, ADRB2-Arg-
16Gly and ADRB2-Gln27Glu). They conducted their study 
in a consecutive cohort of 101 heart failure patients who 
underwent CRT or CRT-D (70 patients) implantation and 
who were assessed at baseline and after a follow-up of one 
year. They demonstrated that carriership of the Glu27 allele 
of the ADRB2-Gln27Glu polymorphism was associated 
with a greater increase in LVEF, and in an additional analy-
sis was associated with less cardiac death and appropriate 
ICD discharge. Interestingly, the Glu27 allele has also been 
shown to predict a positive reverse remodelling response to 
the β1/β2/α1-blocker carvedilol in heart failure patients [23–
25], and with decreased risk of sudden cardiac death [26]. 
It is important to stress that although the above studies are 
based on relevant hypotheses, the associations that emerged 
should be considered exploratory and highly speculative. 
Both CRT patient sets studied are small, which on the one 
hand means that they are underpowered to uncover a legiti-
mate association of common variants with small effect and, 
on the other hand, may lead to false-positive findings. Fur-
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mental studies conducted in animal models have uncovered 
a number of distinct biological processes that are reversed 
by CRT; these involve amongst others calcium handling, 
mitochondrial dysfunction, beta-adrenergic responsiveness, 
cell survival signalling and electrophysiological changes 
(reviewed in detail by Kirk and Kass, and Cho et al. [1, 35]). 
Electrophysiological changes are particularly interesting to 
understand in view of the fact that CRT not only enhances 
systolic function but also counteracts malignant arrhythmia 
[36]. Yet, further studies are needed to determine whether 
gene expression changes and changes in biological pro-
cesses observed after CRT in these studies are truly induced 
by the resynchronisation therapy itself or whether they are 
epiphenomena of improved left ventricular function. Not-
withstanding, one could hypothesise that inter-individual 
differences in the ability to evoke adequate molecular 
responses through such pathways, which may very well be 
genetically determined at least in part, will play a role in 
inter-individual variability in response to CRT.

Identification of genetic factors predicting response to 
CRT: challenges and future directions

While the identification of genetic factors that modulate 
response to CRT is a relevant quest, since it may contribute to 
the ability to distinguish responders from non-responders, their 
identification is highly challenging considering the complex-
ity of the phenotype and the likely complex underlying genetic 
architecture. In practical terms a number of obstacles, there-
fore, need to be overcome to enable such genetic studies. These 
relate primarily to the necessity of large biobanks of deeply and 
uniformly phenotyped patients. Once such biobanks become 
available, we can then dissect the possible role of genetic 
factors through the investigation of candidate pathways (as 
directed by mechanistic studies in model systems and knowl-
edge on intermediate phenotypes), or in an unbiased genome-
wide fashion using current genomic technologies (Fig. 1). 
Such approaches have been proven successful in studies which 
identified genetic factors associated with drug response across 
multiple disorders [37].
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