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Abstract
Urban travelers today are seeking increasingly more information to plan their opti-
mal trip, based on additional factors other than scheduled departure times. Still, 
some route planning applications provide a simple approach with a few parameter 
settings (e.g. to minimize travel time between two specific places at a certain time) 
and without any multimodal solutions. Our approach provides travelers with a set 
of non-dominated nearby stops that presents a number of traveler preferences in an 
easily comprehensible and quickly calculable manner. We display first and last-mile 
stops that fall on a Pareto front based on multiple criteria such as travel time, number 
of transfers, and frequency of service. Our algorithm combines stop and route-based 
information to quickly present the traveler with numerous nearby quality options for 
their itinerary decision making. We expand this algorithm to include multimodal 
itineraries with the incorporation of free-floating scooters to investigate the change 
in stop and itinerary characteristics. We then analyze the results on the star-shaped 
public transportation network of Göttingen, Germany, to show what advantages 
stops on the Pareto front have as well as demonstrate the increased effect on fre-
quency and service lines when incorporating a broadened multimodal approach.

Keywords Route planning · Non-dominated solutions · Stop and route 
optimization · Multimodal

1 Introduction

Modern public transport travelers expect a high quality of service and have varying 
priorities when creating their individual itineraries. Currently, several widespread 
urban route planners are focused on using time-dependent, route-based optimization 
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to minimize preferences including the traveler’s travel time. However, while this 
itinerary may be preferred at a given moment, this may change with the time of 
day or with traveler itinerary preferences. While applications like GoogleMaps, City 
Mapper, and others have made large strides in recent years of developing their navi-
gation tools to be traveler-friendly, there still needs to be a way to make information 
about relevant nearby stops for the first and last mile more transparent to the traveler 
considering a multitude of traveler preferences. Our stop-based optimization (SBO) 
framework aggregates detailed information from public transport route-based infor-
mation and stop characteristics to give the traveler a simplified overview of multiple 
criteria for their route planning.

Current public transportation literature primarily revolves around route-based 
preferences, such as walking time or total travel time that are calculated in accord-
ance with the traveler’s available routes (Mulley et al. 2018). However, there is also 
research into other important information revolving around a traveler’s nearby stops 
either at the origin or destination (Yang et al. 2020; Nasibov et al. 2016). Currently, 
only a few researchers propose to integrate both route-based criteria with first and 
last-mile stop information, like accessibility, number of lines and frequency of trans-
port services at that stop. By focusing on this unique combination of criteria, we can 
offer a comprehensive decision tool for the traveler for more informed travel planning.

Our SBO approach incorporates a mixture of quickly calculable route and 
precomputed stop-based information to provide a set of non-dominated nearby stops 
for the first and last mile of the traveler’s itinerary. For instance, besides travel time, 
price, and number of transfers, travelers care about stop-based information like fre-
quency, accessibility, and the number of public transport lines. Additionally, the 
overall walking distance can be of high importance for the traveler. When the route 
and stop-based information is taken into account, several non-dominated stops result 
due to the conflicting objectives of these preferences. For example, there may be 
a stop that is operated at a high frequency. This results in backup options for the 
traveler. On the other hand, the itinerary starting at this stop may be more expensive 
compared to the itinerary starting at another stop within walking distance from the 
origin. Presenting these diversified solutions in a multimodal setting to the traveler 
is important since it broadens a traveler’s decision making according to personal 
preferences and context, like personal mobility or time of day (Lyons et al. 2020).

In the following, we will analyze the potential of combining route-based and 
stop-based information to better inform the traveler about the characteristics of the 
first and last-mile decisions. Our experiments are based on the public transport bus 
network of Göttingen. In addition to the bus network with walking edges, we will 
consider unscheduled, innovative modes of transportation, such as electric scooters. 
The novelty of this approach differs from route-based planning to focus more on 
the choice of stops for the first and last mile of the itinerary by including stop-based 
information into the decision-making process. We incorporate multiple traveler pref-
erences and allow for various modes of transportation within our model to build 
upon recent work in travel planning.

Section 2 focuses on how our work contributes and builds upon current urban route 
planning literature. Section 3 highlights the problem structure, our stop-based meth-
odology, and the algorithm we use to identify the non-dominated stops. Section  4 
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outlines our experiments that analyze the quality of stops on the public transport 
network of Göttingen, Germany, and also incorporates scooters as a comparative 
example of how our approach can expand to multimodal networks. Section  5 dis-
cusses limitations of this study, offers further research avenues for expansion of this 
approach and its contributions on the long term of travel planning policies. Finally, 
Sect. 6 summarizes our approach and its impact on multimodal public transport.

2  Related work

Urban route planning research has markedly expanded in recent years as it becomes 
easier to incorporate into travelers’ decision making. In this section, we review how 
traveler preferences can help expand classic route-based optimization to help multi-
preference travelers navigate complex multimodal networks. Section 2.1 highlights 
various multi-criteria and multimodal optimization research that motivated the 
development of our algorithm for finding high-quality, non-dominated first and last-
mile stops. Section 2.2 explores current work on incorporating traveler preferences 
on itinerary decision making.

2.1  Multimodal routing

Traditional route-based optimization typically requires a fixed origin, destination, and 
start time. However, recent research has expanded this route-based optimization view 
(Willing et  al. 2017). Delling et  al. (2013a, b) use public transport route planning 
techniques to propose a bi-criteria itinerary planning algorithm. The authors use opti-
mization rounds of the multimodal network to produce a Pareto-optimal set while 
limiting the computational time. Dib et al. (2017) introduce a label-based multi-crite-
ria routing algorithm considering travel time, number of transfers and the total walk-
ing time as traveler preferences. Bozyigit et al. (2017) extend Dijkstra’s algorithm to 
enable taking walking distance as well as number of transfers as additional relevant 
traveler preferences into account. Therefore, they introduce a penalty rule set inte-
grated into Dijkstra’s algorithm. This research utilizes both stop-based information as 
well as aggregated route data to form a multi-criteria objective. We explore the Pareto 
front and how travel options change based on this stop and route-based approach.

Redmond et al. (2020) limit the computational time of optimizing on multimodal 
driving and flight networks by focusing on a set of nearby first and last-mile air-
ports for the traveler’s decision. This focus on selecting nearby airports showed that 
always myopically choosing the closest or largest nearby airport can result in less 
reliable itineraries. Ge et al. (2021) highlight the importance that multimodal itiner-
ary applications have in integrating all available mobility services and data sources 
into one framework to support the traveler in their decision-making process. Bucher 
et al. (2017) propose to precompute candidate stops for the first and the last mile in a 
preprocessing step of the actual routing. Based on the candidate solutions, the rout-
ing algorithm focuses primarily on these. Therefore, the computational effort can be 
significantly reduced by considering a select set of nearby first and last-mile stops.
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Nykl et al. (2015) integrate multiple traveler preferences using a metagraph that 
is able to incorporate multimodal itineraries. They also use a multi-criteria approach 
with time, distance, emissions, physical effort, and price as their parameters. Their 
approach is defined by a two-stage algorithm that capitalizes on using existing itin-
erary planning meta-data to set the weights on their graph. Horstmannshoff and 
Ehmke (2022) propose a sampling framework to approximate the set of non-dom-
inated itineraries. In particular, they focus on the efficient scalability with respect 
to the number of considered traveler preferences in a large multimodal network. In 
addition, they present insights into itinerary characteristics which can be embedded 
into decision tools for the traveler.

McKenzie (2019) examines scooter and bike-share usage in the United States 
capital of Washington, D.C. The author focuses on the spatial and temporal dis-
tributions of scooter-sharing itineraries in the area. Zou et  al. (2020) also look at 
how e-scooters compete against and complement public transport and bike share in 
Washington D.C., and show other reasons for choosing included public health pri-
orities and access in underserved areas. Esztergár-Kiss and Lizarraga (2021) utilize 
surveys across five European cities to discover that their popularity is driven by flex-
ibility and speed, despite safety and road-sharing concerns. Further surveys are done 
by Jie et al. (2021) to show factors associated with shared mobility usage including 
gender, employment status, and income. Smith (2020) demonstrates the time sav-
ing and accessibility benefits of incorporating scooters into multimodal itineraries 
in Chicago. Shokouhyar et al. (2021) examine the impact COVID-19 had on shared 
mobility, and the authors highlight the need to consider social and environmental 
factors when considering shared mobility implementation. Our research integrates 
shared mobility in multimodal networks with traveler preferences for an easily com-
prehensible and quickly computed tool for route planning.

2.2  Traveler preferences

Understanding what is important to a traveler while navigating a public transport 
network is key to developing route planning tools. Javadian Sabet et al. (2021) high-
light that the individual context of the traveler is of high importance to be able to 
take traveler preferences into account. Studies like Sharples (2017) focus qualita-
tively on what is needed to educate travelers in order to increase traveler competence 
to be able to make better use of available transport options. They present a model 
(context dimension tree) which allows the real-time integration of traveler require-
ments, the individual traveler preferences as well as the individual profile into the 
decision-making progress of the traveler. A considerable amount of literature has 
been published to identify traveler preferences for multimodal mobility by mainly 
analyzing traveler surveys. Grotenhuis et  al. (2007) outline how integrated multi-
modal information can affect a traveler’s choice. The authors highlight what types 
of information are necessary and the importance that travelers place on travel time 
and minimizing effort in route planning. Table 1 gives an overview of the prefer-
ences considered in the literature differentiated according to route and stop-based 
information.
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Travel time, price, and number of transfers are the most prevalent preferences for 
route planning. In addition, the consideration of the overall walking time during an 
itinerary and the overall waiting time are of high importance as well (Grotenhuis 
et al. 2007; Spickermann et al. 2014; Stopka 2014; Stopka et al. 2015; Gilibert and 
Ribas 2019; He and Csiszár, 2020). Please note that further route-based preferences, 
such as comfort, are not included in this overview as these are rarely mentioned and 
hard to quantify. We refer to Horstmannshoff (2022) for a detailed overview of rel-
evant traveler preferences in a multimodal setting.

Further works integrate stop-based characteristics into the planning of multi-
modal itineraries. Yan et al. (2019) show the significance that low-quality last-mile 
stops have in deterring travelers from using public transport options. Thus, there is 
a need to incorporate additional preferences about stop-based information into the 
search to increase the option quality of first and last-mile stops in route planning. 
Recent research has attempted to model these preferences in traveler decision mak-
ing. Mulley et al. (2018) demonstrate through stated choice experiments that travel-
ers are generally willing to walk further for a more frequent public transport ser-
vice as well as to achieve travel time savings. Yang et al. (2020) develop a Markov 
game to sequence travelers’ interactive public transport mode choices based on a set 
of features. The authors highlight that besides common preferences, such as travel 
time, price and number of transfers, the number of choices available is of relevance 
as well. Wu et  al. (2018) use a preference-learning algorithm to predict travelers’ 
decisions when evaluating a new public transportation plan. The goal of this paper 
is to integrate both route-based information and stop-based information into a com-
prehensive decision tool for travelers trying to navigate a multimodal urban public 
transportation network. Nasibov et  al. (2016) examine route planning from a per-
spective of stop-based preference degrees. The authors develop a fuzzy preference 
model that factors in the stop’s activity, the count of the public transport lines that 
run through that stop, the travel time, the number of transfers and the walking dis-
tance to the stop. Fatima and Moridpour (2019) emphasize that due to the aging 
population further challenges in the planning of multimodal mobility arise. In par-
ticular, mobility applications should provide information whether the itinerary can 
be completed in a handicapped accessible manner. Esztergár-Kiss (2019) compares 
multiple European route planning applications from a traveler perspective. A dif-
ferentiation is made between different user groups with individual requirements. In 
addition to the high relevance of integrating a variety of route-based preferences 
into the search, the inclusion of handicapped routes especially for elderly people is 
mentioned. Mandžuka (2021) discusses the challenge of multimodal routing, par-
ticularly between different countries. The author highlights that travelers have multi-
ple parameters such as travel time, price, number of transfers, walking distance and 
waiting time as examples for route-based preferences. Furthermore, accessibility 
information describing whether the access to the respective mode of transportation 
is, e.g., step-free and wheelchair-accessibility has to be provided. We abstain from 
further stop-based information such as safety information and the simplicity to find 
the right stop into the search in this overview. We envision to embed this informa-
tion in the future within the proposed framework.
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In this paper, we utilize both route and stop-based information to enhance the 
quality of the set of non-dominated relevant stops and respective itineraries, which 
can be presented to the traveler and form the choice set for the traveler. In our SBO 
approach, we use travel time, number of transfers and walking distance as route-
based information. As we do not have real price data for all integrated mobility 
services, we do not consider prices in our proof-of-concept study. For stop-based 
preferences, we integrate accessibility for disabled and handicapped travelers, the 
frequency as well as the number of lines. The set of considered preferences can be 
extended beyond this proof-of-concept study.

3  Framework for identifying relevant first and last‑mile stops

We propose a new framework to identify request-specific stops for the first and the 
last mile for travelers. As shown in Sect. 2.1, enormous progress has been made in 
multimodal routing in recent years. These approaches focus mainly on route-based 
information, often neglecting deterministic information about relevant nearby stops 
in their multimodal routing formula. We integrate both route and stop-based infor-
mation into the search while forming the choice set for the traveler.

As mentioned in Sect. 2, there is extensive research on the benefits of incorporat-
ing unscheduled modes into an itinerary that takes advantage of popular trends in 
bike-sharing and scooter-sharing. We address how this would look in our algorithm 
by showing how relevant stops for the first and last mile can change based on the 
availability of these modes. We model them based on simulated and schedule-based 
data and see in our experiments how this could affect the traveler’s decision crite-
ria and the set of non-dominated stops. In this context, we assume that the current 
location and availability of the unscheduled services are provided in real-time in an 
integrated mobility platform. This mobility platform also includes the data of the 
scheduled network. Therefore, we can model the environment as a static network at 
the time of a traveler request. Aggregating all mobility service data into one plat-
form enables traveler-oriented multimodal transportation planning.

3.1  Stop‑based methodology

Travelers expect a quick identification of relevant nearby stops for their individual 
itinerary from their specific origin O to their destination D. As shown in Sect. 2, 
most route planning algorithms merely consider route-based information to enable 
door-to-door mobility for the traveler. Our approach incorporates stop-based infor-
mation as additional parameters, and thereby enriches existing route-based infor-
mation with stop-based information. In the following section, we identify relevant 
stops for travelers based on their respective requests on an undirected network graph 
(Sect. 3.1.1), which has been supplemented by stop-based information (Sect. 3.1.2). 
This sets the framework for discussion of our algorithm for identifying and present-
ing these stops in Sect. 3.1.3.
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3.1.1  Network graph

We define a public transportation network of an undirected graph G = (V, A) where 
V represents all possible stops in the transportation network. The set of edges A rep-
resents legs between these stops. Each leg a ∈ A is defined by a deterministic travel 
time, either using the existing bus network or a deterministic walking or scooter 
time.

By running a standard Dijkstra’s algorithm (Dijkstra 1959) on this network opti-
mized by overall travel time, we are able to calculate the following route-based 
information quickly:

• Overall travel time: This parameter provides information on the travel time to get 
from O to D. The overall travel time includes the time from origin O to the first 
transfer stop, the cumulatively summed travel times of all modes used in public 
transport, and from the final transfer stop of the itinerary to destination D.

• Overall walking time: This parameter provides information on the required com-
bined walking time for the specific itinerary. Hereby, we assume a predefined 
walking speed. Walked distances, which occur during the transfer at the same 
stop, are not taken into account.

• Number of transfers: This parameter provides information on the minimum times 
the traveler has to transfer from one service to another.

3.1.2  Stop‑based information

We enrich the discussed route-based parameters with additional stop-based informa-
tion for each stop v ∈ V to have a more sophisticated multi-criteria decision-making 
approach identifying relevant nearby stops for the traveler. This stop-based informa-
tion can be easily precomputed using the timetable for the respective public trans-
portation network. As additional stop-based parameters, we consider the following:

• Frequency (headway): This parameter provides information on how often a bus 
is scheduled on average to access a specific stop. This information gives insight 
into how long a traveler has to wait in case of missing a bus or if a bus fails on 
short notice. A stop with a smaller frequency in average minutes between bus 
lines is usually better for a traveler than a stop with a larger, more infrequent 
average time between service units. Thus, for example, a higher frequency of 
20 min is worse in comparison to a lower frequency of 10 min.

• Number of bus lines: This parameter provides information on how many bus 
lines serve a stop. As more bus lines serve a stop, the more alternatives the trave-
ler has available. Thus, a higher number of bus lines is advantageous for the 
traveler in comparison to a lower number of bus lines serving a bus stop.

• Accessibility: This parameter is a binary variable indicating if a stop is handicap-
accessible for the traveler. This can be of importance for travelers and can be 
extended to include sheltered stops or well-lit areas for nighttime travel.
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For route-based information as well as for stop-based information an extension 
with further parameters is possible. For instance, additional route-based information 
can be the overall waiting time. As additional stop-based information safety infor-
mation and the simplicity to find the right stop can be integrated in future work.

3.1.3  Framework for identification of relevant nearby stops

Based on the network graph and additional stop-based information, we present the 
framework for identifying a set Straveler of traveler-oriented nearby stops to achieve 
door-to-door mobility. As several conflicting objectives have to be addressed while 
identifying this set, we are dealing with a multi-criteria decision-making problem. 
In general, we aim at minimizing a vector SO

Choice of n objectives such as 
mins∈SChoice

O
(f1(s), f2(s),… , fn(s)) (Ehrgott 2005). SO

Choice describes the set of nearby 
stops and n the set of considered route and stop-based information. The components 
s ∈ SO

Choice are mostly competing against each other.
Algorithm 1 shows the basic components of the framework. Given O and D, we 

identify a set of stops nearby the origin SO
Choice, which are in walking distance (line 

1). For each stop s ∈ SO
Choice, route and stop-based information is taken into account. 

The overall travel time sdijk as well as the optimal path from s to D are calculated by 
solving a standard Dijkstra’s algorithm minimizing the overall travel time (line 3) 
(Dijkstra 1959). This optimal path contains all the information about the itinerary, 
the departure and arrival time at which stop, and the respective transfers.

The parameters for the number of transfers, s#transfers, as well as the walking 
time, swalkingTime, are derived easily in a subsequent step after applying Dijkstra’s 
algorithm using path information retrieved in the preceding step (line 4). The walk-
ing time can be calculated by taking into account the individual traveler’s origin and 
destination, the first and last-mile stop of the respective path, as well as the overall 
walking time at transfer stops. 

Algorithm 1  Stop-based optimization framework.

SOChoice ← Identi�icationOfStopsInWalkingDistance(O,D

for s ∈ SO do

sdijk , path ← Dijkstra(s,D
s transfers , swalkingTime ← FurtherRouteBasedInformation(s,path
sfreq, s lines , saccessibility ← StopBasedInformation(s

end for 
Straveler ← RemovalOfDominatedStops(SOChoice

Choice

In the next step, based on available scheduled network data, precomputed infor-
mation about the frequency sfreq, the number of bus lines s#lines and accessibility 
information saccessibility is added as a stop-based information for each stop s ∈ SO

Choice 
(line 5). This stop-based data needs to be precomputed based on the public transpor-
tation network details to ensure a quick runtime of the algorithm.
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Finally, after all parameters for each stop s ∈ SO
Choice have been quickly calcu-

lated, dominated stops are removed (line 7). This results in a set of non-dominated 
stops Straveler, which can then be presented to the traveler with all relevant informa-
tion. A stop s1 dominates a stop s2 if s1 is superior to s2 according to at least one 
parameter and not inferior regarding all other parameters (Delling et al. 2013a). It 
is worth mentioning that we apply a minimization objective in this multi-criteria 
decision-making setting. Therefore, s#lines has to be transformed for a minimization 
setting before it is considered in any domination rules. Remaining stops build up the 
set of non-dominated stops.

4  Experimental results

In this section, we present experimental results applying our framework in a 
medium-sized public transportation network in the city of Göttingen, Germany. This 
is a university town with a star-shaped structure with the city center and train station 
at the center, similar to many other European cities. Göttingen’s urban area covers 
approximately 11,699 hectares, in which about 134,000 residents live (Stadt Göt-
tingen 2022). The public transportation network comprises 20 daytime lines, 8 night 
lines and includes about 500 stops (Göttinger Verkehrsbetriebe GmbH 2022). Sec-
tion 4.1 outlines the experiments run with our dataset to provide varied results from 
different areas of the city. We demonstrate in Sect.  4.2 the benefit and effect that 
considering stop and route-based information simultaneously can have in expand-
ing the traveler’s options. Sections 4.3 and 4.4 detail the differences that arise when 
scooters are added to the network.

4.1  Design of the experiment

To discover the effects that our SBO approach has on public transportation net-
works, we consider all 18 districts of the city of Göttingen as shown in Fig. 1. Our 
experiments run Algorithm 1 from each of the 18 districts to every other district for 
a total of 306 Origin–Destination combinations. The origin and destination for each 
experiment are located at the center of the district, and nearby stops (within 0.5 km) 
are potential relevant stops for the first and last mile.

The bus network is based on the real-world schedule of Göttingen reduced to one 
day of scheduled operations. We limit the maximum walking distance between two 
stops to 500 m, but this could be expanded later to see the effect on experimental 
results. We assume a walking speed of 5 km/h.

Figure 2 demonstrates an example output of Algorithm 1 of stops in Göttingen, 
which are in walking distance. Here, the traveler’s origin is marked in gray. The 
nearby stops that are dominated are displayed in red and would not be shown to 
the traveler as these do not offer any added value for the traveler. Each non-domi-
nated stop is shown in blue. These are the stops which form the choice set for the 
traveler. Their characteristics are displayed with bubbles to represent how each stop 
compares to others, which are non-dominated. For example, the optimal travel time 
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would be displayed as a full circle with “best” while an alternative stop choice may 
be partially shaded and have + 1.2 min in the label. This algorithm output gives the 
traveler a complete picture of the benefits and drawbacks of all nearby stops. Further 
information such as the underlying itinerary and the actual values for each respective 

Fig. 1  Districts for experiments: Adapted by Klatt and Walter (2011)

Fig. 2  Example identification of nearby stops for a traveler
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preference can be presented as more in-depth information for each relevant stop. 
This supports the travelers in their decision-making process.

4.2  Stop‑relevant results

To investigate the impact that Algorithm  1 had on identifying relevant stops, we 
performed experiments between Origin–Destination (OD) centroids of each dis-
trict only considering walking and bus edges for v ∈ V. We found that there were 
on average 10 stops within walking distance of both the origin or destination. How-
ever, when using Algorithm 1, there were only a quarter (2.4) of these stops non-
dominated. Additionally, the average travel time between origin and destination was 
approximately 23 min with average headway between buses of 24.5 min.

Table 2 presents a comparison between relevant non-dominated stops and domi-
nated stops. While on average around 2% overall travel time savings and 4% walking 
time can be seen, relevant stops have a 21% more frequent schedule in comparison 
to stops not presented to the traveler. Thus, the largest savings for travelers using 
this method arise in the frequency, the number of lines and the number of trans-
fers. These key savings in the frequency, lines, and number of transfers are substan-
tial, given that it shows that the results can yield savings in areas other than tradi-
tional route-based optimization, which focuses on time savings. By expanding the 
definition of optimal beyond fastest transport service, travelers can experience more 
frequent public transport options, more lines serving the stop, and a lower number 
of transfers to their destination. This research highlights the expansion of the non-
dominated stops to lesser utilized, but important categories that can give the traveler 
options not displayed by strictly time-optimized techniques.

Further examining the non-dominated stops yields the closeness to optimality in 
each category as shown in Fig. 3. Here, we can see that 75% of the non-dominated 
stops add 2–3 min to the overall time and walking time of the traveler’s itinerary. 
Thus, most non-dominated stops reveal first and last-mile stops that do not add 
unreasonable amounts of time to the itinerary.

These results indicate that by evaluating multiple preferences when consider-
ing nearby stops, we can identify high-quality stops with a number of advantages. 
The non-dominated stops give much more frequent service and the number of 
lines while displaying options that are usually adding only a few minutes to travel 
and walking time. This approach can help travelers focus on these non-dominated 
stops and evaluate the preferences that are important in their route planning.

Table 2  Savings potential with respect to different parameters

Time (min) Walk (min) Freq. (min) Lines Transfers

Relevant stops 22.7 6.6 24.5 2.6 1.4
Dominated stops 23.1 6.9 31.0 2.1 1.5
Savings potential 2% 4% 21% 20% 12%
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4.2.1  Accessibility

One additional example of a preference that could be important to travelers is 
accessibility for disabled and handicapped travelers (Fatima and Moridpour 
2019). We have included this additional parameter in Table 3. Here, when com-
paring results with and without the binary accessibility parameter, the number of 
non-dominated stops increases on average from 2.4 to 2.9, while the overall travel 
time decreases by over 80 s. The average frequency of arrivals does not change, 
but both, the number of lines per stop and the number of transfers per itinerary 
increase when considering accessible stops. When we examine accessible-only 
stops, we can see a drastic decrease in the travel time as well as an increase in the 
number of lines accessed per stop. This type of analysis for parameters that can 
be of significant importance to certain travelers is essential to provide the trave-
ler with routes and stops that will fit their preferences. We can expand on this 
with additional parameters or incorporate alternate transportation methods into 
the model.

4.3  Results from scooter implementation

Following the initial experiments that tracked how stops were chosen based on 
the parameters, we investigated the effect that incorporating an additional mode 

Fig. 3  Additional time for stops in the Pareto set

Table 3  Advantages for accessible stops when implementing new accessibility parameter

Non-dominated 
stops

Time (min) Freq. (min) Lines Transfers

Without accessibility 2.4 22.7 24.5 2.6 1.4
Accessible stops 2.9 21.5 24.4 3.0 1.2
% Improvement 22% 5% 0% 18% 9%
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of transportation had on the results. Specifically, we focused on how positioning 
scooter nodes close to bus stops in each region of the city would expand and alter 
the non-dominated stops shown to the traveler.

To achieve this, in each region we assume there are scooter nodes located near the 
region center and also scooter edges that connect any two bus nodes within 1.5 km 
of each other. If the two bus nodes are within 0.5 km of each other, then a walking 
edge supersedes this scooter edge and is added to the network instead. The results of 
these added free-floating scooter edges are displayed in Table 4.

Table 4 demonstrates that by adding scooters as first and last-mile modes to the 
network, the options for travelers are expanded to more than twice of those of the 
original network. While the average time of the shortest path slightly increases, the 
traveler is presented with stops that have a number of attractive qualities. In addi-
tion, slightly less walking is required in case scooters are considered. The stops con-
sidered have more frequent service, are served by two more bus lines on average, 
and have less transfers on the traveler’s itinerary. This demonstrates that increasing 
the range of nearby stops by adding scooters can provide more options that may 
more closely suit travelers’ preferences.

This benefit is further illustrated in Fig. 4a. Here, the average number of trans-
fers as well as the average frequency between buses in seconds is shown for each 
of the 18 districts. The relationship intuitively indicates an increasing number of 
minimum transfers as the stop becomes less frequent. It can be seen that considering 
scooters (blue crosses) yields a lower number of transfers in comparison to merely 
considering buses as an available mobility service (red circles). Figure 4b compares 

Table 4  Average differences between Scooter and Non-Scooter Experiments

Mode Non-dominated stops Time (min) Walk (min) Freq. (min) Lines Transfers

No scooters 2.4 (29.6%) 22.7 6.6 24.5 2.6 1.4
Scooters 5.4 (16%) 23.2 6.3 18 4.4 0.9

Fig. 4  Relationship between preferences
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the average travel time and the average walking time in seconds for scooters against 
non-scooter integration for each of the 18 districts. The figure shows that a higher 
travel time results in a higher walking time as well. The required walking time can 
be reduced by adding scooters into the network as a first and last-mile sharing ser-
vice (blue crosses).

The blue marks and line show that on average implementing scooter access 
results in the usage of bus stops that have a more frequent service as well as less 
transfers for the traveler.

Figure 5 shows the average percent change of the experiments with scooter inte-
gration against the non-scooter experiments by districts for each respective route and 
stop-based preference. The non-scooter experiments serve as a baseline. Following, 
districts highlighted in red indicate that, on average, the value of the respective pref-
erence has worsened in that district. Districts marked in blue indicate that the value 
of the respective preference has improved, whereas white highlighted districts mean 
no significant difference in comparison to the non-scooter results. Please note that 
the percent change indicated by dark blue and dark red, respectively, is determined 
by the respective maximum change, and therefore differs for each preference.

Figure  5a shows the change for the overall travel time. A slightly worse aver-
age travel time can be observed in particular for the eastern districts (7, 10 and 18) 
as well as for the southwest districts. For district 18 (Roringen) the average travel 
time decreases by 29%. Conversely, if the traveler’s origin is in district 2 (Oststadt), 
minor improvements of approximately 2% with respect to the average overall travel 
time can be observed. As can be seen in Fig. 5b, integrating scooters for the first and 
last mile enables the traveler to reach additional stops, which have a more traveler-
oriented frequency in comparison to stops more accessible by walking. A significant 
deterioration in terms of frequency can be observed in the city center (district 1). It 
can be assumed that scooter integration also leads to the consideration of less fre-
quented stops outside the city center, which are non-dominated with regard to one of 
the preferences taken into account.

Further analysis for percent changes by district for the preferences walking time, 
number of lines and number of transfers can be found in Fig. 7 in the Appendix.

Fig. 5  Percent change by district
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4.4  Visualizing results of a comparative scooter implementation

For a specific comparison of the effect of scooter usage by region, we examine Fig. 6. 
These two regions are Innenstadt, represented in blue and near the city center, and 
Weststadt, represented in orange and away from the city center. The solid line rep-
resents the average across categories when scooters are utilized. While the average 
travel time is comparable between the modes, slightly longer runtime is necessary 
if scooters are considered as an additional service. Additionally, buses arrive more 
frequently for stops accessed by scooters. The expanded stop options also serve more 
bus lines and require fewer transfers. These averages vary across the regions, but the 
benefit of including scooters into a multimodal network persists throughout.

Incorporating a first or last-mile on-demand option, such as scooters, can identify 
stops with more frequent and varied service and less transfers that can expand the 
traveler’s information availability and decision making.

5  Discussion

While this work contributes to the existing literature through a stop-based optimiza-
tion that takes into account multiple stop and route-based preferences for the trave-
ler, there are some areas that could expand the reach of this work. For example, 
additional important parameters, such as safety of a stop’s area and ease of access 
to other public transport modes could be included. In addition to not including these 
parameters that may be important, this work does not explore the potential large 
amount of options that may show up on the set of non-dominated solutions for large-
scale country or regional multimodal networks.

For multimodal networks, travelers expect dynamic, updated results to know the avail-
ability and updated schedule of travel options. In reality, an additional dynamic map—
updated each minute or more frequently—could be integrated to refresh the scooter nodes 
and availability for the traveler. This would give even more additional non-dominated 
stops for the traveler and knowledge if scooter nodes would be a viable option to begin 
or end their itinerary. The traveler would need the ability to make a reservation a priori 
as well since those scooter nodes could disappear when they reach their destination stop.

In future work, further stop and route-based information can be integrated into 
the search. For instance, the price can be integrated as an additional route-based 

Fig. 6  Parallel coordinates plot of different parameters
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preference in case price information is available. Further preferences that are difficult 
to quantify, such as comfort, can be added, which provide additional value for the 
traveler. As further stop-based information, we can envision, for example, the integra-
tion of safety information and the simplicity to find the right stop within the search. 
The integration of further preferences leads to a larger set of non-dominated stops. 
Thus, techniques to limit the set of non-dominated stops for the first and last mile of 
the traveler’s itinerary are required. One way would be to enable the traveler to set 
weights for individual preferences in an expert menu within a mobility platform to 
allow travelers to prioritise their preferences individually. This should be aided by 
advanced visualization techniques to support the travelers in their decision-making 
process. In addition, further experiments applying the proposed SBO approach to 
more cities with different characteristics ensures a generalization of the results.

In real-world settings, travelers want to use one multimodal application that inte-
grates all available mobility services. Our framework can easily be adapted to an 
extended multimodal setting. The integration of additional mobility services can 
increase the number of relevant nearby stops, which is an exciting potential for 
future research.

To adequately assist the traveler in selecting the most appropriate nearby stop, 
a simple presentation of the non-dominated options is necessary. In this work, we 
have focused on the technical perspective of identifying the set of non-dominated 
nearby stops and presented a first approach to present this information to the trave-
ler. Further work can additionally present this information into an integrated multi-
modal routing application in a traveler-oriented way.

Travel policy implications of this traveler-centered approach include an analysis 
of stop location to see if certain stops should be included or excluded for traveler 
convenience or lack of use. Additionally, timetable policies can use this set of non-
dominated stops analysis to see if certain stops should be frequented more or less. 
With shared mobility policies in a city, the placement and replacement of shared 
bikes, scooters, and other transportation modes could utilize this tool to maximize 
the demand for the service along with existing public transportation networks.

6  Conclusion

In recent years, large strides have been made in creating multimodal door-to-door 
itineraries. However, significant challenges remain while identifying these options 
in a traveler-oriented way. Travelers expect information about relevant first and last-
mile stops and their characteristics in a transparent way using up-to-date mobility 
applications. In this work, we combine stop and route-based information in the deci-
sion-making progress. In particular, we consider the overall travel time, the over-
all walking time as well as the number of transfers as route-based preferences, and 
frequency, accessibility and the number of bus lines as stop-based information into 
the search. The set of relevant nearby stops considering this information can then be 
presented to the traveler. This enables travelers to make better-informed decisions.

The proposed framework for identifying alternative stops for first and last-
mile urban travel planning has been evaluated using the medium-sized public 



 T. Horstmannshoff, M. Redmond 

1 3

transportation network of Göttingen, Germany. In addition to the public trans-
port bus network based on real-world data, we integrate unscheduled mobility 
services such as electric scooters.

We show that the traveler has several non-dominated nearby stops with dif-
ferent characteristics available to choose from. Non-dominated stops have on 
average more public transport lines and more frequent service than dominated 
stops. Furthermore, the traveler saves both travel and walking time. This trend 
is also true for incorporating scooter nodes that expand the traveler’s nearby 
stop options. In addition, we have introduced a novel idea on how to present 
the non-dominated set of nearby stops to the traveler. We envision this frame-
work of identifying relevant nearby stops being implemented in the future, as 
the demand for integrated multimodal transportation information increases. Pro-
viding this information to the traveler allows for better decision making while 
planning individual multimodal itineraries.

A Further Percentual Changes by Districts 

Fig. 7  Percentual Change by District
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Appendix: Further percentual changes by districts

See Fig. 7.
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