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Abstract
Accurate travel time estimation is paramount for providing transit users with reli-
able schedules and dependable real-time information. This work is the first to utilize 
roadside urban imagery to aid transit agencies and practitioners in improving travel 
time prediction. We propose and evaluate an end-to-end framework integrating tra-
ditional transit data sources with a roadside camera for automated image data acqui-
sition, labeling, and model training to predict transit travel times across a segment 
of interest. First, we show how the General Transit Feed Specification real-time data 
can be utilized as an efficient activation mechanism for a roadside camera unit moni-
toring a segment of interest. Second, automated vehicle location data is utilized to 
generate ground truth labels for the acquired images based on the observed tran-
sit travel time percentiles across the camera-monitored segment during the time of 
image acquisition. Finally, the generated labeled image dataset is used to train and 
thoroughly evaluate a Vision Transformer (ViT) model to predict a discrete tran-
sit travel time range (band). The results of this exploratory study illustrate that the 
ViT model is able to learn image features and contents that best help it deduce the 
expected travel time range with an average validation accuracy ranging between 80 
and 85%. We assess the interpretability of the ViT model’s predictions and show-
case how this discrete travel time band prediction can subsequently improve contin-
uous transit travel time estimation. The workflow and results presented in this study 
provide an end-to-end, scalable, automated, and highly efficient approach for inte-
grating traditional transit data sources and roadside imagery to improve the estima-
tion of transit travel duration. This work also demonstrates the added value of incor-
porating real-time information from computer-vision sources, which are becoming 
increasingly accessible and can have major implications for improving transit opera-
tions and passenger real-time information.
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1  Introduction

Accurate and reliable travel time prediction plays a critical role in all aspects of 
transportation planning; this is even more crucial when it comes to public transit 
(Lin et al. 2005). Efficient operations, service delivery, riders’ experience, and the 
general perception of public transit are greatly shaped by the reliability and on-
time performance of the system. Travel and arrival time prediction, in general, and 
particularly for public transit applications are fields of research that have been well 
studied over the years. The recent advancements in machine learning and artificial 
intelligence technologies have significantly improved the state of practice. This is in 
part due to the wealth of data available for and from day-to-day public transit opera-
tions, including high granularity data for passenger count and movements (APC), 
automated fare collection (AFC), automated vehicle locations (AVL), and the 
information from the General Transit Feed Specification (GTFS). While these data 
sources offer an abundance of scheduling, usage, and performance measures that 
can be used for tasks like travel time prediction for transit, transit vehicles still—
for the most part—share road infrastructure with other roadway users. This neces-
sitates combining transit-specific data with more generalized data sources that can 
offer information about the overall traffic state and roadway infrastructure, which are 
often challenging to acquire.

The recent advancements in the fields of deep learning, machine perception, and 
computer vision have made image data extremely useful. Tasks including image 
classification, detection, and tracking of objects within images can be accomplished 
with ease, with an ever-growing multitude of frameworks and architectures to 
choose from. The biggest drawback when opting to utilize computer vision archi-
tectures is that they remain extremely data-hungry, requiring copious amounts of 
data that need to be acquired and, more often than not, manually labeled to train 
vision models. And while this is a challenge facing the broader computer vision 
community, it is further exacerbated in domain-specific applications like transporta-
tion systems (Dilek and Dener 2023). In the specific context of public transit, the 
need to acquire external technology and talent for these tasks of data acquisition 
and integration is often cost-prohibitive, hindering the ability to benefit from fusing 
the abundant traditional and new-found data sources (Ge et al. 2021). The authors 
of this paper see immense value in incorporating the domain knowledge of relevant 
data sources to create a streamlined framework for image data acquisition, labeling, 
and vision model training combining roadside imagery with transit data sources. 
This study presents our exploratory framework for this concept and experimental 
results from a pilot study conducted in a segment of Massachusetts Avenue in Cam-
bridge, MA, USA.

In this study, we propose and evaluate TranViT, an end-to-end framework for 
efficiently integrating real-time GTFS, AVL, roadside urban imagery, and a Vision 
Transformer (ViT) architecture for predicting transit travel time through a camera-
monitored segment. The main contribution of this work is presenting a blueprint to 
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transit practitioners and researchers for the efficient utilization of traditional transit 
data sources to acquire, label, and train data for computer vision tasks. We demon-
strate the resulting highly accurate and interpretable predictions and discuss their 
implications for the state of the practice. The following sections of this paper are as 
follows: (a) a survey of related literature in transit travel time prediction and appli-
cations of deep learning and computer vision, (b) a detailed breakdown of the pro-
posed TranViT framework, (c) results and analyses of the case study, and, (d) dis-
cussion and conclusions.

2 � Related work

2.1 � General traffic and transit travel time prediction

There is a rich body of literature on travel time prediction, a topic that has been 
well-studied for years. In the context of general traffic, this often falls into larger-
scale traffic state estimation, which along with travel time and speed includes pre-
dicting traffic flow and density (Wang and Papageorgiou 2005; Yang 2005; Work 
et al. 2008; Yildirimoglu and Geroliminis 2013). Those works, among others, have 
mostly relied on probe vehicle GPS and loop detector data, which are often limited 
in size and temporal coverage, noisy, and require the use of complementary tech-
niques to overcome the data quality issues, including particle and Kalman filtering, 
and machine learning (Wang et al. 2008; Chen et al. 2011; Jenelius and Koutsopou-
los 2013) in combination with underlying traffic state models and, in some cases, 
simulation modeling.

For transit, accurate travel time prediction is paramount for providing transit 
users with reliable schedules and dependable real-time information about their tran-
sit vehicles’ arrival times, and for the efficient implementation of operation strate-
gies such as transit signal priority (Zeng et al. 2014; Abdelhalim and Abbas 2018). 
The methods used in general traffic state estimation and travel prediction, particu-
larly from probe vehicle analyses, may not always translate directly into the con-
text of transit. Albeit sharing the same roadway infrastructure; the vehicle dynamics 
and operations of transit (continuous start-stopping), among other factors like pas-
senger interactions with operators, influence the movement of transit within traffic 
streams in a way that is not necessarily reflective of the overall traffic. The need to 
monitor this level of complexity in size (fleets as opposed to individual vehicles) and 
operation, however, has resulted in an abundance of transit data sources being avail-
able to practitioners. Of the aforementioned data sources, AVL data has particularly 
been at the center of numerous research efforts. An early study by Cathey and Dai-
ley (2003) offered a generalized framework to utilize AVL data for making transit 
arrival time predictions. The growing adoption of AVL systems by transit agencies 
allowed researchers to develop real-time applications (Jeong and Rilett 2005; Shal-
aby and Farhan 2004). While these studies have demonstrated the ability to obtain 
accurate travel time predictions from AVL data, the lack of information regarding 
other influencing factors like overall congestion state and the vehicles’ own dwell 
time were limiting factors. Works by Yu et al. (2010, 2011) have demonstrated that 
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incorporating additional external data sources (e.g. weather data) and using stop-
level travel time that captures this variation in dwell time more than the route-level 
analysis results in improved predictions.

The past decade has witnessed substantial strides in data availability (higher fre-
quency AVL, GTFS-RT, APCs, etc.) and real-time assessment and predictive meth-
odologies (Park et al. 2020; Elliott and Lumley 2020; Aemmer et al. 2022; Samal 
et al. 2017). While state estimation methods based on Kalman filters, and machine 
learning models based on boosting and ensemble remained popular (Zhang and 
Haghani 2015; Gaikwad and Varma 2019), deep learning architectures based on 
recurrent neural networks (RNNs) have also proven high competency in the travel 
time prediction task. Studies by Zhou et al. (2019) and Pang et al. (2018) concluded 
that RNN-based models significantly outperform other state-of-the-art methods. The 
proposed Long Short-Term Memory (LSTM) RNN achieved a minimum of 10% 
improvement in the mean absolute error compared to other traditional models. Han 
et al. (2020) proposed a method based on position calibration and an LSTM model 
that accurately predicts transit arrival time, with an error below two minutes for the 
8th downstream stop.

2.2 � Computer vision, vision transformers, and related works in transportation 
applications

Computer vision (CV) is a field of artificial intelligence focused on deriving use-
ful information from images and image-based data (e.g. videos). This includes tasks 
like image classification, object recognition,  multi-object recognition and tracking. 
Albeit being proposed since the early 1990s (LeCun et al. 1998), the rapid evolu-
tion of Convolutional Neural Networks (CNNs) in the past decade helped establish 
their place as the undisputed backbone for innumerable architectures that conduct 
the various aspects of computer vision tasks. These CV-based methods have been 
widely adopted for a variety of applications in the transportation field, including 
traffic speed, turn count, and density estimation (Buch et al. 2011; Abdelhalim et al. 
2021; Gokasar and Timurogullari 2021), safety (Tageldin et al. 2014; Sayed et al. 
2013; Abdelhalim 2021), and autonomous driving (Janai et al. 2020). The use of CV 
in transit applications remains extremely rare, with few applications in railway intru-
sion detection (Wang and Yu 2021), and a recent study by Sipetas et al. (2020) who 
utilized a CV-based video processing component as a part of a larger framework to 
estimate left-behind subway passengers.

The Vision Transformer (ViT) architecture introduced by Dosovitskiy et  al. 
(2020) was inspired by the immense success of transformer architectures in the 
field of natural language processing (NLP) (Vaswani et  al. 2017). Converse to 
CNNs, which have been the de-facto method for most computer vision tasks, the 
vision transformer architecture does not introduce the implicit bias of the convo-
lutional and pooling layers present in CNNs, allowing the trained model to bet-
ter extract global information from images. Although this comes at the cost of 
requiring more training data, the ViT-based models have been shown to outper-
form their CNN counterparts at their introduction in 2020. While there has been 
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a tug of war between ViT and CNN-based models since then, ViT-based models 
have been the standout performer in tasks that are more involved than simple 
everyday image classification, including but not limited to holography (Cuenat 
and Couturier 2021), classification of COVID-19 CT scan images (Gao et  al. 
2021), and identifying distracted driving (Li et al. 2022). Those studies provide 
an indication that the global-attention aspect of the ViT architecture allows it to 
make more accurate predictions using information that could be lost within con-
volution and pooling layers of a CNN. While CNNs are still useful for transpor-
tation-related classification tasks where information is locally concentrated in 
an image such as traffic sign classification (Zheng and Jiang 2022), studies that 
evaluated vision models for transportation applications, where the information 
needed to make accurate predictions are expected to be sparse across the image, 
show the considerable benefits of using ViT. This includes the work of Liang 
et al. (2022) demonstrating the ability of ViT in detecting driver distraction, and 
a study by Abdelraouf et al. (2022) who demonstrated the ability of a ViT-based 
architecture to detect rain and roadway surface conditions with an impressive 
F-1 score of up to 98%.

Computer vision methods and models have proven to add tremendous value to 
different fields of science and practice. There remains, however, a significant gap 
between the abundance of available transit data sources and the integration of these 
data sources with methods and frameworks to extract complementary information 
through computer vision. Such integration can provide a significant boost to the 
state of the practice. The authors believe that this gap is, by and large, due to the 
demanding process of computer vision models’ data acquisition, labeling, and train-
ing. There is an immense need for developing generalizable and transferable frame-
works that can seamlessly integrate these existing transit and urban data sources, and 
streamline the data acquisition, model training, and inference processes. We propose 
TranViT as a pioneering example for this much-needed system integration task.

3 � Methodology

3.1 � Site of study

The site of this exploratory study was near Central Square in Cambridge, MA, USA, 
at the intersection of Massachusetts Avenue and Sidney Street. We selected this 
site due to the availability of a public IP (Internet Protocol) camera that streams a 
live view of this area, which is served by multiple Massachusetts Bay Transporta-
tion Authority (MBTA) bus routes; namely Route 1, Route 70, and Route 64 with, 
respectively, 10, 15, and 45-min weekday headways. The Google Earth view of the 
site is illustrated in Fig. 1. The north direction is indicated by the arrow at the top-
right of the figure. The top-left shows the position of the public camera that was 
used to acquire images for this study, with the yellow lines showing the field of view 
of the camera. The bus stops at the bottom-right quarter of the image serve either 
direction of the MBTA Route 1 bus operating between Nubian and Harvard Square. 
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The inbound (to Boston) and outbound (to Harvard Sq) directions of the route are, 
respectively, illustrated by the red and blue arrows. Figure 2 shows the Google Maps 
view from the camera angle, alongside the true camera perspective of the site.

Fig. 1   Site of study near Central Square in Cambridge, MA, USA

Fig. 2   Camera perspective for the site of study
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3.2 � Proposed framework, data collection and pre‑processing, and ViT model 
training

3.2.1 � Data sources and training data acquisition

Figure 3 illustrates the data sources and the modules of our proposed framework. 
The attributes of data acquired from each source are described in Table 1. At the 
core of our proposed TranViT framework is the General Transit Feed Specifica-
tion real-time component (GTFS-RT). The GTFS-RT is available for the MBTA 
vehicles through onboard GPS equipment which updates and publishes vehicle 
location, heading, and occupancy data in real time at high-frequency intervals (up 
to every 1  s) (Massachusetts Bay Transportation Authority 2022). We utilize this 

Fig. 3   TranViT data sources, modules, and workflow

Table 1   Data sources and attributes used

Source Attribute Type Description

GTFS-RT Id Integer Unique trip identifier
Dir Binary Trip Direction (0 = outbound, 1 = inbound)
Timestamp Integer Unix timestamp during image acquisition

AVL Ts Float Total travel time across the segment (s)
Dwell Float Stop dwell time for a given trip (s)

Camera Site image 1280 × 720 × 3 
array

Image of the observed scene
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high-frequency of the GTFS-RT to trigger image acquisition only as transit vehicles 
approach the area of the study, which accomplishes the following: 

1.	 Enables linking the acquired image sequences and the travel times associated with 
the trip ID that activated the image acquisition.

2.	 Optimizes the image acquisition process, ensuring data is only collected as 
needed.

Image acquisition from camera livestream at the site is activated once a transit vehi-
cle is approaching (within 500 m). A total of six images are acquired for each activa-
tion, with a 15-s wait time between the images to allow for traffic movement across 
the intersection. If more than one transit vehicle approaches and activates the cam-
era at the same time, a single acquisition stream is initiated and separate images will 
be labeled by the trip ID and the direction of all transit vehicles (with no maximum 
limit) that cross the area during the given timeframe. The outputs of the data acqui-
sition process are a database containing the trip IDs, directions, and the timestamp 
of the transit vehicles’ approach to the site of study, and an image dataset with six 
images associated with each trip ID. The data acquisition process for this pilot study 
is summarized by the following:

•	 Three separate rounds of data acquisition (to account for the seasonal variations 
in daylight and roadside greenery).

–	 Feb 23rd–March 4th, 2022
–	 March 28th–April 6th, 2022
–	 May 9th–May 16th, 2022

•	 Data was collected for each day between 6 AM and 9 PM.
•	 Transit trip data is only recorded if the image acquisition process is successful. 

Livestream buffering and connection issues can result in failed acquisitions.
•	 A total of 2992 MBTA Route 1 bus trips were recorded out of 3013 trips in AVL 

records for the same time period (99.3%).
•	 A total of 17,905 images were acquired and associated with these trips.

3.2.2 � Generating travel time bands based on effective travel time percentiles

The acquired trip-image dataset requires pre-processing to make it suitable for 
the ViT image classification task. First, the overall travel time of transit vehi-
cles is acquired from the MBTA’s AVL database. The AVL database also keeps a 
record of transit vehicles’ stop events, including the associated dwell time with a 
stop event (if any). We associate the trip ID for each transit vehicle in our dataset 
with the stop events at either of the two stops in our site of study (in the inbound 
and outbound direction) and define the effective travel time as the time spent by 
the vehicles on the 1-km segment (which includes a camera-monitored area in 
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addition to the 500 m activation buffer in either direction), minus any dwell time 
associated with that trip at its respective stop on the site.

We use this effective travel time across the segment as a ground truth label, 
with the assumption that after accounting for stop events (if any) a transit vehi-
cle’s travel time across a segment is representative of the overall traffic. This 
assumption, however, does not take into account the impact of signal control due 
to the unavailability of signal time data. The signal, however, was observed to 
operate a 180-s cycle length, with an 85–15 split (25 s green for the side street) 
which considerably favors the street on which Route 1 transit vehicles run. The 
observed effective travel time for the dataset is illustrated in Fig.  4. Figure  5 
shows the distribution of these travel time bands per trip direction and hour of 
the day for the acquired image sequence dataset. It is worth noting that the dataset 
contains more outbound (1536) than inbound (1456) trips.

Fig. 4   Observed effective transit travel time for training dataset

Fig. 5   Travel time band distribution for acquired image dataset
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The overall average effective travel time observed was 124 s, with a minimum of 
35 s and a maximum of 310 s. The descriptive statistics are shown in Table 2. To 
normalize the labels for the training dataset, we utilize a four-class labeling approach 
to discretize observed effective travel time percentile and label them as follows:

•	 Effective travel time ≤ 10% → low.
•	 10% < Effective travel time ≤ 50% → moderate.
•	 50% < Effective travel time < 90% → above average.
•	 Effective travel time ≥ 90% → high.

3.2.3 � ViT model training and fine‑tuning

The ViT model utilized as a part of our framework is the one proposed by Dosovit-
skiy et al. (2020). The gist of the model is that it simplifies the pixel-wise attention 
calculation that would take place in a transformer’s encoder module by splitting the 
image into N fixed-size patches (P). Those fixed-size patches are linearly inserted 
into the transformer encoder alongside their positional embeddings, which simply 
tell the encoder where each patch belongs in an image. Meaning that an input image 
x ∈ ℝ

H×W×C is reshaped into xp ∈ ℝ
N×(P2. C) , where H, W, C are, respectively, the 

height (720 pixels), width (1280 pixels), and the number of color channels (3) in the 
source image. A constant latent vector (D) is used across all layers, and learnable 
positional embedding parameters (Elin , Epos ) are utilized to extract an embedding 
token (zo ). Flattened embeddings pass through a series of encoders (L) each with a 
multi-head self-attention (MSA) layer, and a feed-forward Multi-Layer Perceptron 
(MLP), both preceded by normalization layers (LN). This process is mathematically 
described by the following:

(1)zo = [xclass; x
1

p
E; x2

p
E; ... ; xN

p
E] + Epos, E ∈ ℝ

(P2 . C)×D, Epos ∈ ℝ
(N+1)×D

Table 2   Descriptive statistics 
for effective travel time

Statistic Trip direction

Overall Inbound Outbound

� 124 127 121
� 38 41 35
10% 79 79 79
50% 121 124 118
90% 160 166 156
Min 35 35 35
Max 310 309 310
Count 2,992 1,456 1,536
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where y is the final image representation out of the transformer encoder, then passed 
into a classification MLP outputting the most likely class for the image, which in 
our case is the travel time band prediction based on the effective travel time per-
centile. We start with the base ViT model pre-trained on the ImageNet-21K dataset 
and open-sourced by Google Research (Dosovitskiy et al. 2020). To accommodate 
for the data-hungry nature of ViT, prior to re-training on our data we increase the 
size of the dataset by creating an image augmentation pipeline; randomly cropping, 
tilting, and slightly adjusting the brightness and contrast of images acquired in our 
dataset as shown in Table 3, while maintaining the original images’ class label based 
on effective travel time rank. Every image is passed through the pipeline six times, 
and the probability of an augmentation action is the probability that it is performed 
on the image during an iteration in a random magnitude within action bounds. This 
results in a final dataset with 78,385 images.

We initially train multiple instances of the ViT model while performing a grid 
search to optimize the model’s hyper-parameters to maximize the overall F-1 Score. 
The bounds and optimal values of this fine-tuning process are shown in Table  4. 
After finding optimal hyper-parameters, the vision transformer was trained using a 
fivefold cross-validation, with an 80–20 stratified training–testing split for each fold. 
We further evaluate the model in terms of precision, recall, and accuracy.

(2)z
�

l
= MSA(LN(z

l−1)) + z
l−1, l = 1 ... L

(3)z
l
= MLP(LN(z

�

l
)) + z

�

l
, l = 1 ... L

(4)y = LN(z0
L
)

Table 3   Image augmentation 
pipeline parameters

Action Augmentation bounds Probability

Lower Upper

Crop 560 × 560 1280 × 720 0.33
Rotate −30◦ +30◦ 0.33
Brightness − 20% +20% 0.50
Contrast − 20% +20% 0.50

Table 4   ViT parameter fine-
tuning

Parameter Parameter limits Optimal

Lower Upper

Hidden layers 2 12 12
Attention heads 2 12 12
Batch size 8 256 32
Learning rate 1e−6 1e−2 2e−5

Dropout probability 0 0.25 0.10
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4 � Results and discussion

4.1 � ViT performance on effective travel time band prediction

After training on 80% of the images in the k-fold augmented dataset, the averaged 
fivefold performance of the optimized ViT model on the test sets for either direction 
is shown in the confusion matrices in Fig. 6 below, illustrating the true and predicted 
travel time band for test images. Figure 7 illustrates the results normalized to the 
total number of true travel time band images in the test set (sum over columns = 1, 
diagonal cells represent accuracy for each travel time band).

The results indicate that the model is able to differentiate the discrete expected 
travel time ranges based on the observed effective transit travel time used for labe-
ling the dataset. While a higher number of misclassifications happen between the 
intermediate states (moderate and above-average conditions), the misclassification 
rate between the extreme conditions (low and high) is very low. This result is of 

Fig. 6   Confusion matrices for test subsets

Fig. 7   Normalized confusion matrices for test subsets
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utmost importance, indicating that when using image data in complementing the 
travel time prediction process, the misclassifications will rarely lead to an extreme-
end under or overestimation. Detailed results on the ViT model’s performance are 
provided in Table 5, showing the fivefold average for each metric ± the range of vari-
ation for each metric across the fivefold.

Given that the ViT training and inference are based on images that provide a con-
strained view of the area of study, a variation in the number of vehicles and other 
factors between images taken from the same sequence can occur (6 images at 15-s 
intervals, as detailed in Sect. 3 Methodology). To account for this variation, we run 
inference-on-image sequences for a given trip ID instead of single images. Images 
from the test set of the best-performing fold were grouped by their trip ID before 
making travel time band predictions based on the average of all predictions for the 
image sequence. The results are illustrated in Figs. 8 and 9. Classification metrics 
are detailed in Table 6, where the number of actual occurrences of the class in the 
test subset is supported.

The results in Table  6 demonstrate significant improvements in model per-
formance when using image sequences, particularly in nearly eliminating all 

Table 5   Fivefold cross-validation test set performance metrics

Class Inbound Outbound

Prc (±) Recall (±) F-1 (±) Prc (±) Recall (±) F-1 (±)

Low 0.74 (0.05) 0.81 (0.02) 0.78 (0.01) 0.76 (0.02) 0.80 (0.02) 0.79 (0.03)
Normal 0.84 (0.01) 0.83 (0.02) 0.83 (0.01) 0.82 (0.01) 0.82 (0.01) 0.82 (0.01)
Above Average 0.81 (0.01) 0.78 (0.01) 0.80 (0.00) 0.81 (0.01) 0.79 (0.02) 0.79 (0.01)
High 0.77 (0.02) 0.81 (0.02) 0.79 (0.01) 0.74 (0.02) 0.79 (0.03) 0.75 (0.03)
Accuracy 0.81 (0.01) 0.80 (0.01)

Fig. 8   Confusion matrices using averaged image sequence score
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misclassifications between non-consecutive travel time ranges. While the accu-
racy (the number of travel time band labels that were correctly classified divided 
by the total occurrences of the class label in the training dataset) slightly drops 
for the under-represented classes (low and high travel time bands), the precision 
for those classes increases significantly. Given that precision is an indicator of the 
quality of the prediction (the number of true positives divided by the total number 
of class predictions made by the model) a precision of over 93% for those extreme 
classes is of utmost importance when those labels are to be used to enhance travel 
time predictions. The precision, recall, F-1 score, and accuracy all increase for 
the moderate and above-average travel time band labels.

Of the 2992 trip-image sequences in the dataset acquired for this study, 2731 
transit trip IDs had two or more images in the test set of the best-performing 
training fold. The effect of the number of images in a sequence is illustrated in 
Fig.  10. The line plots show the average classification accuracy for each travel 
time band, while the envelopes illustrate the 95th confidence interval for a given 
number of images in sequence. While accuracy and confidence increase as the 
number of images used for prediction increases, particularly for under-repre-
sented classes (the low and high travel time bands), a decline is observed after 

Fig. 9   Normalized confusion matrices using averaged image sequence score

Table 6   Performance metrics using averaged image sequence score

Class Inbound Outbound

Prc Recall F-1 Support Prc Recall F-1 Support

Low 0.93 0.77 0.84 201 0.94 0.76 0.84 213
Moderate 0.83 0.91 0.87 539 0.83 0.89 0.86 557
Above Average 0.81 0.84 0.82 396 0.78 0.87 0.82 433
High 0.94 0.77 0.85 193 0.95 0.73 0.83 199
Accuracy 0.85 0.84
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the number of images in a sequence exceeds six. This is attributable to the origi-
nal number of images for each trip-image-sequence acquisition being six images, 
hence exceeding that number indicates the presence of augmented images in a 
test sequence that could make it more challenging to classify.

Figure 11 illustrates the variation in travel time band prediction accuracy for both 
directions during different times of the day at the trip-images-sequence level (i.e. the 
percent of images accurately labeled within for unique trip-images-sequence). Con-
sistent with previously discussed results, the model’s performance for the inbound 
direction outperforms the outbound one. The model was found to learn and make 
better predictions during the AM and PM peak hours for both directions compared 
to the off-peak hours. This may be attributed to the apparent variation in traffic vol-
umes observed during peak hours which is a good indicator of the expected travel 
time across the monitored segment during these times. In addition to that, the higher 
frequency of public transit vehicles during those times resulted in a higher volume 

Fig. 10   Accuracy versus image count in a test sequence

Fig. 11   Variation in classification accuracy by direction and time of day
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of ground-truth image acquisitions, which improved the training process of images 
acquired during those times. Higher travel times can occur during off-peak hours 
without the presence of high traffic due to traffic control, driving behavior, or vehi-
cles impeding access to bus stops. Such factors can not be identified from the image 
data used in this study.

Next, we assess the interpretability of the results obtained by the ViT. This is 
accomplished by mapping the averaged attention scores (values between 0 to 1) 
of the model’s 12 attention heads. Attention illustrates the parts of the image from 
which the model learns to gain the most information in making the predictions for 
travel time bands. Higher scores are illustrated by brighter pixels. Figures 12 and 13 
illustrate the attention maps for different scenarios for the inbound and outbound 
directions.

We observe the ViT model learning to make predictions in a very logical and 
sensible manner, where a lot of attention is directed to the pixels containing infor-
mation about vehicles traveling in the direction of interest. For the inbound direction 
illustrated in Fig.  12, we see the majority of attention being directed to the right 
side of the image, mostly to the vehicle in the queue in the inbound direction (when 
present), but also towards the downstream. The ViT learns to look in the opposing 
direction with lower attention while learning to ignore the buildings that provide 
little to no information (although attention to buildings’ indoor lights was observed, 
the model might use it as an indicator for the time of day). Other sensible actions 
illustrated by the ViT include paying attention to the snow when there is a snowfall, 
which impacts the travel speeds across the segment. In Fig. 12d, it can be seen that 
at night the transformer learns to include information from the inbound direction 
traffic light which becomes visible from the camera’s vantage point in the evening.

We observed the ViT model exhibiting similar behavior in the outbound direc-
tion in Fig. 13. The camera view for the outbound direction, however, is a lot more 

Fig. 12   Inbound direction attention maps across different conditions
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limited compared to that of the inbound one, as can be seen with the building on the 
left of the image blocking the upstream, and a very limited view of the downstream. 
This explains the better predictive performance for the model in the inbound direc-
tion previously presented in the evaluation tables and confusion matrices. Aside 
from learning to look at vehicles and their locations, the model was observed to pay 
more attention to the sky and buildings’ lights during the night. This behavior seems 
to be an attempt to compensate for the lack of information induced by the restricted 
camera view for the outbound direction by making some form of time-of-day infer-
ence. The extent to which image resolution and/or combinations of extreme weather 
(i.e. heavy night precipitation, morning mist, etc.) affect the prediction accuracy was 
not explored in this study.

4.2 � Implications for travel time prediction

We conclude this assessment with a brief proof-of-concept looking into what this use 
of real-time, computer-vision-based travel time class predictions could mean to the 
broader task of travel and arrival time estimation. We fit a linear regression model to 
predict the effective segment travel time of the 2731 vehicles in the image sequence 
test set based on the recorded information for these vehicles which was obtained 
from the GTFS real-time component. The linear regression model (Ordinary Least 
Squares, OLS) makes baseline travel time predictions based on the time of day, the 
direction of travel, and the occupancy of the transit vehicle as it approaches the seg-
ment. Occupancy is a continuous variable showing the percentage of passengers 
estimated from on-bus automatic passenger counters to total seating capacity, rang-
ing from 0 to 150%, with � = 34.6 and � = 26.67 . Hours of the day were encoded as 
binary variables. We then run the same model, with the addition of a predicted travel 
time band label (OLS+) obtained from the inference of the images associated with 
the transit vehicle’s approach to the segment. The predicted travel time bands are 

Fig. 13   Outbound direction attention maps across different conditions
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denoted by the TTB variables, with the moderate band (TTB_Mod) as the baseline. 
The results of actual versus predicted travel times are illustrated in Fig. 14.

Table  7 shows the coefficient estimates for the different models. Hours of the 
day that were not found significant for any model were dropped from the table for 
brevity. The model-agnostic addition of the travel time band labels predicted from 
images works to create bounds that enhance the continuous travel time estimation. 
This demonstratory evaluation shows significant improvement achieved by the lin-
ear regression model, both in terms of the predictions’ mean absolute error and 
r-squared. As the data and image sequence acquisition for this study was initiated 
when a transit vehicle is within 500 ms of the camera, we utilized state predictions 
from the previous transit vehicle traveling in the same direction and obtained com-
parable results, indicating that the traffic state does not change drastically between 
consecutive vehicles (10-min scheduled headway for MBTA Route 1). Future work 
will investigate the extent to which this look-ahead horizon can provide reliable pre-
dictions, and assess the extent of performance improvements to more sophisticated 
state-of-the-practice models.

The figures in the Appendix of this paper briefly illustrate the broader implica-
tions of improving travel time prediction for a specific camera-monitored segment 
and how it relates to overall transit trip duration estimation. This is specifically 
demonstrated in terms of travel time variability relative to the median travel time 
at the trip and monitored segment level, both obtained from AVL data. It can be 
observed that the relative travel time at the segment explains 11% of the variabil-
ity in the overall trip duration. While this area of study was pre-determined due to 
the availability of video data, this approach can be used as a screening mechanism 
to identify ideal sites for image sensor installation, such that improving travel time 
prediction for selected feasible sites could substantially improve the overall predic-
tion of the trip duration. Our analysis identified another segment of similar length in 

Fig. 14   Exploring a linear regression fit for predicting transit travel time through a segment
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Massachusetts Avenue where the relative segment travel time explains up to 45% of 
the total trip duration variability.

5 � Conclusions

This study provided a detailed implementation and assessment for TranViT, an 
integrated framework utilizing a combination of traditional transit data sources 
with roadside computer vision to improve real-time transit travel time prediction. 
An exploratory assessment of our proposed framework was conducted for a seg-
ment of Massachusetts Avenue in Cambridge, MA, USA, with the results provid-
ing evidence for the potency of this framework. First, we introduce a workflow for 
automated roadside image data acquisition and labeling utilizing traditional transit 
data sources. Second, we train and thoroughly evaluate the ViT component of the 

Table 7   Ordinary least squares 
regression model estimates

Coefficients denoted with “ ∗∗ ” are significant at p < 0.05 level; 
“ ∗ ” are significant at p < 0.10

Variable Type Inbound Outbound

OLS OLS+ OLS OLS+

Occupancy Continous 0.23∗∗ 0.04 0.02 0.03
Hour_6 Binary −25.11∗∗ 0.16 −15.63∗∗ 1.93
Hour_7 Binary −12.92∗∗ 2.80 −15.79∗∗ 2.84
Hour_9 Binary 8.53* 4.91∗ 11.54∗∗ 5.76∗∗

Hour_12 Binary 6.12 0.29 11.10∗∗ 7.15∗∗

Hour_13 Binary 1.49 2.50 2.49 5.40∗

Hour_14 Binary −2.47 3.77 7.42∗∗ 7.91∗∗

Hour_16 Binary 21.79∗∗ 11.69∗∗ 7.04∗∗ 3.69
Hour_17 Binary 24.85∗∗ 6.46∗ 22.47∗∗ 8.03∗∗

Hour_18 Binary 25.10∗∗ 11.57∗∗ 37.19∗∗ 15.88∗∗

Hour_19 Binary 3.11 4.57 18.18∗∗ 9.64∗∗

Hour_20 Binary 6.14 10.16∗∗ 11.82∗∗ 6.05∗∗

Hour_21 Binary −8.35 1.24 9.87∗∗ 8.71∗∗

TTB_Low Binary – −33.87∗∗ − −30.68∗∗

TTB_Aav Binary – 36.73∗∗ – 29.80∗∗

TTB_High Binary – 83.32∗∗ – 70.81∗∗

Intercept 116.55 104.63 112.58 99.87
R-Square 0.111 0.693 0.128 0.680
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framework which was able to successfully learn image features and contents that 
best help it deduce the expected travel time range across the segment of interest, 
with a validation accuracy ranging between 80 and 85%, and a precision of up to 
95%. Finally, we demonstrate how this prediction of the travel time range can sub-
sequently be utilized to improve continuous travel time prediction. This study dem-
onstrates the added value of creating end-to-end, scalable, automated, and highly 
efficient approaches integrating traditional transit data sources and roadside imagery 
to extract real-time information, providing a blueprint for transit agencies and prac-
titioners to address a fundamental gap impeding the broader utilization of computer 
vision in transit operations. Such integration can be extended to numerous use cases 
in transit as an agency’s data and assets permit (e.g. dwell time estimation, platform 
crowding, left-behind passengers, etc.) to improve operational and passenger real-
time information.

Unlike existing studies utilizing computer vision for transportation applications, 
our framework does not require having certain data in place. On the contrary, the 
major contribution of this work is creating a generalized workflow for acquiring and 
labeling the data for the computer vision tasks, which could be extended to other 
use cases (e.g. focusing on areas of images containing bus stops for anticipating the 
dwell time). Utilizing the GTFS real-time component to initiate transit data and cor-
responding image sequence acquisitions results in an extremely computationally 
efficient workflow, running on a single CPU and with no more than 128 MBs of 
RAM. Based on our observations from this study, we expect a more demanding data 
acquisition and training task for models to be deployed in areas where the scenery 
changes noticeably between seasons (like our case in Cambridge, MA). The mod-
els we trained in between rounds of data acquisition did not perform well without 
re-training. The subsequent model re-training, however, is faster. This is attributed 
to the gigantic number of parameters (86 Million in the base model) that a ViT 
employs, which requires substantial training to ensure generalizability. The output 
travel time range labels (based on the percentiles used to create these ranks) can 
complement any existing travel time prediction algorithm by adding a complemen-
tary real-time attribute describing the currently observed state of traffic at an area of 
interest, supplementing what models traditionally learn from historic AVL observa-
tions. We concluded this study with a proof of concept demonstrating the potential 
impact of this additional vision-based input for improving transit travel time predic-
tions. In practice, we anticipate that a data-driven deployment of roadside cameras 
only in locations where high transit delays are observed would be sufficient in pro-
viding reliable travel time predictions without the need to monitor large segments of 
the transit network.

One of the limitations of this study is the need to generate augmented images 
to satisfy the data-hungry nature of vision-transformed training. Future works will 
look into acquiring a larger quantity of image data, alongside integrating additional 
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data sources that provide information on signal timing (if the work is conducted in 
an intersection setting) or adapting the model in ways that account for the impact of 
traffic control variations on segment travel times. Integrating methods that account 
for label uncertainty could also help improve the performance of the predictions 
(Northcutt et al. 2021). The observations noted in the discussion of Figs. 12 and 13 
indicate some best practices for the camera installation location, where a wider field 
of view is expected to provide better image data for model training. Another poten-
tial improvement is utilizing the observed speed and/or acceleration profiles of the 
transit vehicles as opposed to their travel time. This could either be accomplished 
by logging the transit vehicles’ location coordinates from GTFS-RT during the data 
acquisition phase (Huang et al. 2023), or by utilizing computer-vision-based trajec-
tory tracking for all vehicles, which would come at the expense of higher computa-
tional load but will allow for the estimation of the true overall traffic speed and state 
more accurately, leading to a better quality labeling for the training data.

Appendix: Relationship between segment travel time and total trip 
duration.

See Figs. 15, 16, 17, 18 and 19.

Fig. 15   Temporal distribution of the total trip duration on MBTA Route 1 and travel time across the seg-
ment of the study
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Fig. 16   Relationship between the total trip duration and travel time across the segment of the study

Fig. 17   Distribution and frequency of observed travel times relative to the median
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