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Abstract
Public transport network design deals with finding efficient network solution(s) from 
a set of alternatives that best satisfies the often-conflicting objectives of stakehold-
ers like passengers and operators. This work presents a simulation-based optimiza-
tion (SBO) model for designing public transport networks. The work’s novelty is 
in developing such a network design model that fully accounts for the stochastic 
behavior of commuters on the transit network. The SBO discipline solves decision-
based problems like the transit network design problem (TNDP) by combining sim-
ulation and optimization models. The proposed model integrates a disaggregated 
activity-based travel demand simulation with a multi-objective network optimiza-
tion algorithm. Trip-based travel demand models are commonly used to represent 
traveler behavior in the literature. The approach limits its ability to accommodate the 
stochastic realities of traveler behavior in a transit network design solution. Using 
activity-based simulation instead makes it possible to account for a more realistic 
traveler behavior, especially real-time decisions made in response to changing net-
work dynamics which ultimately affect the distribution of demand over time on the 
network. The proposed model is applied to the improved design of the integrated 
public transport network in the City of Cape Town, South Africa. The results show 
SBO can design efficient network solutions that reflect the objectives of network 
stakeholders.

Keywords Simulation-based optimization · Transit network design · Activity-based 
modeling · Multi-objective optimization · Metaheuristics

 * Obiora A. Nnene 
 obiora.nnene@uct.ac.za

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0707-358X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-022-00312-5&domain=pdf


378 O. A. Nnene et al.

1 3

1 Introduction

Public transport network design deals with finding efficient network solution(s) 
from a set of alternatives that best satisfies the often-conflicting objectives of stake-
holders like passengers and operators. The commuter aims to minimize their total 
travel time and other associated costs. At the same time, the operator sees costs in 
terms of the total resources needed to operate a profitable service. Hence, their goal 
is to minimize this cost even at the risk of serving routes the commuter may con-
sider lengthy and unattractive. Therefore, solving a transit network design problem 
(TNDP) requires finding a compromise between these conflicting goals. The known 
methods for solving the TNDP in the literature are broadly classified as analytical 
and heuristic. The former comprises exact search algorithms which attempt to find 
the closed form of an objective function in the search for a best possible solution 
to the problem. Recent research with analytical solutions in the literature are Con-
stantin and Florian (1995), Lee and Vuchic (2005), Chen et al. (2017), Daganzo and 
Ouyang (2019), and Ranjbari et al. (2020). However, these analytical solutions are 
limited in solving the TNDP due to the nearly infinite amount of resources needed 
to find a solution to even relatively small transit network design problems  (Chak-
roborty 2003). On the other hand, the TNDP lends itself to heuristic solution tech-
niques, especially metaheuristics, owing to their relatively simple adaptation to 
extensive TNDP case studies. Furthermore, metaheuristics are approximate algo-
rithms that can find good solution(s) in a reasonable amount of time. Some works 
utilizing heuristic approaches include  Pattnaik et  al. (1998), Fan and Machemehl 
(2004), Alrabghi and Tiwari (2015), Huang et al. (2018), Nnene et al. (2019), Yang 
and Jiang (2020).

In this paper, the authors present a simulation-based optimization (SBO) 
approach for solving the TNDP. This method combines simulation with optimization 
models to solve decision-based problems like the TNDP (Gosavi 2015a). The goal 
of the paper is to develop a so-called simulation-based transit network design model 
(SBTNDM) that integrates simulation with optimization and in the design of transit 
networks. The research question revolves around how SBO can be applied to the 
optimized design of transit networks, leading to the realization of efficient network 
solutions. In the SBTNDM, an activity-based simulation (ABS) evaluates alterna-
tive network solutions by simulating travel demand on them whilst a multi-objective 
optimization algorithm searches for efficient network solutions. The paper’s main 
contribution is solving the TNDP by integrating a disaggregated activity-based 
travel demand simulation with a multi-objective metaheuristic network optimiza-
tion solution framework. Using activity-based simulation makes it possible to fully 
account for the microscopic behavior of travelers and other agents on the network. 
Also, the network design process can incorporate temporal fluctuations in demand. 
The static trip-based travel demand model is commonly used to represent trave-
ler behavior in the literature, as seen in the reviews of Johar et al. (2016), Durán-
Micco and Vansteenwegen (2022), Ibarra-Rojas et al. (2015). However, they cannot 
account for an event such as a route change made in response to unexpected road 
closures or other stochastic decisions made by agents in real-time while responding 
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to changes in network dynamics. Hence, it is advantageous to use ABS as it offers a 
more detailed and accurate reflection of demand distribution on the network, which 
is a critical consideration when operators choose the area to provide a service. Fur-
thermore, a detailed service timetable rather than headway is a crucial input in the 
ABS. Therefore, the simulation offers a way to solve the TNDP, which allows for 
a feedback loop between travel demand and service supply. However, using the 
detailed timetable introduces the need to customize the network decision variable’s 
encoding to facilitate the operations of the optimization algorithm. As a result, the 
authors define a custom encoding scheme to address this. This custom encoding is 
considered the other contribution of the paper, since representations like vectors and 
strings are used more commonly in the literature (Szeto and Wu 2011; Buba and Lee 
2018). The proposed solution model is ultimately applied to the design of a transit 
network in Cape Town, South Africa, which needs improvement in terms of opera-
tional cost reduction and ridership increase.

In the remainder of this paper, Sect. 2 presents a theoretical background for the 
proposed model, and Sect. 3 presents the mathematical model for the problem and 
Sect.  4 outlines the component algorithms of the proposed SBO network design 
solution framework. Section 5 presents the results of testing the proposed solution 
and discusses its application to a large-scale transit network in Cape Town, South 
Africa, mainly as it affects passengers and service operators. In the final section, 
possible areas of future research are highlighted.

2  Literature review

This section starts with an overview of the major developments in the TNDP lit-
erature, specifically in terms of how previous researchers have tackled the network 
design problem. The discourse is then narrowed to the applications of SBO in the 
TNDP literature, which is more relevant to our work. Thereafter, we discuss the key 
components of the SBTNDM and their operations. With the guiding question of 
this research focussing on how the SBO is applied to the TNDP, it is important to 
understand solutions trends both in the literature and how they are evolving. Before 
the year 2000, many TNDP solution attempts used analytical methods. However, 
since then, metaheuristic solution models have gained prominence among research-
ers. Advances in operations research and computational science literature may have 
aided this development, making implementing and using metaheuristic procedures 
relatively straightforward. TNDP solution algorithms are classified by the number 
of objectives in the problem, namely single and multiple-objective optimization. 
The key difference between single and multi-objective solution algorithms is that in 
the former, a linear summation of all objectives is used to reduce many objectives 
to a single one. Furthermore, weights must be defined beforehand for each objec-
tive, and the obtained single results reflect the weighted objectives  (Mauttone and 
Urquhart 2009). In contrast, the outcome of multi-objective algorithms is a Pareto 
frontier  (Knowles et  al. 2008), which represents the possible trade-offs between a 
problem’s objectives, making it possible to obtain valuable information about these 
trade-offs and sensitivity for weighting the various objectives in terms of an optimal 
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design solution (Possel et al. 2018). Among other reasons, however, this makes the 
multi-objective solution approach more complex than the single-objective version. 
Examples of single-objective solution approaches are Cipriani et  al. (2012); Chen 
et al. (2017); Nnene et al. (2017) and Cipriani et al. (2020), while multi-objective 
solution models include  Brands and van Berkum (2014); Heyken Soares et  al. 
(2019) and Momenitabar and Mattson (2021). Recent review articles on the TNDP 
include those by Durán-Micco and Vansteenwegen (2022), Iliopoulou et al. (2019), 
Ibarra-Rojas et al. (2015) and Johar et al. (2016).

SBO applications in transportation planning, especially transit network design, 
are of interest in this paper. The technique has been applied to different aspects of 
transportation research like traffic signal design control (Osorio and Selvam 2015; 
Osorio 2016), in which the authors combine a mathematical model with traffic 
simulators to identify points on a network with high-level performance in terms 
of a stated indicator.   Song et  al. (2013) performed the minimization of general-
ised cost on a multimodal transport system using a proprietary transport simulation 
software VISUM that was combined with a genetic algorithm. Furthermore,  Yan 
et al. (2013), in their attempt to solve the robust network design problem, used the 
Monte Carlo simulation to model travel demand flow with an embedded discrete 
choice model to represent passenger choices. While  Hassannayebi et  al. (2021) 
and Gao et al. (2022) receptively apply a discrete event simulation to the resched-
uling and passenger capacity analysis on rail services. Lastly,  Bal and Badurdeen 
(2022) apply SBO to the optimization of circular networks to make location and 
allocation decisions when implementing a lease and sell strategy. More relevant to 
this paper are the works of Dandl et al. (2021) and Ma and Chow (2022). This is 
because the authors use activity-based simulations in their solutions. The former 
presents an SBO solution framework, which combines Bayesian optimization with 
an agent-based transport system simulation within a tri-level optimization solution 
framework. Their research objective was to capture inter-decision dynamics between 
mobility service operators and commuters which could then be used to optimize and 
analyse policies that relate to service providers. Within their solution framework, 
the policymaker represented the highest level, the operator represented the middle 
level, and the traveler was at the lowest level. The Bayesian optimization algorithm 
was used to maximize social benefits for the authorities and profit for the operator, 
while agent-based simulation was used to simulate user behavior on the network. 
The model was applied to the case of toll and parking costs for automated mobility-
on-demand systems in Munich, Germany. Also, Ma and Chow (2022) proposed a 
bi-level modeling framework for solving the transit frequency setting problem. The 
authors used an analytical route cost function representing the upper level and a 
lower level represented by an agent-based market equilibrium function which takes 
the frequencies of the routes and outputs demand for the transit network represent-
ing the lower level. The problem is applied to the case of the Brooklyn bus network 
in New York, USA, which is done with the idea of understanding how the service 
performs in competition with dial-a-ride services.

Due to the increased understanding of the power of simulations in evaluating 
complex stochastic systems and the advancement of computation science, more 
researchers are using them in transit network design. The two works that use ABS 
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are most relevant to the model proposed in this paper though their problem objective 
and application context differ. As such, the authors make a valuable contribution in 
applying and advancing the use of SBO technique to solve the TNDP particularly in 
the context of public transportation. It is also important to highlight that the research 
in this paper is a metaheuristic SBO, combining a multi-objective metaheuristic 
algorithm known as the non-dominated sorting genetic algorithm NSGA-II with an 
agent-based travel demand simulation known as multi-agent transport simulation 
(MATSim). The following section discusses these two modeling components for the 
proposed model.

2.1  Modeling components

2.1.1  Non‑dominated sorting genetic algorithm‑II

Deb et al. (2000) is credited for the development of the NSGA-II, a typical multi-
objective evolutionary algorithm (MOEA). Their operations mimic biological phe-
nomena like genetics and bee or ant colonies, and they are thus called bio-inspired 
algorithms (Branke et al. 2008; Rangaiah and Bonilla-Petriciolet 2013; Elarbi et al. 
2017). This class of algorithms works by enabling the realization of newer and pre-
sumably better generations of solutions from existing ones. To apply the NSGA-II 
to the TNDP, an initial population that constitutes the problem’s search space must 
be generated. This population is made up of feasible network alternatives or chro-
mosomes, and each chromosome possesses genes or routes. The best-performing 
chromosome in the population often represents a near-optimum solution, given that 
for very difficult problems like the TNDP it is not feasible to know if a solution is 
optimum. The chromosomes or networks must also be encoded in a way that is ame-
nable to the algorithm’s operators. In the literature, string and binary encodings have 
been the most common representations used when solving the TNDP. In Buba and 
Lee (2018), a string is used to represent the network route, while a tuple is used to 
represent the route’s operational frequency as the number of vehicles operated per 
hour and the unique identifier for that route. However, in this paper an innovative 
encoding based on the JavaScript object notation (JSON) data structure (Crockford 
2011) is used to facilitate the simultaneous handling of the route network design 
and frequency setting problems. Details of this encoding and how it is used in the 
proposed SBTNDM are discussed in Sect. 4.3, where the model’s implementation 
is described. After encoding the network solutions, they are scored or evaluated 
against the objective function(s) of the problem. After this, the initialized solutions 
are evaluated against the objective functions and sorted into different Pareto fron-
tiers using the non-dominated sorting procedure. A solution is considered to be non-
dominated if it performs better than other solutions in at least one objective and is 
not worse than the other objectives. Hence, all non-dominated solutions are ranked 1 
and temporarily removed, then the next set of non-dominated solutions are identified 
and ranked till all the solutions are ranked. The rank of each frontier is assigned as 
their fitness score and used to indicate the dominance of solutions. After ranking the 
solution, a binary tournament selection operator is used to select parents that will 
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be used to reproduce the offspring. The operator randomly chooses two solutions, 
determines the fitter of both and then adds that one to the mating pool. To achieve 
this, the binary tournament operator uses a crowded comparison procedure, which 
measures the total distance of both solutions relative to their neighbours. The solu-
tion with a larger crowded distance is considered fitter and selected as the larger 
distance indicates a better spread in the Pareto frontier. First, the selected solutions 
are compared based on their dominance or rank value. However, if they both belong 
to the same front, i.e. they do not dominate each other, the crowding distance is then 
used to obtain the better solution. In the next step, the genetic operators, namely 
crossover and mutation, are used to create a population of children/offspring of a 
size equivalent to that of the first parent. These operators are used to generate off-
spring and introduce diversity in the population, respectively. Thereafter, the proce-
dure is slightly different from the first generation: the generated offspring and parent 
are merged to form a population that is twice the size of the original population in 
every subsequent generation. The merged population is evaluated and again ranked 
according to the non-dominance and crowding distance criteria, and the better-per-
forming half of the merged populations is selected as the new parent population. 
This process goes on iteratively until a specified termination condition is satisfied. 
Elitism is introduced in the algorithm by archiving a small percentage of the best-
performing, elite solutions from both the parent and offspring populations during 
successive generations, which are reused as part of the parent population in the next 
generation.

2.1.2  MATSim

MATSim is an activity-based multi-agent simulation framework which models the 
microscopic demand of travelers by simulating their daily activity schedule and 
decision-making on a transport network. The modeled travelers are called agents 
and the simulation is designed to model their travel demand and stochastic deci-
sion making in 24-hour periods. In terms modeling public transit systems, MAT-
Sim organises data in a format that is commonly used by public transit services 
worldwide  (Horni et al. 2016). A public transport network line modeled in MAT-
Sim will therefore comprise two or more transit routes. Each route serves one direc-
tion of travel and enables transit vehicles to move to and from the depot at the end 
and beginning of a day, respectively. The routes also have as an attribute the list of 
departures, which gives information about the time a vehicle starts at the first 
stop on that route. A route also includes a sequential list of transit stops that are 
served, alongside operating timetables that indicate when vehicles arrive or leave a 
stop. The times are specified as offsets in time units from the departure at the first 
stop so that at each subsequent stop, the offset is added to the initial departure time 
from the first stop. Each departure contains a vehicle’s start time on the route and a 
reference to the vehicle. As the timing information is part of the route, it becomes 
possible to have routes with identical stop sequences but different time offsets. Stop 
locations are described by their coordinates and an optional name or id. They must 
be assigned to unique lines of the network for the simulation. The hierarchical tree 
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structure for the schedule file can be seen in Figure 1 while the transit schedule file 
may be seen in Figure 2.

To model congestion on a public transit network, MATSim adopts a queue-based 
traffic flow model. This means that vehicles enter a link from an intersection, join 
the end of a waiting queue and remain there until the time required to travel the link 
with free flow has lapsed and they are at the head of the waiting queue. In terms of 
routing transit demand, an events-based public transport router is used in the MAT-
Sim simulation environment. Its main input are the commuter’s start time, origin 
and destination pair (OD). The router mimics reality in its ability to compute alter-
native routes for agents. Their originally scheduled departure can either be due to 
the late arrival of a vehicle or to it arriving full and being unable to take more pas-
sengers. This is achieved by taking the transit service’s given schedule as a base in 

Fig. 1  A hierarchical tree structure for the transit schedule file

Fig. 2  The MATSim transit schedule file with routes and their schedules
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the first iteration, then generating updated information on travel times, vehicle occu-
pancy, and waiting times between subsequent iterations.

Next, the operational steps required to model transport in MATSim are described. 

1. Initial demand generation: The initial demand is generated by creating daily activ-
ity plans from socioeconomic and demographic data of agents within a given 
transportation area. The demand is usually generated through sampling or discrete 
choice modeling and is subsequently converted to activity chains or plans for the 
agents.

2. Execution: This involves simulating the generated demand. The plans are executed 
sequentially by time of occurrence in a way that respects certain boundary condi-
tions, like the closing hours of a shop or the maximum link and flow capacity of 
a road. The constraint represents the physical infrastructure where the activities 
and trips will be undertaken (Meister et al. 2010). Another name for this step is 
mobility simulation, or mobsim for short.

3. Scoring: After executing the agents’ plans, the plans are evaluated. A score is 
obtained by evaluating the plan using a utility function known as a scoring func-
tion. MATSim uses the scores to measure and compare the quality of a passen-
ger’s plan to determine whether it should be dropped or not.

4. Replanning or innovation strategy: Agents adapt their plans in response to changes 
in the transit network, allowing the agent to modify their plans as they learn about 
prevailing network conditions, making it possible for the agent to maximize their 
experience on the public transport network. Details of these steps can be found 
in Horni et al. (2016).

5. Termination and post-analysis MATSim: This specifies a termination criterion 
that signals the simulation to stop when the condition has been met.  Meister 
et al. (2010) describe this termination point as an agent-based stochastic user 
equilibrium (SUE). The system runs until the score of the agent’s plan does not 
meaningfully improve, marking the end of the simulation. Post-analysis involves 
collecting and aggregating network performance indicators, passenger mileage 
and average trip duration to gain insight into the travel demand and simulated 
behavior of agents within the study area.

The input data for a MATSim simulation are the network which contains informa-
tion about nodes and links, plans which is the daily activity chains of all travelers, 
transit schedules that consist of routes and their departure times, transit vehicles 
which details the operational fleet and their characteristics and lastly, the configura-
tion file that is a collection of parameter settings needed to run the simulation. These 
are formatted as Extensible Markup Language (XML) (Bray et al. 2006) data struc-
tures. In this work, the transit supply side data such as the network and operational 
schedules can be extracted from General Transit Feed Specification (GTFS) data of 
a transit service. On the other hand, the demand data in MATSim is created from 
sources like travel diary surveys, census data and other passenger usage information 
sources. In this work the passenger activity chains were derived from automated fare 
collection data for the network being designed.
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3  Models

The overarching optimization goal of the work is to minimize costs for transit users 
and operators of the network. This is depicted in the objective functions in Equa-
tion  (1). For the user objective shown in Equation  (2), the expression is summa-
tion of total travel time, transfers and a penalty for unsatisfied demand. Total travel 
time is obtained by multiplying a monetary factor for time by the generalised cost of 
travel of the commuters. Generalised cost is the sum of the access time ( trka  ), waiting 
time ( trkw ), in-vehicle travel time ( trktrv ) and transfer time ( ntr ) where applicable. Due to 
the negative perception commuters have of transfers on the transit network (Owais 
2015), a time penalty ( �time ) is applied to trips involving transfers in the model. 
Lastly, the unsatisfied penalty is applied to each network solution for the amount 
of travel demand not satisfied by the network. It is obtained by multiplying the total 
unsatisfied demand ( qrku  ) by a time ( tu ) and monetary factor ( �unsat ) for unsatisfied 
demand. In Equation (3) the operators are concerned with the total operational cost, 
which is the sum of distance ( drkr  ) operated by the vehicle fleet ( nrk

b
 ) multiplied by 

a monetary factor for vehicle mileage and the total vehicle time trkr  multiplied by 
the fleet and its corresponding monetary factor. Operational distance is the cost that 
accrues from wear and tear on the operator’s vehicles as they traverse the desig-
nated routes to satisfy passenger demand and is typically measured in kilometres. 
However, operational time consists of personnel cost elements, such as salaries, that 
accrue throughout operations. By minimizing these objective functions, the total 
cost incurred on the network will be optimized for the stakeholders. Thus, the model 
is formulated as follows:

subject to an agent-based route selection model which is based on the conditional 
probability of the average route cost for both the user and operator

and some feasibility conditions on route length, frequency and vehicle fleet:

(1)Min ∶ Z1, Z2
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3.1  Sets

N = set of nodes on the network (-)
R = set of transit routes (-)
Rmr

 = set of segments rk that serves demand on route r (-)

3.1.1  Decision variables

r = route on the network (-);
rk = segment rk that serves demand on route r (-);
B = Total fleet size (-);

3.1.2  Parameters

Z1 = user cost objective function (-);
�time = monetary unit value for user travel time (’000);
t
rk
trv = travel time on route segment rk (hr);
q
rk
trv = travel demand on route segment rk (pax);

t
rk
a  = access time on route segment rk (hr);
q
rk
a  = passengers boarding on route segment rk (pax);

t
rk
w = waiting time on route segment rk (hr);
q
rk
w = passengers waiting on route segment rk (pax);

�time = time penalty associated with transfers (-);
ntr = transfers on a route r (-);
�unsat = monetary unit value for unsatisfied travel (’000);
t
rk
u  = time penalty for unsatisfied travel rk (hr);
q
rk
u  = volume of unsatisfied travel demand rk (pax);
Z2 = operator cost objective function (’000);
�dist = monetary unit value for vehicle mileage (’000);
d
rk
r  = length of route segment rk (km);
n
rk
b

 = bus operating on a route segment (-);
�op = monetary unit value for vehicle operating time (’000);
n = index of the agent (-);
Pn(k) = agent-based probabilistic route choice model (-);
E = mean traffic conditions on the network (-);
�(x) = network costs as a result of x (-);
x = network conditions (-);
{rn

k
} = all individual agent route demands on the network (-);

(5)n
rk
b
< B

(6)rtot ≤ Rmax

(7)dmin ≤ drk
r
≤ dmax
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dmin = minimum route length (km);
dmax = maximum route length (km);
rtot = number of designed routes (-);
Rmax = maximum number of routes that are allowed on the network (-);
The objectives are subject to an agent-based SUE  (Horni et  al. 2016) which 

describes the individual traveler’s behavior on a public transportation network. 
Equation  (4) is a probabilistic choice model that is used as a proxy for the agent-
based SUE with the assumption that travelers base their route choice on the average 
route costs on the network. This traffic assignment method is based on decoupling 
the steady flow of passengers on a network in the static and dynamic contexts to that 
of the individual traveler. Flötteröd and Rohde (2011) and Zhou and Taylor (2014) 
show that it is challenging to model traffic flow dynamics in complex networks, but 
disaggregating the OD matrix into individual trip makers allows for vehicle assign-
ment to each trip maker. On this premise, the user equilibrium (UE) and SUE can 
then be extended to a so-called disaggregate or particle case, where the particle 
represents the microscopic or single traveler with their route choices replaced with 
random variables. Hence, each traveler can draw routes from this choice distribu-
tion and the resulting distribution of traffic conditions regenerates the choice dis-
tribution. This method when combined with stochastic network loading that uses 
time-dependent trip departures and an extension of choice dimensions beyond the 
traditional ones (route and mode choice) used in UE to accommodate destination 
choice and others, leads to the realization of an agent-based model that describes 
fully the disaggregate behavior of agents on the network. However, the complex-
ity of the model means that it rather lends itself to simulation rather than an ana-
lytical solution. Hence, simulation ensures that each agent can optimize their plans 
on the network by modifying either their departure time, route, mode and destina-
tion choices. These choice dimensions define the variation that occurs in the agent’s 
plans during simulation. The process is repeated till the average score of the popu-
lation is stabilized or attains equilibrium which is also SUE as the optimization is 
performed in terms of individual scoring functions and within each traveler’s set 
of plans. This is achieved based on a co-evolutionary algorithm (Meneghini et al. 
2016) which optimizes each agent’s plan in competition for network resources with 
other agents, while respecting defined constraints.

In the description of the SBTNDM it is important to highlight that the route 
and fleet size are used as the problem’s decision variables. The latter serves as a 
proxy for the operator’s total budget. In the TNDP literature, a decision variable is 
a resource that is subject to the transit stakeholders’ choice in terms of its allocation 
(Curtin 2004). The limits or bounds of their availability are usually defined by a 
feasibility constraint, which is a parameter that defines the limiting conditions of the 
decision variable(s) in a TNDP. They generally define the feasibility of the optimiza-
tion problem and ensure that solutions are obtained within reasonable resource limi-
tations. The feasibility constraints for the model are those on vehicle fleet size, num-
ber of routes and total route length as seen in Equations (5) through Equation (7). 
These constraints are used to set the allowed limiting conditions for the allocation 
of resources on the transit network. Equation (5) is the fleet size constraint that rep-
resents the limits of the operator’s resources. This ensures that an optimal network 
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does not utilize more vehicles than the available number vehicles. Furthermore, the 
resources at an operator’s disposal determines what service frequency they can pro-
vide. Hence, the constraint on fleet size significantly affects the level of service that 
can be provided with a transit network design solution. Equation (6) defines a con-
straint on the maximum number of routes in the designed solution. This ensures that 
the maximum number of routes determined according to the current vehicle fleet 
size is not exceeded. The maximum number of routes has a big impact on fleet size 
and driver scheduling.

Lastly, Equation  (7) is a feasibility constraint on transit service route length. 
Usually, public transit operators will not run a service on routes that users can con-
veniently traverse by walking. Operators also avoid developing excessively long 
routes  (Cipriani et  al. 2012), as they make schedule adherence difficult and may 
require too many transfers, which users find unappealing (Walker 2011).

3.1.3  Modeling assumptions

The following assumptions are made in the model development: 

1. At the level of the network, a fixed total travel demand context is assumed.
2. A complete trip or satisfied demand may be in two forms: boarding–alighting 

(B–A) or boarding–connection–alighting (B–C–A). The former is a direct trip 
without transfer, while the latter is a trip satisfied with one transfer required. This 
specification aligns with how demand coverage is defined in this article: demand 
that is satisfied with zero or one transfer. It is assumed that commuters generally 
find a trip less attractive beyond one transfer and that this would lead them to 
search for alternative, more direct routes or even in some cases to change their 
mode of travel (Owais 2015).

3. In this work automated fare collection data is used to create the daily trip chains 
of the commuters which is subsequently converted to the initial demand used in 
the MATSim simulation.

4. In agent-based travel demand models, demand is generated from people’s activi-
ties at different locations based on various land uses; however, in this work it 
was not possible to obtain information concerning activities or activity locations 
outside the transit network. Consequently, activities refer strictly to transactions 
like passenger boarding, alighting transfers and others that occur on the network.

4  Solution procedure

Three steps are taken in the solution framework to realize the SBTNDM. The first is 
a heuristic route network generation algorithm (NGA), which is used to generate ini-
tial candidate transit networks. Secondly, an agent-based simulation route network 
evaluation procedure (NEP) is used to score the quality of each generated transit net-
work. Finally, an NSGA-II network search algorithm (NSA) is used to search for the 
Pareto-optimal set of network solutions. The reader is referred to Figure 3, in which 
the interaction between the three components of the model are shown.
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4.1  Network generation algorithm

The first stage of the SBTNDM involves creating a pool of feasible transit networks 
from which the first population of solutions will be initialized. An ad-hoc heuristic 
algorithm was developed for the network generation exercise. Its inputs include: (1) 
an existing transit network and its constituent routes, (2) the network size parameter 
(number of routes) and (3) feasibility criteria for route length ( rlen ), route directness 
( rdir ) – minimum deviation from the shortest path between a given origin destination 
pair and route overlap roverlap considered in this work as the maximum coincidence 
between the links of a route and the shortest path. These parameters are used to 
define the feasibility conditions for acceptable routes. The network generation heu-
ristic is developed with the Java programming language (Arnold and Gosling 2000), 
JGrapht  (Michail et  al. 2019)—an open-source graph creation and manipulating 
library—and XML (Bray et al. 2006). The existing transit network data is presented 
as one of the outputs of a General Transit Feed Specification (GTFS) feed (Wong 
2013), which involves extracting and reformatting the transit network and routes 
from the GTFS data. The network is then converted into a GraphML file (Brandes 
et al. 2002), a unique XML format for graphs. The conversion makes it possible to 
read the network as a graph with nodes, links and their attributes, and the graph 
can be manipulated with the JGrapht tool and graph theory operations. As part of 
the reformatting activity, the OD stops for existing network routes are extracted and 

Fig. 3  Flow diagram of SBTNDM
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used in the NGA. The steps taken to generate the feasible candidate networks with 
the NGA are: 

1. Read in OD pair data: The algorithm starts by reading in the OD pairs extracted 
from the existing network routes.

2. Generate multiple paths between each OD pair: Next, the k-shortest paths algo-
rithm by Yen (1971) is used to create a user-specified number of paths for all the 
OD or node pairs so that multiple routes can be enumerated between each OD 
pair. The k-shortest path algorithm typically generates multiple paths in increasing 
order of magnitude relative to a weighted cost factor. In this work, the path length 
in kilometres for each route is used as the cost factor. Therefore, if x paths are 
generated between an OD pair, the first path corresponds to the Dijkstra shortest 
path (SP) (Johnson 1973), and its length is equal to the beeline distance between 
the node pairs. The created paths, which will hereafter be referred to as alternate 
paths, are usually longer than the shortest path in increasing order of magnitude.

3. Check route length feasibility conditions for all routes: At this stage, the route 
length rlen feasibility is checked for both the shortest path and alternate paths to 
verify that a maximum and minimum route length condition is satisfied.

4. Check other feasibility conditions on the alternate paths: After satisfying the route 
length feasibility, other checks are carried out only on the alternate paths. The 
first one verifies the directness rdir of the route, checking that an alternate path 
does not deviate excessively from the geometry of the shortest path. 

(a) Check for route directness: This is important because users consider route 
deviations unappealing; hence, the deviation should be very small. How-
ever, it is sometimes necessary for a route to deviate to adjoining areas 
where a major transit route does not run to help cover demand in those 
areas. A factor of 1.2 is used in this work.

(b) Check for route overlap: The second feasibility condition is for route over-
lap roverlap , checking whether there is a similarity between the links of the 
shortest path and the alternate path. A minimum value of 0.5 has been used 
in this work, implying that each satisfactory alternate route must contain at 
least half of the shortest path’s constituent links.

(c) Check if the route exists already: Lastly, a final check is made to ensure that 
the alternate path does not currently exist in the list of stored routes.

5. Save the feasible routes for the current OD pair: If all the above-stated conditions 
are met, the alternate path is saved as a candidate route in a list created for the 
specific OD pair. This process is then repeated for all the OD pairs, with each 
OD pair having its own unique list wherein the routes generated for that OD are 
saved.

6. Perform stratified sampling of routes in all saved lists of routes: After generat-
ing the feasible routes, candidate network solutions are created by first using 
a stratified sampling technique to select routes from each OD and combining 
them into a network. In stratified sampling, a population is divided into various 
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sub-populations, and individuals are then selected from each group or strata to 
make up a random sample. See further details of stratified sampling in Dorofeev 
and Grant (2006). In this work, drawing from this sampling technique, the list 
of routes generated for each OD pair is considered a stratum. The sampling is 
then achieved by randomly choosing the routes from each stratum and combin-
ing them into networks to ensure that the order of the existing network OD pairs 
is retained after sampling. Through this process, a pool of feasible networks is 
generated. From this pool of feasible networks, the first population is initialized in 
the NSGA-II. In cases where it is not paramount to retain the order of the routes, 
the feasible networks generated for all the OD pairs can be placed in a single pool. 
Other sampling techniques, like random sampling, may then be used to generate 
the required number of networks.

7. Convert the sampled routes to a network transit schedule input file: The final 
step in the route generation process is to convert the candidate route networks to 
MATSim transit schedule files, the appropriate input format for the optimization 
algorithm. However, for the NSGA-II to operate on the solutions, a unique encod-
ing will be defined. Details of this will be revealed when the NSA is discussed.

4.2  Network evaluation procedure

In this step of the model, MATSim is used to evaluate the generated network solu-
tions, and a parallel implementation of a MATSim public transit scenario is set up 
for this purpose. This is called by the SBTNDM during the evaluation process, and 
MATSim is called each time a new solution is to be evaluated. Inputs for the NEP 
include: 

1. the initialized population of network alternatives,
2. a synthetic population of agents and their travel demands for a 24-hour activity 

plan created from the automated fare collection data,
3. an initial schedule of transit operations on the routes of the network, comprising 

a timetable with its detailed fleet schedule and vehicle departures and
4. a fleet of transit vehicles that will operate the schedules.

The network evaluation step outputs an objective function value or score, which is 
mapped to each evaluated network. The optimization algorithm then uses the score 
to rank the performance of each solution in the next step - NSA. Before evaluating a 
new solution, the subsisting transit schedule data file is overwritten, as it would have 
been altered during the NSGA-II reproduction. The MATSim simulation process 
then begins by executing and optimizing the users’ initial demand. At the end of 
the simulation, the resulting events files are analyzed to evaluate the objective func-
tions in Equations (2) and (3), respectively, with parameter values obtained from the 
events file. A score or objective function value is obtained from the analysis and that 
score is assigned to the current network solution, which is returned to the optimiza-
tion module for further processing. The MATSim scenario used in this paper was 
parallelized. The parallel implementation of the simulation is discussed next.
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One way to account for the randomness associated with stochastic processes 
is to simulate the process multiple times and use the mean result of the different 
simulation runs. In this research, the simulation experiment ran multiple instances 
of MATSim in each evaluation of the candidate network solutions. To satisfactorily 
describe the stochastic behavior of passengers on the transit network, multiple runs 
of the simulation are required in each iteration of the optimization process. MAT-
Sim has multi-threading capabilities, which means that it can run in parallel when 
extensive simulations or a high number of iterations are required. The paralleliza-
tion is achieved by setting MATSim’s numberOfThreads feature in the global 
module within the configuration file. Internally, each simulation or run is comprised 
of a user-specified number of MATSim iterations. Therefore, the number of itera-
tions required to achieve equilibrium in every run of the simulation, was experimen-
tally determined to be 80 iterations. Figure 4 shows the number of iterations for this 
model.

It should be noted that the iterations operate sequentially and not in parallel, 
because in the simulation each new iteration uses the results of the previous one as 
input. In essence, succeeding iterations learn from preceding ones until an equilib-
rium is achieved in the simulation. However, as multiple runs are required in this 
case, they can be set up in parallel. Each parallel MATSim simulation is executed 
in its own Java virtual machine (JVM)  (Arnold and Gosling 2000), because each 
simulation needs to use a unique pseudo-random number generator (PRNG) (Rahi-
mov et al. 2011; Matsumoto and Nishimura 1998). In the end, the various results are 
averaged and used. The collection of multiple runs is referred to as an ensemble of 
runs, and counts as one evaluation of the candidate networks. The MATSim ensem-
ble can be seen in Figure 5.

Fig. 4  Number of MATSim iterations for the SBTNDM; convergence occurs after 80 iterations
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In this work, 30 runs of the simulation are used in each ensemble. This value is 
obtained by experimentation. This means that to evaluate each network, 30 parallel 
runs of MATSim are executed.

4.3  Network search algorithm

The final stage of the model describes how the network optimization progresses and 
how a Pareto set of transit network solutions is realized. The main inputs used here 
are the feasible candidate solutions from the NGA and the objective function scores 
from the NEP, implying that at different stages of its operation, the NSA will call the 
NGA and NEP sub-routines. The generated network routes are converted to MAT-
Sim transit schedule files, which contain both the transit routes and their schedules. 
The format of these files is Extensible Markup Language (XML) (Bray et al. 2006).

An important step in evolutionary algorithms is to encode the phenotype of each 
solution. To this end, the transit schedule file which is initially in XML format, is 
converted to a JSON data structure, facilitating the efficient manipulation of the 
transit schedules with the genetic operators (selection, crossover and mutation) dur-
ing the reproduction process. However, this encoding scheme makes it necessary to 
customize the NSGA-II operators to enable them to manipulate the JSON format. 
As stated previously, the major advantage of this approach is that it accommodates 
the encoding of each network with a detailed operational schedule, thereby facilitat-
ing the simultaneous handling of the route network design and frequency setting 
sub-problems of the TNDP. The optimization process then starts with initializing 
the pool of feasible solutions in the NSGA-II. The initial population is evaluated 
with the NEP, thereafter, the NSGA-II’s crowding comparison operator is used to 
rank the solutions, based on the objective function scores obtained from the evalu-
ation step. Subsequently, pairs of the best performing solutions are selected from 
the population and encoded as JSON files to serve as parents in the reproduction 

Fig. 5  The parallel implementation of MATSim used in the SBTNDM
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process. The single point crossover and polynomial mutation operators are then 
used to perform the actual reproduction of offspring. The crossover and mutation 
operators adapt the genetic programming (GP) strategy which solves the problem 
of fixed length solution encoding commonly used in genetic algorithms by defining 
non-linear structures with different sizes and shapes. This is applicable to the XML 
and JSON decision variables, since the latter are tree-like structures. The method 
allows the direct manipulation of the encoded network variable with a crossover or 
mutation point corresponding to a node on the network while the genetic material or 
routes are swapped between nodes as demonstrated in Figures 6a, 7, 8a.

The flexibility of this approach entails that further customization, such as mul-
tiple point operations is possible. The crossover and mutation operators are con-
trolled by probabilities set to 0.75 and 0.25, respectively. For each offspring cre-
ated, a check is done of its topology to ensure it is logical. MATSim allows for the 
check to be done using its network cleaner function. After creating a new popula-
tion of offspring solutions, the offspring are merged with the parent population. The 
process continues iteratively with the better-performing solutions selected in each 
generation, thereby guaranteeing continuous improvement of the solutions until the 
termination criterion (number of generations) is reached. The latter is set to ensure 
that the algorithm stops once the criterion is satisfied. Lastly, the set of solutions 
obtained in the final generation are decoded by converting them from the JSON for-
mat back to the MATSim network and schedule files for further analysis.

Fig. 6  Parent networks chosen 
from the pool of feasible net-
work solutions
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Fig. 7  Offspring networks after 
crossover

Fig. 8  Offspring networks after 
mutation
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5  Results and discussion

In this section two tests are performed on the SBTNDM. The first tests are that of 
computational time and the performance of the algorithm in terms of its result qual-
ity. Two indicators – hypervolume and generational distance are used for the latter 
test. The numerical tests, on the other hand, involve the application of the model to 
a real network case study in the city of Cape Town, South Africa. These tests will 
demonstrate the robustness of the model and its practical application in the improve-
ment of large-scale networks. The tests are conducted with the national Centre for 
High Performance Computing’s Lengau cluster, which is a Dell Linux HPC cluster 
with a total of 1368 nodes and 32832 cores and allowing access to 240 nodes at a 
time. On this resource, one experiment took approximately 15 minutes to run. To 
show how the SBTNDM scales in terms of the network size, the number of routes 
in the network is varied from 10 to 50. The plot for computational time of the model 
can be seen in Figure 9. Computation time is observed to increase as the number of 
routes or network size increases.

5.1  Algorithm performance

In the computational tests, attributes of the model’s solutions such as their spread 
and convergence are measured. The tests also give parameter values that can be used 
when the model is applied to design scenarios. The result of an MOEA is a near-
optimal solution set, which is also called an approximation set and considered as an 
approximation of the often unknown Pareto front which is also called the reference 
set. The quality of MOEA solutions is therefore measured based on the proximity of 
the approximation set to the reference set in the search space (Coello et al. 2007), if 
the latter is known or available. When the reference set is not known as is the case 
with many TNDPs, it is possible to measure the quality of an MOEA’s solutions by 
checking factors like the convergence or the spread of solutions across the obtained 

Fig. 9  Plot of the computational time vs. network size
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Pareto front. Two performance indicators, namely hypervolume and generational 
distance, are used in this paper to measure the quality of the obtained solutions.

5.1.1  Hypervolume

The Hypervolume indicator measures the volume of a problem’s search space that is 
dominated by the approximation set (Bringmann and Friedrich 2013). The indicator 
is calculated relative to a reference point known as the nadir point which is usu-
ally the worst-case objective value for each objective function (Hadka 2017). Some 
advantages of the hypervolume indicator are that: 

1. it is easily adapted to problems with many objectives,
2. it is a measure of both convergence and diversity in an MOEA and
3. it does not require prior knowledge of the Pareto front to guide the search for a 

solution that approximates the former.

The main limitation of this indicator is that it is computationally expensive. In terms 
of its behavior, a higher hypervolume value indicates a better solution or approxima-
tion set, because it dominates a greater portion of the search space. Figure 10 shows 
a plot of the indicator after 50 generations of the SBTNDM. The figure shows that 
the value of the indicator steadily increases as the algorithm’s generations increase, 
implying that the SBTNDM’s solutions improve in successive generations, which 
matches the known behavior of the hypervolume indicator. The results also show 
that the indicator converges close to 50 generations; hence, the number of genera-
tions required to get near-optimal network solutions with the SBTNDM is 50.

5.1.2  Generational distance

The generational distance (GD) indicator is used to measure the convergence of the 
solution set obtained from an MOEA (Liu et al. 2019). It is obtained by measuring 
the average distance between each solution in the approximation set and the nearest 
one in an MOP’s reference set. Smaller values of the indicator are considered better. 

Fig. 10  Plot of the hypervolume 
indicator
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When the approximated set is a subset of the reference set, the GD is equal to zero. 
A plot of GD against the number of generations is shown in Figure 11.

If the approximation set contains a single solution that is too close to the refer-
ence set relative to other solutions in the set, the GD measurements may be unre-
alistically low, and for this reason GD is often combined with other quality or per-
formance indicators. The results show a convergence of indicator values after 45 
generations, and the behavior of the indicator observed in the figure is in line with 
its expected behavior.

5.2  Numerical results

The results discussed here were obtained by applying the SBTNDM to the design 
of the integrated Public transit network (IPTN) in Cape Town, South Africa. The 
IPTN which is a public transit network planned in anticipation of the future effect 
of urban growth on travel demand in Cape Town. It is a long term plan which is 
expected to be implemented in phases and intended to be fully functional by 2032. 
The plan involves a significant expansion of the city’s existing public transporta-
tion network. This is logical as the population of the city is expected to grow by 
approximately 37% by the target year. The current network comprises a bus network 
known as the Golden Arrow Bus Service (GABS), a bus rapid transit (BRT) net-
work and a rail network. When completed, it is expected that BRT and rail would 
form the backbone of the IPTN. This work focuses on the improvement of the BRT 
service. The network consists of 472 nodes and about 46 operational routes. The 
service is intended as the backbone for a planned larger and fully Integrated Rapid 
Transit Network (IRTN) in Cape Town, which comprised of other land-based public 
transport modes like a bus and rail service that currently operate with low efficiency. 
The BRT system offers a restricted tap-in and tap-out access to passengers at the 
terminals and with dedicated bus lines in high congestion areas like the central busi-
ness district. However, it shares network links with other road-based public transport 
modes like GABS in other areas within the network. Some inefficiencies have been 
identified, as the service experiences low ridership on some routes and there is also 

Fig. 11  Plot of the generational 
distance indicator
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a need to reduce the total operational costs of the system. An image of the network 
is given in Figure 12.

The application of the SBTNDM to this network optimization problem will, 
therefore, focus on the respective objectives of reducing user costs to attract more 
commuters and reducing the service operator’s total costs. Two main data sources 
are utilized, being the automated fare collection data from which the agent popula-
tion and their attributes are obtained and the GTFS data for the service from which 
the network, schedules and transit vehicles are obtained. One of the disadvantages 
of evolutionary algorithms is the randomness and uncertainty in the final solutions, 
meaning, that the produced solutions may vary with each run of the algorithm. This 
further means that though the solution scores might be the same, the detailed route 
structures and timetable schedules within the solutions might be different and, in 
actual operations, such small details can matter. From the perspective of transit 
operators who use the proposed optimization algorithm, it would be difficult to rely 
on the sets of solutions, since, they vary with each run. To prevent this, the results 
discussed here are from seeded runs of the model. In computational science, random 
seeds are used to generate a series of pseudo-random numbers that can replicate 
the state of an experiment or simulation (Gosavi 2015b). It implies that if all input 
parameters are kept constant, a simulation’s results would be the same if set to run 
with a given seed, and different if the random seed changes. The resulting Pareto set 

Fig. 12  The MyCiTi BRT network
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of solutions obtained by the SBTNDM is further evaluated, and the evaluation of 
each network solution is done with MATSim. The Pareto front can be seen in Fig-
ure 13. The plot shows the solutions plotted with the base case of the MyCiTi BRT 
network.

A visual observation of the plot reveals that among the solutions in the Pareto 
front, the network with the highest travel time also has the lowest operator cost and 
vice versa, which is indicative of the trade-off between both the users’ and opera-
tors’ perspectives. Users prefer direct trips that reduce their travel time, while opera-
tors prefer longer and slightly more circuitous routes that increase the volume of 
demand they can potentially satisfy while reducing their average service costs. Bal-
anced network solutions occur within the marked cluster in the middle of the plot in 
Figure 13. In the context of this work, the networks are considered to be balanced, 
as they exhibit the least conflict between the previously mentioned objectives, i.e, 
they are the best compromise solutions between the stated objectives. These solu-
tions are, therefore, regarded as the best trade-off network solutions to the problem. 
The above discussion, however, contrasts with the current situation of the MyCiTi 
BRT network, indicated as base network in Figure 13, which shows both higher user 
and higher operator objective cost values compared to the models’ solutions. This 
is indicative of the earlier mentioned operational issues of low ridership and high 
operational costs on the network. In Table  1 the objective function scores for the 
Pareto solution set and the base case are presented. The base network is clearly infe-
rior to the Pareto set of solutions as it performs worse than all solutions in the user 
cost objective.

Among the solutions obtained from the SBTNDM, network 1 has the lowest user 
cost or objective 1 score and will be referred to as the user-centric solution. This net-
work also has the highest operator cost or objective 2 score. By contrast, network 14 
has the lowest operator cost and will be called the operator-centric solution. As indi-
cated earlier, the best compromise between the objectives occurs between solutions 

Fig. 13  Pareto front plotted with the base case network
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6 through 11. However, network solution 8 shows the least difference in the values 
of both objectives. Hence, the balanced network is considered as one that shows the 
least conflict or the best compromise between the commuter’s and operator’s per-
spectives. To depict this clearly, the above objective scores are normalized by rescal-
ing them to a scale of 1 to 10 using the standard formula below.

where:
xmin = minimum objective function value
xmax = maximum objective function value
ymin = normalized scale minimum value
ymax = normalized scale maximum value
xi = objective function value to normalize
z = expected normalized objective function value
Subsequently, the normalized scores are ordered and plotted against one another. 

Table 2 shows a plot of the normalized objective function scores.
This facilitates the results being plotted on a similar scale, and the normalized 

scores are ordered and plotted against one another. Figure 14 shows a plot of the 
normalized objective function scores for the Pareto solutions.

Having identified these three network solutions – 1 (user-centric), 8 (balanced) 
and 14 (operator-centric) – as proxies for the perspectives mentioned above, they 
are then isolated for further analysis. The analysis is carried out to measure their 
performance in terms of different network performance indicators. The indicators 
used include total satisfied travel demand, total operational cost, network utilization 
percentages, unsatisfied demand, vehicle mileage and vehicle hours. The results of 
the analysis are presented in Table 3.

(8)z = ymin + (xi − xmin) ⋅ (ymax − ymin)∕(xmax − xmin)

Table 1  Raw objective function 
values

Network User cost (hours) Operator cost (’000)

1 519.79 24,767.52
2 520.51 24,536.12
3 525.85 24,304.72
4 532.02 24,073.32
5 535.50 23,976.82
6 544.26 23,745.42
7 552.67 23,648.92
8 555.06 23,514.02
9 560.16 23,417.52
10 572.36 23,321.01
11 587.91 23,186.12
12 602.20 23,089.61
13 609.32 22,993.11
14 633.37 22,979.07
Base network 647.55 24,228.14
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Table 2  Normalized objective 
function values

Network User cost Operator cost

1 1.00 10.00
2 1.06 8.84
3 1.48 7.67
4 1.97 6.51
5 2.24 6.02
6 2.94 4.86
7 3.61 4.37
8 3.79 3.69
9 4.20 3.21
10 5.17 2.72
11 6.40 2.04
12 7.53 1.56
13 7.59 1.97
14 8.09 1.07
15 10.00 1.00

Fig. 14  Network solutions on the Pareto front showing different compromise solutions

Table 3  Aggregate transit network performance indicators for the identified scenarios

Indicators Base network Solution 1 (User) Solution 8 (Balanced) Solution 14 
(Operator)

Satis. demand (pax) 24,928 34,216 31,694 29,590
utilization (%) 64.63 88.71 82.17 76.72
Veh. dist (km) 52,619.35 48,567.20 45,215.15 42,452.99
Veh. time (hr) 2,057.47 1,618.91 1,507.17 1,348.43
Op. cost (’000 ) 24228.14 24767.52 23514.02 22979.07
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In the table, the existing base network satisfies the smallest amount of demand, 
though its operational cost is less than that of solution 1 but more than the balanced 
and operator solutions. It should be noted that the increased effectiveness in terms of 
travel demand satisfaction, which is visible in the other networks when compared to 
the base network is attributable to latent demand that arises as a result of the network 
improvements achieved from optimizing the BRT system. On the other hand, solu-
tion 1 has the highest satisfied demand and network utilization, as well as the high-
est operational cost. This is similar to an optimization scenario in which the users’ 
objectives are prioritized and more passenger demand on direct routes is served. 
Therefore, circuitous routes and those running through transfer points will be mini-
mal or excluded where necessary. This also means that, on average, passengers will 
travel shorter distances to their destination, which will encourage more people to use 
the service. However, the increase in ridership leads to an attendant increment in the 
operational frequencies, because operators would like to maintain the attractiveness 
of their service and encourage continued patronage from commuters by sustaining 
a good level of service in terms of travel time. Typically, increased operational fre-
quency is a major cost driver for operators, as they must deploy more resources (per-
sonnel and fleet) on the network. In contrast, network solution 14 shows an opposite 
trend to that of solution 1, as it shows the lowest operator cost and lowest total net-
work utilization and is similar to a case in which the operator’s objective is prior-
itized. The results show that the operator has less vehicle mileage and operational 
hours than the user-centric solution, but it also satisfies less demand. This may be 
because trying to maximize network coverage by using circuitous routes may ulti-
mately discourage passengers who prefer the direct routes. A network that is skewed 
in favor of the operator will primarily contain routes that are longer than those pre-
ferred by users. Lastly, an optimal transit network solution would contain a mix of 
direct routes and other, more circuitous ones. Hence, the solutions earlier referred to 
as the best compromise solutions, respectively, represent a balance between the user 
and operator perspectives. As direct routes reduce operators’ ability to cover demand 
along more circuitous paths, an optimized solution must compromise between the 
needs of commuters and service operators, which is reflected in the middle column 
of Table  3 for solution 8, where the indicators have values between the user and 
operator perspectives. The results show that the solution does indeed offer the best 
compromise because it minimizes costs for all stakeholders. The outcomes discussed 
above are reinforced in Table 4, where the balanced network solution has indicator 
values that show a compromise between the users’ and operator’s perspectives.

Table 4  Average performance indicators at route level for the identified scenarios

Indicators Base network Solution 1 (User) Solution 8 
(Balanced)

Solution 14 
(Operator)

Route density (pax/route) 541.92 743.83 689.00 643.26
Avg. op. cost (’000) 526.70 538.42 511.17 499.55
Avg. veh. time (hr/route) 44.73 35.19 32.76 29.31
Avg. veh. dist (km/route) 1,143.90 1,055.81 982.94 922.89
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Fig. 15  Network map showing the local area around the CBD

Fig. 16  Network design results
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To see the details of the earlier discussed network results at a sizeable scale, a 
local area of the network results, covering the Central Business District in Cape 
Town and its surroundings are highlighted in the map (see Figure 15). The details 
are then shown in Figure 16a through Figure 16c, respectively, while an overlay of 
all three networks is also visible in Figure 16d. Lastly, these results show that sig-
nificant design improvements have been achieved with the SBTNDM during the 
optimization process. Furthermore, the balanced solution is the most attractive for 
all stakeholders, and it also offers better access to public transit services. Ultimately, 
depending on what a policymaker wishes to achieve, they can easily apply decision 
support tools such as a multi-criteria decision analysis to the obtained results to 
arrive at other trade-off solutions from the set of non-dominated solutions to match 
their priority. These results show that SBO can indeed yield reasonable network 
solutions when used in the TNDP process and that ABS can play an essential role in 
the process. In conclusion, the potential of the SBTNDM to use big data and other 
technological advances currently unfolding in the transit sector make it viable for 
modeling large-scale and complex transport scenarios.

6  Limitations

One limitation of the model presented in this work is the fact that an ABM is data-
intensive and computationally expensive in terms of the resources required to simu-
late the model, due to the microscopic level of data needed to build the models. 
However, future improvements in the computational performances and speeds will 
most likely address this limitation. Another limitation of this work is that passen-
ger activities are derived strictly from automated fare collection data on the system. 
While being sufficient for the work, it is useful to expand the activities beyond net-
work-related activities.

7  Conclusion

Simulation-based optimization offers a new approach to tackle the TNDP. It solves 
the problem through the combination of optimization and simulation models. 
Though simulations are computationally resource-hungry, given the number of 
evaluations required to solve a problem, they have the distinct advantage that the 
stochastic behavior of agents and other random and realistic occurrences on the net-
work can now be simulated within the network design solution model. Furthermore, 
advances in computational sciences entails that increasingly large scenarios can now 
be simulated in shorter time frames. In this work the authors present the so-called 
SBTNDM which combines activity-based travel simulation known as MATSim with 
the NSGA-II. Results of applying the model to the MyCiTi BRT in Cape Town, 
South Africa reveals that the designed network solutions perform better than the net-
work in terms of travel time reduction for users and operational cost reduction for 
operators of the service. Practically, the SBTNDM improves public transport net-
works in line with the objectives of the network user and operator. As a decision 
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support tool, the model will be useful in guiding policymakers in Cape Town in 
making policy decisions that are relevant to the transportation context and realities 
of today. Overall, the use of SBO in solving the TNDP makes it possible to broaden 
the potential design objectives, variables and performance measures that can be 
used in the network design and optimization process. This enables the implemen-
tation of network optimization studies in increasingly complex scenarios, such as 
those that are sensitive to time of day, pricing elasticities and/or that require detailed 
traveler behavior. In terms of research directions that might extend from this work 
in the future, the primary consideration should be to extend the application of the 
SBTNDM to a multi-modal network context to study modal integration. There is 
also potential to study the transit network frequency setting problem with SBTNDM.
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