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Abstract
Public transport has become an essential part of urban existence with increased pop-
ulation densities and environmental awareness. Large quantities of data are currently 
generated, allowing for more robust methods to understand travel behavior by har-
vesting smart card usage. However, public transport datasets suffer from data integ-
rity problems; boarding stop information may be missing due to imperfect acquire-
ment processes or inadequate reporting. This study introduces a supervised machine 
learning method to impute missing boarding stops based on ordinal classification 
using GTFS timetable, smart card, and geospatial datasets. A new metric, Pareto 
Accuracy, is suggested to evaluate algorithms where classes have an ordinal nature. 
The results are based on a case study in the city of Beer Sheva, Israel, consisting of 
one month of smart card data. We show that our proposed method is robust to irreg-
ular travelers and significantly outperforms well-known imputation methods without 
the need to mine any additional datasets. The data validation from another Israeli 
city using transfer learning shows the presented model is general and context-free. 
The implications for transportation planning and travel behavior research are further 
discussed.
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1 Introduction

Public transport (PT) is an integral part of everyday life in many cities. The grad-
ual shift of the global population over the past century to urban areas is markedly 
increasing people’s dependence on PT for their daily mobility needs (Petrović 
et al. 2016). PT is a complex system that is based on physical elements of stops, 
vehicles, routes, and other temporal and spatial elements (Ceder 2016). The PT 
system consists of regularly scheduled vehicle trips open to all paying passengers, 
with the capacity to carry multiple passengers whose trips may have different 
origins, destinations, and purposes (Walker 2012). PT is ideal when passengers 
regard its service as punctual and regular (Walker 2012). With the growth in the 
number of cars on urban roads, PT improvements have become an essential part 
of traffic congestion mitigation strategies and are vital in promoting sustainable 
transportation (Al  Mamun and Lownes 2011). Although understanding the pat-
terns of PT use is crucial to its planning, this task remains a significant challenge 
in practice and research.

Numerous studies in recent years have examined the behavior of PT travelers (Li 
et al. 2018) in efforts to address this challenge. Habitual travel behavior is of great 
interest to transportation planners, and its analysis can help improve demand predic-
tions and justify necessary upgrades to PT supply (Briand et al. 2017). This analysis 
can also contribute to improvements in PT (service/planning/upgrades) with respect 
to the management of COVID transmission, in terms of providing better information 
on crowded areas, such as bus stops, which is critically important to the global issue 
of public health. To this end, transportation planners typically use travel behavior 
surveys (Stopher and Greaves 2007). While these surveys statistically reflect travel 
behavior correctly, they are also expensive, time-consuming, and often unable to 
generate sufficient amounts of data relative to the size of the population, and would 
need significant changes in scope to cover recent COVID concerns.

Conversely, data harvested from smart cards can generate millions of records 
compared to a typical sample ranging from 2,500 to 10,000 households using 
surveys (Maeda et  al. 2019). Smart cards, also known as automatic fare collec-
tion (AFC), provide an efficient and cost-saving alternative to the manual fare 
collection method (Jang 2010; Chen and Fan 2018). In addition to fulfilling fare 
collection needs, as a bi-product, smart card transactions also generate geocoded 
timestamps that record every passenger’s boardings, line transfers, and sometimes 
alightings for a wide range of PT vehicles (bus, tram, train, or metro) (Pelletier 
et al. 2011; Faroqi et al. 2018). These records are generated for almost the entire 
passenger population (Pelletier et al. 2011; Faroqi et al. 2018). Such information 
is a treasure trove for travel behavior analyses, especially for extracting passen-
gers’ spatio-temporal travel patterns (e.g., Origin–Destination matrices or path 
choice (Wang et al. 2011)). Nevertheless, common statistical inference methods 
applied in surveys are of little practical use for understanding the travel patterns 
of an entire population. Therefore, different methods are required.

Kandt and Batty (2021) proclaimed a new area of urban research defined by 
advances in big data analytics, with smoother decision making and a deeper 
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understanding of urban systems. A massive increase in the volumes, velocities 
and varieties of big data have also been paralleled by recent developments in the 
data science field. New data mining tools and robust cloud computing capabilities 
(Li et al. 2015, 2018) create new opportunities to analyze travel behavior patterns 
at the individual level, over extended periods, and in large urban areas (Ma et al.  
2017). The availability of big data has a vast potential to improve the quality of 
transportation planning and research, and by applying big data analytics and data 
mining methods, this task has become much more feasible (Ma et al. 2013).

However, similar to the case in other domains, the veracity of such datasets 
remains questionable (Ben-Elia et al. 2018). Smart card datasets, in particular, may 
suffer from integrity problems, such as incorrect or missing values, e.g., when oper-
ators only record partial data. For example, in Yan et al. (2019), boarding stop infor-
mation was completely missing, and only time stamps remained intact in the dataset. 
A common solution for such problems is to replace the missing or erroneous data 
by utilizing alternative publicly accessible data. One possible solution is to use offi-
cial PT timetables to impute the missing data in missing boarding stop information. 
One popular source for such data comes from the General Transit Feed Specification 
(GTFS), first created in 2006 by Google (Google, 2016), defined as a standard file 
format for storing PT schedules and associated geographic information (Ma et  al. 
2012). GTFS contains the complete schedules and routes of every PT line planned 
for each day of the month in tabular formats together with corresponding geographic 
shapefiles and is widely used in over 750 urban regions across the world (Hadas 
2013; Antrim et al. 2013).

Nonetheless, PT running times and arrival times at stops are never perfectly 
aligned with their official timetables, where PT is not always punctual, even in 
developed countries. For example, Cats and Loutos (2016) found that only 10% of 
all arrivals were within an interval of 15 s. This issue becomes more acute, espe-
cially when PT vehicles–mainly buses–also share the same road space with private 
and commercial vehicles (i.e., mixed traffic). While this issue is less severe in major 
urban areas in developed countries where rail-based and PT bus preemption infra-
structure is widespread and right-of-way strongly enforced, this is not the reality 
everywhere. For example, in Israel (an official OECD member), buses accounted 
nationally for 85% of PT trips in 2019, with more than 2M passengers served daily. 
The country suffers from a shortage of adequate PT infrastructure (namely, too few 
priority lanes—14 m per capita, compared to 300 m in the EU), thus resulting in 
poor PT service punctuality (Ceder 2004). As shown later, this fact makes schedule-
based imputation a poor substitute for boarding stop prediction. A second solution is 
to discard such data by simply removing missing records or those that do not align 
with a prescribed hypothesis (Tao et al. 2014). Nonetheless, discarding data can be 
regarded as a reasonable solution only when that share of the missing data is small. 
However, when the missing portion is substantial, the whole dataset could be com-
promised and discarded. This scenario can render certain urban areas effectively 
blind vis-a-vis smart card data. A third option is to complement the missing data 
by combining different datasets. In this respect, either automatic vehicle location 
(or AVL), which uses installed GPS transponders to locate PT vehicles and esti-
mate real-time arrival times at designated stops; or automatic passenger counters (or 
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APC), which use infrared or laser technologies to estimate boarding and alighting 
passenger numbers, have been used in combination with smart card data (Shalaby 
and Farhan 2004; Mazloumi et al. 2010; Khiari et al. 2016). Yet, such data is neither 
always available (Chen and Fan 2018; Yan et al. 2019), nor efficient, as consider-
ably more errors may well be introduced in the process (Luo et al. 2018). These two 
facts likely reduce their suitability for data imputation. Moreover, even when such 
data sources exist, matching between them is somewhat challenging. For example, 
Lou et  al. (2018) had no vehicle trip identification (ID), making it impossible to 
match with AVL records. A further difficulty is that missing data can vary by city 
or between different operators (Laña et  al. 2018). In some cities, data integrity is 
regarded as very strong, and consequently, boarding and alighting imputation tasks 
are very good (Munizaga et al. 2014). In contrast, in other cities where data sources 
are lacking, data integrity can also be flawed.

The lack of common standards and methods for data handling and processing 
across the PT modes and sectors has been identified as a main problem hindering 
efficient utilization of smart cards and other PT-related data. Such a data interoper-
ability requires developing a standardized application approach that will allow data 
mining tools and models to be tested and implemented as asserted by Covic and 
Voß (2019). In this respect heuristic methods, such as ML, can be regarded as a 
viable solution to perform data imputation tasks (Yan et al. 2019). To this end, our 
aim is a general and context-free boarding stop imputation method. Specifically, 
we address use cases where data quality is considered too insufficient to impute by 
cross-inference and without the need to harvest any other data than what is neces-
sary. While still providing valuable insights for transportation planners, we consider 
this of particular relevance for developing countries where the traveler population is 
mostly PT-dependent. We established a general boarding stop imputation method to 
improve the quality and integrity of PT datasets by predicting missing or corrupted 
travelers’ records in smart card data.

Namely, to the best of our knowledge, we developed the first machine learning 
(ML) algorithm for predicting passengers’ boarding stops (see Fig.  1). Our algo-
rithm is based on features extracted by harvesting three big data sources, the planned 
GTFS schedule data, smart card (AFC) data, and geospatial (GIS) data. We applied 
a machine learning model to these features to predict boarding stops based on the 
notion of embedding (see Sect.  3). To train and evaluate our algorithm’s perfor-
mance, we utilized a real-world smart card dataset from the city of Beer Sheva in 
Israel that consists of over a million trips taken by more than 85,000 passengers. 
Since the boarding stops are embedded, they also become ordered, and therefore, 
the problem we addressed is ordinal classification. Accordingly, we also propose a 
new method of evaluation that shows the percentage in each error dimension that 
we define as Pareto Accuracy, which is more interpretable and allows for better 
comparison between imputation models. We show that our model performed sig-
nificantly better than a naïve prediction model based on harvesting GTFS data alone 
(aka schedule-based) and other imputation methods.

In this study, we succeeded to generate a model which is both wholly generic 
and has considerably higher accuracy and recall values than other tested imputa-
tion methods (see Sect. 4). Additionally, we demonstrated that we obtain similar 
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prediction results in an entirely different city using our method. Moreover, we 
show how other imputation methods are not always applicable, while our method-
ology can be applied with a broader scope.

Our study’s overall focus is to improve the integrity of public transport data. 
Specifically, our study provides the following two main contributions: 

1. We present a novel prediction model for imputing missing boarding stops using 
supervised learning. Moreover, our proposed model is generic and transferable, 
i.e., it can be trained on one city’s data and then impute missing data in another 
municipality.

2. We propose a new metric—Pareto Accuracy—for evaluating public transport 
metrics that are more interpretable and allow broader comparisons between impu-
tation models.

The rest of the paper is organized as follows: In Sect. 2, we review related work 
on smart card usage, missing data imputation, and ML applications in transpor-
tation research. Section  3 describes the use case, experimental framework, and 
methods used to develop the ML model and the extraction of its features. In 
Sect. 4, we present the results of the ML model and compare its performance to 
other known solutions. In Sect. 5, we discuss the implications of the findings and 
the study’s limitations and present our conclusions and future research directions.

Fig. 1  Predicting missing boarding stops algorithm overview
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2  Related work

We provide an overview of relevant studies by first presenting smart card research 
in general, followed by studies that have utilized smart card data with machine 
learning to perform predictive analytics. We then give an overview of the field 
of missing data imputation. Lastly, we present studies in the field of ordinal 
classification.

2.1  Smart card analytics

The smart card system was introduced as a smart and efficient AFC system in 
the early 2000s (Chien et al. 2002) and has since become an increasingly popu-
lar payment method (Bagchi and White 2005; Trépanier et al. 2007). In particu-
lar, smart cards have also become an increasingly popular source of big data for 
research and policy making (Agard et al. 2006; Jang 2010). For example, smart 
card data is used for exploring travel behavior, determining travel patterns, meas-
uring the performance of PT services, locating critical transfer points, and ana-
lyzing crowdedness effects on route choice (Bryan and Blythe 2007; Jang 2010; 
Alguero 2013; Zhao et al. 2017; Li et al. 2018; Yap et al. 2020). Recently, smart 
card datasets were used to study travel behavior changes to travel behavior as a 
result of the COVID-19 pandemic  (Almlöf et al. 2020; Orro et al. 2020; Zhang 
et al. 2021). Comprehensive literature reviews of smart card usage were provided 
by Pelletier et al. (2011), Schmöcker et al. (2017), and Faroqi et al. (2018).

Initially, smart card research applied rather classic statistical methods and 
descriptive analytics. Devillaine et  al. (2012) inferred the location, time, dura-
tion, and designation of PT users’ activities using rules derived from smart card 
data and work and study schedules. The main research challenge evident in the 
literature was to estimate origin–destination (OD) matrices which describe the 
spatial distribution of travel demand between locations during different periods of 
the day (Chu and Chapleau 2008; Wang et al. 2011; Munizaga and Palma 2012; 
Gordon et  al. 2013). OD matrices are also crucial inputs to perform the three 
stages in PT network design, namely: route design, frequency (headway) setting, 
and timetabling (Guihaire and Hao 2008). Before the advent of smart cards, these 
matrices were only derived and validated based on some representative sample 
of travelers (Chen et  al. 2016). However, as noted, surveys often lack sufficient 
spatial and temporal coverage. Various studies have demonstrated the advances in 
OD estimation with smart card data (Chu and Chapleau 2008; Wang et al. 2011; 
Munizaga and Palma 2012; Gordon et al. 2013).

Nevertheless, with the introduction of smart cards, new problems in OD esti-
mation appeared. Namely, many PT agencies adopted a TAP (Transit Access 
Protocol) IN system where only boarding stop information is recorded. In con-
trast, the availability of alighting stop information “TAP IN+TAP OUT” systems 
allows for the OD matrix to be derived using more straightforward approaches. 
Alighting stop information is necessary for many tasks such as route loading 
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profiles, market research, and improvements in service planning. However, under 
TAP IN, the destination must be somehow predicted (Trépanier et  al. 2007; 
Faroqi et al. 2018).

In addition, combining smart card data with a smaller scale travel behavior survey 
for validation purposes is a useful approach to better understand passengers’ daily 
travel patterns (Wang et al. 2011). Nonetheless, OD analyses inherently assume that 
PT passengers travel routinely back and forth from/to the same locations. Recent 
findings suggest this assumption does not necessarily hold, and some share of PT 
passengers are quite flexible (Huang et al. 2018) or use PT infrequently (Benenson 
et al. 2019). Therefore, a simple OD estimation will possibly result in PT planning 
that is mismatched with actual demand patterns.

Traditional analysis methods do not take advantage of the full potential of the 
added value of big data. At the same time, rapid growth in power and cost reduction 
in computational technologies provide new opportunities, both in terms of the avail-
ability of the massive amount of data collected and the development of more novel 
algorithms (Welch and Widita 2019). Agard et al. (2006) obtained travel behavior 
indicators that identify daily travel patterns and clustering of major user groups. 
Kieu et al. (2015) applied a density-based spatial clustering application with noise 
(DBSCAN) algorithm to cluster passengers and identify classes of passengers for 
strategic planning improvements. Ma et al. (2013) used smart card data to cluster the 
travel patterns of PT riders to characterize commuter profiles.

In this respect, the literature shows a shift toward harvesting the prognostic 
nature of ML to yield better predictive analytics highlighting the growing emphasis 
on using smart card data for analytical purposes. This shift underscores the change 
from the more straightforward analyses conducted in the past to the more compre-
hensive analysis done today. Hagenauer and Helbich (2017) compared several ML 
classifiers and showed both their predictive power and ability to uncover travelers’ 
mode choices via feature importance analysis. For example, they showed that the 
trip distance was the most important predicting factor, while the temperature was 
only a key feature for predicting bicycle use. In 2018, Palacio (2018) showed that 
ML predictions are much more accurate than traditional linear models that were 
sub-optimal both in terms of R-square and MSE. In the following year, Traut and 
Steinfeld (2019) combined smart card data with crime records to assist agencies in 
identifying insecure and dangerous PT stops. Chen et al. (2016), who inferred mode 
and route choices, stress the need for cross-disciplinary collaborations between data 
scientists and transportation planners to exploit the information withheld in the 
data. Further evidence of the prominence of big data analytics in PT research can 
be found in several review papers such as Fonzone et al. (2016), Namiot and Sneps-
Sneppe (2017), Anda et al. (2017), Li et al. (2018), and Milne and Watling (2019).

Deep learning algorithms have also been utilized to address PT issues using 
smart card data. Deep learning is a sub-field of ML that automatically creates fea-
ture engineering, and its methods are state-of-the-art in many domains. Examples 
of such implementations include forecasting passenger destinations (Toqué et al. 
2016; Jung and Sohn 2017), predicting multimodal passenger flows (Toqué et al. 
2017), improving passenger segmentation (Dacheng et  al. 2018), inference of 
passenger employment status (Zhang and Cheng 2020), and using standard deep 
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network and long- and short-term memory networks, inference of demographics 
using convolutional neural networks (Zhang et al. 2019).

2.2  Missing data imputation

Incomplete data is a universal problem, and the application of different imputa-
tion methods will often yield different results. Therefore, to preserve reproduc-
ibility, they must be adequately addressed (Saunders et  al. 2006). This problem 
is, notably, relevant for transportation planning, e.g., in the case of road traffic 
analysis (Qu et  al. 2009). Incomplete data is a well-known problem in the data 
mining literature where a significant amount of data can be missing or incorrect. 
Lakshminarayan et al. (1996) elucidated both the severity of this issue as well as 
recommended applying ML techniques toward its solution rather than classical 
statistical methods. Batista and Monard (2003) assert that missing data imputa-
tion must be carefully handled to prevent bias from being introduced. Moreover, 
they show that the most common methods, such as mean or mode imputation, are 
not always optimal. One example we found in the PT literature is from Kusak-
abe and Asakura (2014). They used a Naïve Bayesian model for data imputation 
and analysis of PT to understand continuous long-term changes in trip attributes. 
They showed both the power of smart card data and the usefulness of missing 
data imputation in this field. Their method of imputation, however, is not reported 
in sufficient detail to be understood or replicated.

Several techniques to optimize missing data imputation showed the importance 
attributed to this area of research (Bertsimas et al. 2017). Moreover, even state-
of-the-art deep learning methods have been applied to this problem (Garg et al. 
2018; Costa et al. 2018; Camino et al. 2019). These implementations were per-
formed on a variety of datasets and problems, such as classification of continuous 
attributes (breast cancer and default credit card classification); images (Camino 
et  al. 2019; Garg et  al. 2018); and regression (Camino et  al. 2019). Insofar as 
this field of study has not been operationalized for PT data, further examination 
is warranted, particularly when considering the issue of completing missing data 
to provide better information on crowded PT areas, as it pertains to the spread of 
COVID.

In many imputation tasks, including PT, ML methods outperform standard 
methods significantly when the missing portion increases (Saunders et al. 2006; 
Laña et  al. 2018; Echaniz et  al. 2020; Yan et  al. 2019). Additionally, standard 
imputation methods are too sensitive to the ratio of missing data and infrequent 
or ‘irregular’ users of the PT network (Van  Lint et  al. 2005). Conversely, ML-
based imputation showed stable results regardless of the missing ratio (Laña et al. 
2018). As noted previously, one solution is to impute the missing boarding stops 
using complementary datasets such as AVL or APC. However, AVL data are 
not always available (Chen and Fan 2018), whereas combining several datasets 
(i.e., AVL, AFC, APC, GTFS, etc.) can introduce more errors, and make it much 
harder to match them perfectly (Luo et al. 2018).



295

1 3

Imputing missing boarding stops in smart card data

2.3  Ordinal classification

Classification is a form of supervised ML that aims to generalize a hypothesis from 
a given set of records. It learns to create h(xi) → yi where y has a finite number of 
classes (Kotsiantis et al. 2007). The basic metrics for classification are sensitivity, 
specificity, and accuracy (Jiao and Du 2016). Accuracy is the percentage of obser-
vations classified correctly, specificity is the percentage of true negatives classi-
fied correctly, and sensitivity is the percentage of true positives classified correctly. 
A classification task becomes ordered when the classes have some inherent order 
between them. There are a variety of metrics to evaluate supervised learning algo-
rithms (Liu et al. 2014). Each metric has its advantages and limitations. This study 
introduces the Pareto Accuracy (see Sect. 3.3), suitable for assessing the constructed 
classifiers’ performances in imputing missing boarding stops based on ordinal 
classification.

Ordinal classification is a form of multi-class classification where the classes 
exhibit some natural ordering (such as cold, warm, and hot), but not necessarily 
numerical traits for each class. Rather than being chosen based on the traditional 
metrics discussed above, a classifier may be chosen based on the severity of its 
errors (Gaudette and Japkowicz 2009). Additionally, classic modeling techniques 
will sometimes perform suboptimally since ML models assume there is no order 
between classes. In such tasks, e.g., the well-known Boston housing and breast can-
cer datasets, different models that take advantage of ordinal information are pre-
ferred (Frank and Hall 2001). In this case, additional metrics are proposed to cal-
culate such tasks differently, such as regression metrics like Mean Absolute Error 
(MAE) and the Mean Square Error (MSE) and even their own metric, the Ordinal 
Classification Index (Cardoso and Sousa 2011). Notwithstanding, as noted below, 
these approaches neither fit our data nor our needs. Therefore, we developed a dif-
ferent and novel performance metric (see Sect. 3.3).

3  Methods

The main goal of our study is to use ML algorithms to improve the integrity of PT 
data. Specifically, we develop a supervised learning-based model to impute missing 
boarding stops in any given smart card dataset. Moreover, our goal is to construct a 
generic model that will be fully transferable to other datasets to impute missing data 
in different contexts without further adjustments.

To maintain these generic objectives, we had to contend with two significant 
challenges: First, we could only incorporate generic properties in our model. For 
instance, our model cannot include the actual line number of a bus route specific to 
a particular city. Moreover, since supervised ML algorithms can only predict classes 
they were initially trained upon, classification classes must remain the same across 
datasets, e.g., bus stop #14 in a specific city is an irrelevant feature for other cit-
ies. Therefore, once more, a different numerical representation is applied by embed-
ding (see Sect. 3.2). Second, we develop a genuinely generic model that can also 
be applied to other geographical contexts in which it was not initially trained. The 
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model must also undergo a process of transfer learning (Torrey and Shavlik 2010) 
that entails the transfer of relevant knowledge by fine-tuning a model on a “novel” 
dataset. In our case, our model underwent the process of transfer learning using a 
dataset on which it had not been trained before.

The missing boarding stop values were imputed using the following methodology 
(see Figs. 1 and 2): First, we preprocessed and cleaned the smart card dataset that 
we utilized in this study (see Sect.  3.1). Next, we extracted various features from 
two other datasets: (a) the GTFS timetable data; and (b) open municipal geospa-
tial data. In addition, we converted boarding stops from their original identifiers to 
embedded numerical representations based on GTFS data (see Sect. 3.2). Afterward, 
we applied ML algorithms to estimate a model that can predict the missing board-
ing stops. We used SHAP (SHapley Additive exPlanations) values for determining 
feature importance (Lundberg and Lee 2017),1 i.e., which features make the most 
substantial contribution to the predictive power of the model (see Fig. 8). We also 
evaluated the performance of our model using a novel performance metric called 
Pareto Accuracy. Then, based also on common metrics, we evaluated our model rel-
ative to a schedule-based model estimated only on GTFS timetable data. Finally, we 
compared our model to several other comparative models (e.g., passenger history, 
temporal proximity, or semi-random guessing) that were previously used in the lit-
erature. Below, we describe each step of our approach in more detail.

3.1  Datasets and data preprocessing

As noted above, we used three datasets: 

1. The Smart card dataset—“Rav Kav” is the Israeli AFC system applying the TAP 
protocol, allowing PT passengers to pay for their trip using their smartcards any-
where in the country. Rav-Kav operates a nationwide TAP IN for buses and rail 
that codes information on unique passenger identifiers, traveler types (such as 
student or senior travelers), boarding stops, boarding timestamps, fares, discount 
attributes, and unique trip identifiers of the line at that time. For rail trips only, 
TAP OUT also records alighting stops and times. During the period 2018/9, circa 
2M boardings were recorded per day in the entire country.

Fig. 2  Modeling methodology overview

1 “SHAP (SHapley Additive exPlanations) is a game-theoretic approach to explain the output of any 
machine learning model. It connects optimal credit allocation with local explanations using the classic 
Shapley values from game theory and related extensions” https:// github. com/ slund berg/ shap.

https://github.com/slundberg/shap
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2. GTFS—a GTFS feed, as described above, consists of rail/bus schedules and time-
tables, stops, and routes of every PT trip planned for every day of the month. In 
Israel since 2012, the GTFS feed has been published daily online by the Ministry 
of Transport, providing schedules of 36 bus and rail operators, encompassing 
7,800 route-direction-pattern alternatives served by 28,000 bus and rail stations. 
The GTFS feed aligns with the smart card dataset as described below. This study 
utilized the GTFS dataset to enrich the feature space and convert boarding stop 
records into an embedded numerical value.

3. Geospatial information—we derived a variety of geospatial attributes from 
municipal GIS databases.

To obtain a dataset suitable for constructing the prediction model, we were required 
to remove any record that lacked a boarding stop or a trip ID (a unique identifier of 
a trip provided by a specific and unique PT operator) from the smart card dataset. 
Next, we joined the smart card dataset with the GTFS dataset by matching the trip 
ID attributes. Lastly, we joined the geospatial dataset with the smart card dataset 
using the GTFS dataset, which contains all the geographic coordinates of each PT 
route.

3.2  Feature extraction and machine learning model construction

ML performance is highly correlated to the quality of the feature space, and there-
fore, including more features results in better model performance (Gudivada et al. 
2017). While the smart card data contains the PT line and boarding time of each 
passenger, it lacked several essential data, such as the duration that had elapsed 
since that line left the origin depot, the time remained until arrival to the final des-
tination, the total number of stops, and other relevant trip attributes. Moreover, the 
smart card data is missing physical geospatial characteristics, such as the number of 
traffic lights on the PT route that more likely increases traffic congestion and conse-
quent delays, and could well strengthen model performance.

Overall, three features were extracted using the smart card dataset, five features 
using the GTFS dataset, three features using the geospatial dataset and four from 
combined GTFS and smart card datasets. From the 41 features we initially tested in 
total, we selected 15 to include in our model based on stepwise selection and feature 
importance analysis (see Table 1) by exploiting the SHAP values Lundberg and Lee 
(2017).

To construct the prediction model, we used the GTFS dataset to create a sched-
ule-based prediction. This naive prediction reflects the transit vehicle’s position 
along a line according to the GTFS schedule. Namely, let Si be the sequence number 
of the boarding stop based on the GTFS schedule and let Ai be the actual boarding 
stop sequence number. Then, we define Di as Di = Ai − Si . Our prediction model 
goal was to predict Di by utilizing the variety of features presented in the previous 
section.

For instance, consider a passenger who boarded a line at the third stop, i.e., Ai = 3 , 
but the transit vehicle was scheduled to arrive at the second stop at the designated 
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time. The schedule-based prediction would be 2, i.e., Si = 2 , the stop where it was 
supposed to be at that time. Then, the difference is Di = Ai − Si = 3 − 2 = 1 , and 
this is the class the algorithm will predict.

Subsequently, we performed the following steps to construct the prediction 
model: First, we selected several well-known classification algorithms. Namely, we 
used Random Forest (Singh et  al. 2016), Logistic Regression (Singh et  al. 2016), 
and XGBoost (Chen and Guestrin 2016). Second, we split our dataset into training 
and testing datasets (see Fig. 3). Due to the temporal nature of the data, we used a 
logical splitting, the training dataset consisted of the first three weeks of data (75%), 
and a testing dataset consisted of the last week of data (25%).2 Figure 4 shows the 
distributions of the embedded boarding stops by the computed difference between 
the actual and schedule-based sequences ( Di ) for the training and testing subsets. 
No apparent differences between the two distributions are evident. Third, for both 
the training and testing datasets, we extracted all the 15 features mentioned above. 
Fourth, we constructed the prediction models using each one of the selected algo-
rithms. Lastly, we compared the generated models and selected the one with the best 
performance based on the Pareto Accuracy metric (see Sect. 3.3).

3.3  Model evaluation

We evaluated each model and compared it to the schedule-based method on the test 
dataset using common metrics: accuracy, recall, precision, F1 (see Appendix A for 

Create a train
dataset (3
weeks of

data)

Construct a classifier
using XGBoost algorithm

Dataset (4
weeks of

data)

Create a test
dataset (one
week of data)

Evaluate classifier on 
one week of data

Fig. 3  Evaluation process overview

2 It is frequent practice to split large-scale datasets into test and train datasets (Guyon 1997), where a 
split of 80%/20% is regarded a common practice. In our case, due to the temporal nature of the dataset, 
we find it practical and logical to train the classifier on three weeks (75%) of data and evaluate the classi-
fier’s performance on a week (25%) of data.
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definitions), and the new metric we developed: Pareto Accuracy. We used the follow-
ing variables for our novel Pareto Accuracy metric: Let pi be the predicted sequence 
of stopi , ai be the actual sequence, and di be the absolute difference between them. 
Let l be the limit of acceptable difference for imputation, i.e., if an error of one stop 
is tolerated, such as for neighborhood segmentation, then l = 0 . Let Xi be an indica-
tor defined as:

We define Pareto Accuracy as follows:

The PA metric is a generalization of the accuracy metric. Namely, PA0 is the well-
known accuracy metric. Unlike other ordinal classification methods, the primary 
advantage of using the PA metric is to evaluate the accurate dimension of error 
while being extremely robust to outliers (by setting parameter l). Moreover, this met-
ric is highly informative since its outcome value can be interpreted easily; for exam-
ple, 0.6 means that 60% of the predictions had at most l difference from true labels.

For example, let us consider a set of eight observations of embedded boarding 
stops {−2, 0, 3, 20,−3, 4, 3, 2} , where each observation is a simulated boarding by 
a passenger where each number ( Di ) in the set represents the difference between 
expected ( Si ) and actual boarding stops ( Ai ). With a value of 20, the fourth observa-
tion is an outlier, which might occur due to some fault in the decoder device of the 
public transport operator. We do not want to predict it, as it is naturally unpredict-
able. We seek a metric that will be both resilient to outliers, as they are unpredict-
able, and still account for the true dimension of the errors (see Sect.  2.3). Let us 
compare two classifiers, A and B. Classifier A predicted the following boarding stops 
{−2, 0, 4, 3,−2, 3, 2, 2} , while Classifier B predicted {3,0,3,7,1,1,3,2}. Classifier A is 
a more useful classifier since, in general, its predicted values are closer to the actual 
values, i.e., its variance is very small, which makes it more reliable. However, when 
using the classical accuracy and RMSE metrics, Classifier B has a higher accuracy 
and RMSE values than Classifier A, with accuracy values of 50% vs. 37.5%, and 
RMSE values of 5.2 vs. 6. By using the Pareto Accuracy ( PA1 ), we obtain a more 
accurate picture in which Classifier A clearly outperforms Classifier B (87.5% vs. 
50%). Here, we see a case where metrics used for both classical classification (accu-
racy) and ordinal classification (RMSE) do not reflect the actual performance of 
each classifier.

In addition to the metrics, to evaluate the performance of our model and to 
compare it to the schedule-based model, we also performed a spatial analysis by 
plotting heatmaps and a temporal analysis using hours and day of the week (see 
Sect.  4.3). The analysis entailed comparing boarding stops that were predicted 
well, i.e., at accuracies of 50% or above. Lastly, to enrich our understanding of the 
nature and patterns of PT, we produced and analyzed feature importance by exploit-
ing the SHAP values method, considered as constituting a unified framework for 

Xi =

{

1 if di <= l

0 otherwise.

PAl =

∑n

i=1
Xi

n
.
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interpreting predictions based on game theory (Lundberg and Lee 2017). The values 
are the average of the marginal contributions across all permutations.

3.4  Procedure

We evaluated the above methodology by applying it to the smart card data of the city 
of Beer Sheva, Israel. With about 200,000 inhabitants, Beer Sheva is the largest city 
in the southern part of Israel. It presents an interesting use case given its relatively 
remote location, making it more isolated from a traffic perspective. Additionally, it 
has a sparse PT network that is easier to model. Furthermore, it has complete pas-
senger boarding stop information, and road traffic in the city is not prone to heavy 
congestion. We utilized a smart card dataset consisting of over 1M records (after 
preprocessing, about 92% of the smart card records remained) from over 85,000 
distinct travelers for one month during November and December 2018. Based on 
pre-analysis of the smart card data, the boarding profile per day of the week, the 
number of boardings, and the number of users recorded show regular patterns of use 
throughout this period, both for weekdays (Sun–Thu) and weekends (Fri–Sat).

As evident from Fig.  5a, b the average usage profile for Beer Sheva users is 
quite stable across weeks and working days (Sun–Thu). The top figure shows the 
boardings and users per day for the one month of data. The bottom figure shows the 
boarding profile by day of the week.

Next, we used a GTFS feed containing over 27,000 stops and over 200,000 PT 
trips in Israel for the equivalent period as the smart card data included all the opera-
tors (or agencies in GTFS tables) in the country. The dataset also included a detailed 
timetable for every PT trip. Lines and stops for the city of Beer Sheva were sorted 
by operator and geographic coordinates. All selected routes were bus lines. In total, 
there were about 650 stops selected in the study area.

Based on the literature, there are different reports on the sizes of data sets used 
from several months of data for one city (e.g., Agard et  al. 2006; Hasan et  al. 
2013) to more common studies between one week to four weeks of data (e.g., 
Chu and Chapleau 2010; Munizaga et  al. 2014). Usually, longer studies tend 

Fig. 5  Average usage profile for Beer Sheva users
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to focus on more limited scales—lines or stations or small cities. Faroqi et  al. 
(2018) noted this problem, especially if only one week of data is used. In this 
case, an inherent assumption is that travels are regular between days. However, as 
we have shown there is also the problem of irregular travelers that are commonly 
discarded (e.g., in OD analysis, Munizaga et al. 2014). Given the above, we con-
sider that one month of data is most likely sufficient for our purposes.

We also used a geospatial dataset from the municipal open GIS portal that con-
tained a variety of geographical attributes of the city of Beer Sheva, such as traf-
fic light locations, built-area densities, and more. We then extracted the 15 fea-
tures from the above datasets. We converted the boarding stops from their Beer 
Sheva identifiers to numerical values (i.e., embedding). Lastly, we estimated an 
ML algorithm to classify the boarding stops and evaluated the classifier’s perfor-
mance as described earlier.

3.5  Model validation, comparative imputation methods and robustness

As mentioned, one of our primary goals was to develop a generic model that can 
be applied in any city. To that end, we validated our model based on the data of 
the peripheral city of Kiryat Gat situated 43 km north of Beer Sheva and outside 
of the metropolitan region. We applied the method of transfer learning (Torrey 
and Shavlik 2010), entailing the transfer of relevant knowledge by fine-tuning a 
model on a "novel" dataset, i.e., a set of data on which it did not train. Other than 
allowing our model to train more to prove our hypothesis, we split the data ini-
tially into intervals of 10 days for the transfer learning task and then into intervals 
of 20 days for the evaluation.

The main advantage of our modeling approach is that no ground truth is neces-
sary to apply the model. This advantage is related to the fact that training is ena-
bled without using domain-specific labels, i.e., when data integrity is poor, and 
no complementary data is available. We test this assertion by comparing the ML 
model to other possible imputation models. Such methods, specifically passenger 
history and temporal closeness, can, in some cases, provide very accurate predic-
tions, mainly when data integrity is high. However, it is important to note that 
they have some essential limitations. The passenger history method requires pas-
sengers have multiple observations in the dataset, which is not always available 
when dealing with irregular travelers or to split the research data and utilize fewer 
data records. Additionally, the temporal closeness method is susceptible to data 
integrity and sparse rides. Passenger history and temporal closeness were applied 
using the following two algorithms:
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In addition, we also evaluated a semi-random classifier as a lower end impu-
tation method using the following algorithm:

Where: 

1. S—Smart Card dataset
2. Hi,r,t—is the history of passenger i in route r and time period t
3. Hi,b,r,t—is the most frequent boarding stop b of passenger i in route r and time 

period t
4. Pi—is the ML prediction for observation i
5. Tj—is the timestamp of observation j
6. Bj—is the boarding stop of observation j

Model robustness was validated by examining model performance on irregular 
passengers in comparison to the comparative imputation methods, given that 
simple imputation methods are ineffective when considering irregular travelers 
(Van Lint et al. 2005). Therefore, we examined model performance for predict-
ing the boarding stop of one-time travelers in Beer Sheva, i.e., passengers who 
boarded once and did not return with PT on the same day. These observations 
are usually discarded because they do not contribute to OD estimation (Muni-
zaga et al. 2014).

4  Results

The results are presented in the following order: First, we describe some properties 
of the data we used, showing its suitability for the developed methodology. Sec-
ond, we describe the estimated ML model and its performance in comparison to the 
schedule-based model. Third, we analyze the performance between the two models 
both temporally and spatially. Fourth, we show the validation of the ML model on 
the use case of the city of Kiryat Gat, using transfer learning. Fifth, we compare our 
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model to other alternative imputation model specifications mentioned earlier. Lastly, 
we examine prediction robustness.

4.1  Data properties

We began the analyses by exploring the processed data. First, we examined the 
degree of lateness in the smart card data compared to the timetable data in the 
GTFS feed for the city of Beer Sheva. For every PT trip, the time difference between 
planned and actual arrival times was computed for every stop on each line (see 
Fig. 6). As can be observed in Fig. 6, the density function shows both incidents of 
early arrival and lateness between about 500 s (8 min) early to 1000 s (16 min) late. 
This result suggests that the data is very suitable for applying our method. Moreo-
ver, it can be estimated that the schedule-based model using only GTFS timetable 
data will be less accurate.

Second, we investigated the distribution of the missing boarding stop information 
in the smart card data. Figure 7 presents the mean proportion of missing boarding 
stops per trip of the top three PT operators in Israel. This distribution is not random. 
If boarding stops were missing at random, the mean would be expected to be around 
0 with a long tail. However, as the density function is far from that shape, we can 
deduce that boarding stops are indeed not missing at random.

4.2  Model training and performance

We trained several classifiers and evaluated their performances. Among the 
trained classifiers, the XGBoost classifier presented the best performance (see 
Table  2). We compared the classifiers using the common metrics as described 
before. Additionally, we evaluated our Pareto Accuracy metric based on error 

Fig. 6  The density of lateness in seconds in Beer Sheva
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sizes of 1, 2, i.e., PA1 , PA2 . Any larger gap would typically be deemed unaccep-
table in terms of level-of-service and because these error sizes are highly cor-
related with PAi for i > 2 . One significant advantage of embedding is the calcula-
tion speed, which was an average of 15.9 ± 0.023 s on about 300 K observations.

The SHAP values to evaluate the effect of each feature are presented in Fig. 8 
(see also definitions in Table 1) . Here we can note: (a) by far the most important 
feature for the prediction is created by the predicted sequence, which shows it 
is highly correlated to actual patterns and is very useful for classification (i.e., 
schedule-based); (b) other than the first two SHAP features, the following four 
are temporal, which is commonsensical given that the different periods have var-
ied impacts on traffic (such as the morning peak) and as a bus progresses along 
its route, stochastic events accumulate and the variance increases; (c) although 
geospatial features are not of the highest importance, they are not trivial, and 
thus, we conclude that certain physical attributes can influence the nature of our 
problem, e.g., denser areas can engender more congestion; and (d) the two least 
significant features pertain to the day of the week, from which we can assert that 
daily PT routines remained quite stable in our case study.

Fig. 7  The ratio of missing boarding stops per operator. Operator 3 is the largest, and 5, 18 are the sec-
ond and third largest PT operators

Table 2  Classifier performances (test)

The highest obtained result for each metric is marked in bold

Algorithm Accuracy Recall Precision F1 AUC PA
1

PA
2

Schedule based 0.209 0.209 0.212 0.209 0.590 0.470 0.643
Logistic regression 0.205 0.205 0.097 0.102 0.573 0.474 0.654
Random forest 0.368 0.368 0.348 0.353 0.666 0.672 0.818
XGBoost 0.410 0.410 0.393 0.394 0.765 0.712 0.843
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In Fig. 9, we present Pareto Accuracy between the ML model and the schedule-
based one. It shows that the results are stable even for higher values than 1. Therefore, 
we can conclude that the proposed model outperforms the schedule-based model.

4.3  Spatial and temporal analyses

In addition to the aggregated results, we analyzed the model performance both tem-
porally (see Fig. 10) and spatially (see Fig. 11). The temporal analysis shows that, 
in terms of accuracy, our proposed model outperformed the schedule-based method 

Fig. 8  Feature importance using SHAP values

Fig. 9  Pareto accuracy comparison between ML and schedule-based models (test)
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on both a daily and an hourly basis.3 Moreover, the spatial analysis showed similar 
results, and the stops where the predictions were ranked ’good’, i.e., over 50% accu-
racy, were plotted.

Two major insights can be derived from these analyses: First, the ML model pre-
dicts considerably more stops than the schedule-based model. Second, the schedule-
based model renders good predictions mainly for the central stops (train stations, 
main roads, or industrial zones). However, when the model is applied to non-central 

Fig. 10  Temporal performance of models (test)—a daily, b hourly

Fig. 11  Heatmaps of boarding stops with prediction accuracy of over 50% (test)

3 The hourly analysis was done on weekdays when traffic congestion makes the prediction of PT service 
punctuality likely more complex.
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locations, it is suboptimal, in stark contrast to the ML model, making good predic-
tions across all locations.

4.4  Model validation

As noted, we performed the model validation for the nearby city of Kiryat Gat. Evi-
dently, the ML model performed remarkably better than the schedule-based model 
(see Table 3). Figure 12 showing the Pareto Accuracy for different values of error 
size showing the ML model is consistently better. Figure  13 presents a perfor-
mance comparison in Kiryat Gat showing the temporal analysis—accuracy by day 
of the week and on an hourly basis for weekdays which shows similar properties to 
the trained model, the ML model demonstrated higher accuracy compared to the 

Table 3  Classifier performances for model validation

The highest obtained result for each metric is marked in bold

Algorithm Accuracy Recall Precision F1 AUC PA
1

PA
2

Schedule based 0.253 0.253 0.224 0.234 0.599 0.404 0.550
Logistic regression 0.202 0.202 0.789 0.317 0.392 0.388 0.521
Random forest 0.221 0.221 0.594 0.246 0.578 0.423 0.588
XGBoost 0.438 0.438 0.441 0.419 0.685 0.668 0.802

Fig. 12  Pareto accuracy comparison of models between ML and schedule-based models (validation)
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schedule-based model. Figure 14 presents the spatial analysis revealing once more 
that the ML model predicts more stops with higher accuracy.

4.5  Comparative imputation methods

Table  4 shows the results of the comparisons to alternative imputation methods. 
While the predicted accuracy of the two alternative methods is similar, the disadvan-
tages of the aforementioned methods are more evident in the lower share of the pop-
ulation than can be predicted compared to the ML model. The semi-random classi-
fier naturally demonstrates that it is far from trustworthy in the case of hierarchical 
PT networks.

It is important to note that while the accuracy of our proposed method is lower, 
it is far more robust, both in terms of percentage of population predicted and on 
irregular travelers, which other suggested methods are incapable of predicting (see 
Sect. 4.6). For example, in predicting using historical records, we cannot predict a 
new passenger or a new route. For using temporal closeness, the prediction will be 
extremely sensitive to sparse routes.

4.6  Robustness to irregular travelers

While the personal history method can indeed be relevant as evident in Table 4, as 
noted above (see Sect.  3.5) model robustness was evaluated by examining perfor-
mance for predicting the boarding stop of one-time travelers. As shown in Table 5, 

Fig. 14  Heatmaps of boarding stops with predicted accuracy of over 50% (validation)
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the results clearly show (see the first row in Table 5) that the ML model is robust and 
capable of predicting missing stops even for irregular or new passengers that have 
no historical pattern. Additionally, as noted earlier, the suggested methods are very 
limited. The evaluation of passengers they do not predict is clearly shown below in 
Table 5 (see the second and the third row).

5  Discussion and conclusions

In this study, we showed that by mining smart card data and extracting timetable 
data, we could construct a passenger boarding stop prediction model, which sur-
passes the traditional schedule-based method. Our research revealed that applying 
machine learning techniques improves the integrity of PT data, which can signifi-
cantly benefit the field of transportation planning and operations. From the results, 
we can deduce the following conclusions: First, our methodology for feature 
extraction and machine learning model construction demonstrates several notewor-
thy advantages: (a) the ML algorithm generates a generic model that can be used 
with other smart card datasets since the labels (i.e., numeric representations) are 
always aligned in all datasets; (b) by embedding the boarding stops, our method 
ensures that the number of distinct labels is relatively small and a significant com-
putation time reduction can be accomplished; (c) boarding stop use is inherently 
imbalanced, as some stops are frequently used while others are used rarely. Our 
proposed methodology is able to accurately classify many classes despite the inher-
ent imbalances, thus contributing to unpredictability reduction; (d) the method is 
data lean and requires only mining a smart card dataset and a GTFS feed (or any 

Table 4  Results of comparative 
imputation methods

Method Percent pre-
dicted (%)

Accuracy for pre-
dicted observations 
(%)

Proposed XGBoost 100 41
Passenger history 82 59
Temporally close passengers 52 59
Semi-random guessing 100 11

Table 5  Results of the ML model (XGBoost) on one-time travelers and passengers not predicted by com-
parative methods

Passenger type Accuracy Recall Precision F1 AUC PA
1

PA
2

One-time 0.408 0.408 0.394 0.390 0.767 0.703 0.838
Not predicted by method 1 0.419 0.419 0.407 0.402 0.772 0.706 0.835
Not predicted by method 2 0.348 0.348 0.336 0.330 0.744 0.671 0.822
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compatible timetable dataset) without the need to process any other datasets; (e) 
the ML model is entirely complementary to other imputation methods including 
the schedule-based method as well as passenger history or temporal closeness; and 
(f) the method provides a robust model capable of dealing even with irregular or 
unpredictable passengers.

Second, our model (applying the XGBoost algorithm) produced the high-
est performance, with 41% accuracy and 71% PA1 , whereas the schedule-based 
method achieved only 21% accuracy and 47% PA1 . Even for larger error sizes, 
the ML model outperformed the schedule-based one. Moreover, the schedule-
based method was able to render good predictions only for a few main stops 
compared to the ML model, which predicted well across all stops. This depend-
ency on centrality was clearly visible in the spatial analysis of the stops that 
were well-predicted. This result confirms our conjecture that the schedule-based 
imputation approaches can be significantly improved by using ML methods. 
Furthermore, we also found that complex methods, such as ensemble, resulted in 
much better model performance than simple algorithms, such as logistic regres-
sion. In future research, we intend to test the performance of additional predic-
tion algorithms, such as Deep Neural Networks (Jung and Sohn 2017; Liu and 
Chen 2017).

Third, from the SHAP values (Fig. 8), the following can be noted: The tempo-
ral features (created by the timetable from the GTFS feeds) are indeed crucial for 
the operation of the ML model. Geospatial features, however, were less important. 
Accordingly, we estimated a model trained without the geospatial features (see 
Table B.1 in Appendix B). In comparison to the richer model, the performance is 
somewhat worse. Therefore, we assert that such information is considered useful: 
Firstly, to understand patterns in a given city, for instance, which spatial attribute is 
more closely correlated with lateness or earliness. Secondly, it can help the transfer 
learning process in a new city, i.e., if the model was trained on city A, and will be 
used to predict city B, using the spatial features will produce a more robust model to 
the difference between those cities.

Fourth, we showed that the ML model is transferable (see Sect. 3.2) and able to 
provide strong and consistent results when validated on another city while outper-
forming the schedule-based imputation method. Nonetheless, our method, given its 
generic nature, is not entirely comparable with methods of dissimilar nature, such as 
those presented in Table 4 which cannot be straightforwardly transferred to another 
context. Since, to the best of our knowledge, no other imputation method shows such 
transferability, robustness, and generic nature other than the schedule-based imputa-
tion, the latter should be regarded as the comparative benchmark until another impu-
tation method is developed.

Fifth, we recommend using our model when the lack of data does not allow 
for other more accurate methods to be used, such as passenger history or tem-
poral closeness. Nonetheless, our model can complement these methods, espe-
cially for those records that are overlooked, as shown in Table 4, and thus can 
utilize more of the scarce data at hand. As noted, our method does not require 
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mining or accessing any additional datasets (like AVL or APC), which are not 
always available and can increase the extent of errors in the prediction. This 
observation makes our method extremely suitable for planning purposes in 
non-auto-dependent and less technologically-orientated societies in develop-
ing countries and the Global South (Sohail et al. 2006).

Lastly, we introduced a new generalized accuracy metric which we named 
Pareto Accuracy that allows to better compare between classifiers for ordinal 
classification problems. This metric is more robust to outliers, easier to inter-
pret, and accounts for the true dimension of errors. In addition, the metric is 
easy to implement. In the future, we hope to understand how Pareto Accuracy 
can improve additional ordinal classification use cases.

There are a few limitations to the study worth noting. One is that our 
method requires several constraints to succeed, such as timestamps, trip 
IDs, and existing trip timetables. These constraints potentially reduce the 
number of relevant datasets and the number of observations that could be 
imputed. However, these constraints also preclude the use of the schedule-
based method; hence, in practice, our method has little effect on the ability 
to impute missing data. In addition, the generality of our method can increase 
bias, as it ignores features that cannot be transferred between datasets. These 
features, such as having each PT line as a categorical feature, can reduce bias 
when imputing a specific dataset.

Possible extensions include: predicting alighting stops (when the operator 
does not record TAP out), imputing other attributes of interest such as trip ID 
or time of day, etc. In the future, we would like to test our model in other cities 
to verify its generalizations. In addition, we also suggest testing the influence of 
transfer learning on new datasets.

Following a suggestion by one of our Reviewers, we consider it important 
that researchers also carry out transnational studies where models trained on 
data from one country are validated on similarly structured data from a least one 
other country to ensure geographical and cultural robustness. In addition, we 
suggest that researchers test the method with data from urbanities of different 
spatial scales to verify robustness to the public network dimensions.

To summarize, missing data imputation is a difficult and complex task. On 
the one hand, one wants as much data as possible for analyses, while on the 
other hand, data integrity is of critical importance and demands the availabil-
ity of imputation methods that work well. We assert that the commonly used 
schedule-based method suffers from a subpar performance in terms of accuracy 
and other key metrics. It is highly dependent on the centrality of boarding stops. 
In contrast, we showed that our model outperformed the schedule-based method 
in all metrics over different temporal periods. It was more robust to the central-
ity of the imputed stops and irregularity of recorded trips. This makes it a much 
more suitable method for imputation as it improves data integrity. In addition, 
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our method is based on generic classification and thus can be used in a wide 
variety of use cases.

Appendix A

Metrics presented in this paper:

• Accuracy—Percent of observations that were correctly classified
• Recall—The number of observations for each class that were correctly classi-

fied divided by the total number of distinct observations from this class. Final 
Recall is the weighted average of the above on all classes.

• Precision—The number of observations for each class that were correctly 
classified divided by the total number of observations that were predicted 
within this class. Final Precision is the weighted average of the above on all 
classes.

• F1—2 × (Precision × Recall)/(Precision + Recall)
• AUC —Area under curve (AUC) is the area under the receiver operating char-

acteristic (ROC) curve. This curve, for each class, is the true positive rate as a 
function of the false positive rate. A weighted average of the areas under the 
curves of all classes is calculated as the AUC metric.

• RMSE—Root mean square error (RMSE) is a method for ordinal classification 
and regression. It sums the square difference from prediction to actual label, then 
returns the root of the above average.

Appendix B

See Table 6.

Table 6  Model performance with and without geospatial features (XGBoost)

Algorithm Accuracy Recall Precision F1 AUC PA
1

PA
2

Without 0.409 0.409 0.392 0.393 0.770 0.712 0.842
With 0.410 0.410 0.393 0.394 0.765 0.712 0.843
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