
Public Transp (2010) 2: 219–247
DOI 10.1007/s12469-010-0032-7

O R I G I NA L PA P E R

Centralized versus distributed systems to reschedule
trains in two dispatching areas

Francesco Corman · Andrea D’Ariano ·
Dario Pacciarelli · Marco Pranzo

Published online: 10 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Railway dispatchers are in charge of rescheduling trains during operations
in order to limit propagation of disturbances occurring in real-time. To help the dis-
patchers in such task, an advanced decision support system, ROMA (Railway traffic
Optimization by Means of Alternative graphs), has been recently implemented to op-
timize railway traffic within a single dispatching area. This paper presents a novel
distributed optimization system to control trains running in a Dutch railway network
that is divided into two complex dispatching areas with dense traffic, each one con-
trolled by a single dispatcher with the support of a local ROMA. A coordination
level is introduced in order to manage the interaction among the two local ROMAs.
An extensive computational assessment of the centralized and distributed systems is
performed by using simple and advanced train scheduling algorithms, including dis-
patching rules adopted during operations. The effectiveness of the distributed system

F. Corman (�) · A. D’Ariano
Department of Transport and Planning, Delft University of Technology, Stevinweg 1, 2600 GA Delft,
The Netherlands
e-mail: f.corman@tudelft.nl

A. D’Ariano
e-mail: a.dariano@tudelft.nl

A. D’Ariano · D. Pacciarelli
Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre,
via della Vasca Navale 79, 00146 Rome, Italy

A. D’Ariano
e-mail: a.dariano@dia.uniroma3.it

D. Pacciarelli
e-mail: pacciarelli@dia.uniroma3.it

M. Pranzo
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, via Roma 56,
53100 Siena, Italy
e-mail: pranzo@dii.unisi.it

mailto:f.corman@tudelft.nl
mailto:a.dariano@tudelft.nl
mailto:a.dariano@dia.uniroma3.it
mailto:pacciarelli@dia.uniroma3.it
mailto:pranzo@dii.unisi.it

220 F. Corman et al.

is shown in terms of computation time and delay minimization for practical statisti-
cal entrance delay distributions and in presence of an increasing number of blocked
platforms in the main station area.

Keywords Railway rescheduling · Traffic optimization · Schedule coordination

1 Introduction

The traffic control of nation-wide railway networks is usually managed by a set of re-
gional traffic control centers. For instance, the control of the Dutch railway network
is subdivided in one main center in Utrecht, four regional centers (Amsterdam, Eind-
hoven, Rotterdam and Zwolle) and thirteen traffic control offices, each controlling
several dispatching areas.

In each dispatching area there is a dispatcher who receives real-time information
on the route, current location and speed of each train, and the status of each track
in the railway system. The dispatcher analyzes the data (checking if the timetable is
coherent with the current trains’ positions and speeds), calculates whether and where
conflicts are going to occur and solves them on the basis of experience and rules.
Possible control actions include changing dwell times at scheduled stops or train
orders at junctions, stations and passing points. Other control actions involve major
modifications such as route change or cancellation. The main goal of dispatchers is
the minimization of train delays. Note that dispatchers also take into account effects
on the passengers, especially when those do not conflict with the main goal.

The traffic control is often hierarchically organized in at least two decision levels.
At the lower level there are line dispatchers, who control dispatching areas with a lo-
cal view of the traffic flow. At the higher level the network dispatchers are responsible
for the coordination of the rescheduling decisions taken by several line dispatchers
with a global overview of the traffic flow.

This paper deals with the development of Decision Support Systems (DSSs) for
real-time railway traffic management of railway networks composed by multiple dis-
patching areas. The problem of coordinating the decisions taken by dispatchers is
quite underinvestigated in the literature on railway traffic management and, to the
best of our knowledge, this paper is one of first attempts to deal with this problem.
Therefore, we limit our investigation to the case of two dispatching areas coordinated
by a network dispatcher.

DSSs are being developed by railway companies and research institutions to sup-
port the rescheduling process. Such automated systems are mostly based on central-
ized procedures that must deliver viable solutions in a short computation time. How-
ever, real-time train rescheduling is a difficult NP-hard problem (Corman et al. 2010)
and the best solvers available are able to solve to optimality instances at the level of
a single dispatching area. Effectively managing train traffic in a network with multi-
ple areas is still a challenging problem, since the computation time of existing exact
rescheduling algorithms may increase dramatically with the size of the network.

The computational complexity of the train scheduling problem can be limited to an
acceptable level by decomposition, since local decisions are taken in a parallel fashion

Centralized versus distributed systems to reschedule trains 221

and independently from each other. However, little research addressed the problem of
automatically coordinating independent DSSs, each controlling a single dispatching
area. The main issue of a distributed approach is therefore the coordination between
the solutions of the sub-problems, since the aggregated solution must be globally
feasible (see, e.g., Pacciarelli 2003; Tsuruta et al. 1999).

Global feasibility requires that a number of constraints at the borders between dis-
patching areas is satisfied. The exit time of a train from an area must be compatible
to the entrance time in the subsequent area. Train orders and routes at the border
should be consistent and locally feasible solutions should not cause deadlock situa-
tions from a global perspective. Such constraints cannot be satisfied when solving the
sub-problems individually, since each sub-problem has a myopic view of the entire
process. Coordination action is therefore necessary and consists either in the modifi-
cation of local solutions or in the addition of specific constraints to each sub-problem,
so that the local solution are forced to be globally feasible.

This paper proposes a distributed framework for railway traffic control in a net-
work of two areas. The centralized decision support system, ROMA (Railway traffic
Optimization by Means of Alternative graphs) (D’Ariano 2008; D’Ariano et al. 2008;
D’Ariano and Pranzo 2009) is integrated into the distributed framework. Each dis-
patching area is managed by a local ROMA while the problem of coordinating ad-
jacent areas is solved with a distributed approach. Specifically, the coordination pro-
cedure alternates a solution step, in which each local ROMA produces a solution for
its local area, with a coordination step. In the latter step, each local ROMA receives
information on the traffic flow at the border between areas and uses it to produce
a solution compliant with that of the other area. In order to exploit the potential of
distributed optimization, concurrent and parallel execution is supported by a standard
communication protocol (Message Passing Interface Forum 1994).

Extensive computational experiments are carried out in order to compare the per-
formance of centralized and distributed approaches on a practical test case composed
by two dispatching areas in The Netherlands. The network is a complicated and
densely occupied network around Utrecht Central station, with an hourly timetable
of about 80 trains per hour. Different algorithms are compared to solve the line dis-
patcher problem, including an exact optimization algorithm and two scheduling rules
frequently used in the railway practice. Instances include multiple delayed trains and
disruptions with an increasing number of blocked platforms in order to assess the
performance of the centralized and distributed systems when the complexity of the
instances increases. The solution quality is assessed in terms of maximum and aver-
age train delays. The computation time of both approaches is also investigated.

The main contributions of this paper are fourfold:

– A methodology is given to check the global feasibility of local schedules based on
aggregated information;

– A schedule coordination procedure is introduced and tested;
– The two-level coordinated traffic control is assessed for the first time on a real

network composed of two dispatching areas with dense traffic;
– A systematic study of the distributed and centralized approaches is provided for

increasing traffic disturbances.

222 F. Corman et al.

The paper outline is the following. Section 2 defines the railway terminology used
throughout the paper. Section 3 provides an overview of the existing literature on train
rescheduling. Section 4 briefly describes the centralized system and the mathemati-
cal model and procedures for train scheduling. Section 5 introduces the distributed
system, including models and algorithms for train schedule coordination. Section 6
reports on the computational results on a real-world test case from the Dutch railway
network, and deals with a variety of disturbed traffic situations. Section 7 concludes
the paper and gives directions for further research.

2 Problem definitions

In its basic form a railway network is composed of stations, links and block sections
separated by signals. Signals control the train traffic on the routes and are located
before every junction as well as along the lines and inside the stations. A block sec-
tion is a track segment between two main signals and, for safety reasons, may host
at most one train at a time. Signals, interlocking and Automatic Train Protection
systems (ATP) control the train traffic by imposing a minimum safety separation be-
tween trains, setting up conflict-free routes and enforcing speed restrictions on run-
ning trains.

The main characteristics of most railway signaling systems is the fixed block sig-
naling system. A train may have movement authority to enter a block section only
after the train ahead has completely left it and the ATP system releases the block sec-
tion. In this paper we consider the Dutch three-aspect fixed block signaling system, in
which a signal aspect may be red, yellow or green. However, the discussion holds for
most fixed block signaling systems. A red signal aspect means that the subsequent
block section is either out of service or occupied by another train, a yellow signal
aspect means that the subsequent block section is empty, but the following block sec-
tion is still occupied by another train, and a green signal aspect indicates that the next
two block sections are empty. A train is allowed to enter the next block section if the
signal aspect is either green or yellow, but the latter requires deceleration and stop
before the next signal if this remains red. Descriptions of railway signaling systems
and traffic control regulations can be found, e.g., in Goddard (2006).

The passage of a train through a particular block section is called an operation.
A route of a train is a sequence of operations to be processed during a service (train
run). At any time a train route is feasible if all its block sections are available for
traffic. The timing of a route specifies the starting time ti of each operation in the
route. Each operation requires a traveling time, called running time. The running time
is known in advance since all trains travel at their scheduled speed, which usually
contains some margins to recover from small delays.

The running time of a train on a block section starts when its head (the first axle)
enters the block section. Safety regulations impose a minimum distance separation
among the trains, which translates into a minimum setup time (time headway) be-
tween the exit of a train from a block section and the entrance of the subsequent train
into the same block section. This time includes the interval between the entrance of
the train head in a block section and the exit of its tail (the last axle) from the pre-
vious one, plus additional time margins to release the occupied block section and to

Centralized versus distributed systems to reschedule trains 223

cover the sighting distance (see, e.g., Hansen and Pachl 2008; Nie and Hansen 2005;
Pachl 2002).

The timetable describes the movement of all trains circulating in the network by
specifying, for each train, the planned arrival/passing times at a set of relevant points
along its route (e.g. stations, junctions, and the exit point of the network). At stations,
a train is not allowed to depart from a platform stop before its scheduled departure
time and is considered late if arriving at the platform later than its scheduled ar-
rival time. At a platform stop, the scheduled stopping time of each train is called
dwell time. Additional practical constraints related to passenger satisfaction can be
included, such as minimum transfer times between connected train services.

Unexpected events occurring during operations may cause delays which make the
timetable infeasible. The delay may propagate causing a domino effect of increas-
ing disturbances. We define an entrance perturbation as a set of delayed trains at the
entrance in a dispatching area, due to the propagation of delays from previous dis-
patching areas. An infrastructure disruption is the unavailability of one or more block
sections, which causes alterations in the train travel times and routes. Running time
prolongation may occur because of headway conflicts between consecutive trains or
technical failures. Route changes are due to some block section being unavailable
for a certain amount of time and dwell time perturbations are due to traffic delays at
stations.

Real-time railway traffic management copes with the temporary infeasibility by
adjusting the timetable of each train, in terms of routing and timing, and/or by re-
sequencing the trains at the entrance of each merging/crossing point. The railway
traffic is predicted over a given time horizon. The task of dispatchers is to regulate
traffic with the main objective of minimizing train delays in such a way that the new
schedule is compliant with railway rules and with the actual position of each train.
The latter information enables the computation of the release time of each train with
respect to the starting time t0 of traffic prediction, which is the expected time at which
each train enters its first block section in the area under study.

The total delay is the positive difference between the estimated train arrival time
and the scheduled time at a relevant point in the network, and can be divided into two
parts. The initial delay is caused by original failures and disturbances and can only
be recovered by exploiting available running time reserves, i.e., with trains traveling
at maximum speed. The consecutive delays are the additional delays generated by the
dispatching measures taken in response to initial delays.

A potential conflict occurs when two or more trains claim the same block section
simultaneously, and a decision on the train ordering has to be taken. A set of trains
causes a deadlock when each train in the set claims a block section ahead which is
not available, due either to a disruption or to the occupation/reservation for another
train in the set.

3 Overview of the related literature

This section gives an overview on the literature on train rescheduling. In general, au-
tomated rescheduling systems are designed to support traffic controllers in the man-
agement of railway traffic in a given railway area and within a short time limit of

224 F. Corman et al.

Table 1 Recent contributions on centralized train rescheduling

Paper Approach Size Solution method

Adenso-Díaz et al. (1999) MA DA Local heuristic

D’Ariano et al. (2007a) MI DA Heuristics + branch & bound

Hirai et al. (2006) MA DL Local heuristic

Jacobs (2004) MI N Simulation + priority rules

Ping et al. (2001) MA DL Genetic algorithms

Rodriguez (2007) MI J Constraint programming + branch & bound

Şahin (1999) MI SL Look-ahead heuristic

Takagi et al. (2006) MI J Simulation + genetic algorithms

Törnquist (2006) MA N Mixed integer linear programming

Wegele et al. (2007) MI N Simulation + genetic algorithms

computation. An important objective is the minimization of train delays at stations as
well as at the exit from the area. Other research directions focus on the delay mini-
mization for passengers and goods (for an example of this area of research, see e.g.
Schöbel 2009). Several factors influence the solution quality, including the level of
detail considered to formulate the problem, the size and complexity of the studied
area, the density of traffic, the type of disturbance and the length of the time horizon
of traffic prediction. These factors play an important role and need to be carefully
chosen in accordance with the chosen solution approach.

We classify the variety of approaches presented in the literature discussion in two
groups: centralized and distributed systems. The first group has a single core in charge
of deciding the rescheduling actions while the second group is organized in entities
(agents, modules or subsystems) that take decisions and need to be coordinated.

Table 1 reports a list of recent contributions on centralized train rescheduling. We
analyze three important factors: the level of detail (MA = macroscopic or MI =
microscopic), the characteristics of the studied area (SL = Single-track Line, DL =
Double-track Line, J = Junction, DA = Dispatching Area or N = Network with
multiple dispatching areas) and the solution methodology. All the studied approaches
consider realistic railway networks.

In general, macroscopic approaches model train movements and headway times
without considering explicitly all details of the safety system. A train run on the
track between two stations is described by a running time on the overall track and
a minimum headway between successive trains. Differently, microscopic approaches
control trains at the level of block signals and offer more detailed information about
train movements and actual state of the signaling system along the tracks. Detailed
information is used regarding track layout, switches and signals in order to compute
accurate running and headway times. Clearly, the latter approaches require detailed
models and a larger computation time to compute train schedules compared to the
former approach.

A main drawback of most centralized approaches is that they are heavily affected
by the size of instances. A trade-off must be found between the size of the studied area
and the time horizon of traffic prediction. In fact, the problem complexity increases

Centralized versus distributed systems to reschedule trains 225

Table 2 Recent contributions on distributed train rescheduling

Paper Approach Decomposition Structure Solution method

Chou et al. (2007) MA Junctions DEC Local heuristic

Iyer and Gosh (1995) MA Trains, Stations DEC Resource allocation

Jia and Zhang (1994) MA Areas, Network HIER Local heuristic

Lamma et al. (1997) MA Stations, Areas DEC Local heuristic + priority

Lee and Gosh (2001) MA Trains, Stations DEC Resource allocation

Mazzarello and Ottaviani (2007) MI Areas, Network HIER Local heuristic

Missikoff (1997) MA Trains DEC Local heuristic + priority

Parodi et al. (1996) MA Trains DEC Resource allocation + priority

Salido et al. (2007) MA Trains, Stations DEC Local heuristic

Strotmann (2007) MI Areas, Network HIER Local heuristic

with the number of trains, tracks and stations. If a small test case is considered, only
few trains and few conflicts can be detected and solved. Thus, solutions computed
with a limited time horizon of traffic prediction are myopic, since the rescheduling
process does not consider conflicting trains outside the studied area and time horizon
(D’Ariano and Pranzo 2009).

Concerning the solution method and quality, many approaches combine a simula-
tion model with simple decision rules. The performance of such DSSs can be quite
erratic. Searching for optimal solutions may result in exceedingly large computation
time, so when increasing the size of the problems some speed-up is crucial in order
to come up with at least a good quality solution within a reasonable time.

A time-effective approach consists of handling large problems by decomposing
them into several smaller, well-structured, weakly interrelated sub-problems. The
sub-problems are then solved via effective algorithms. Finally, the coordination is-
sue among the different subsystems is addressed and solved, delivering good quality
dispatching solutions in a timely manner.

Table 2 reports a list of contributions on distributed train rescheduling. We ana-
lyze four important factors: the level of detail (MA or MI), the entities involved in
the decomposition (junctions, trains, stations, areas and/or network), the structure of
the decomposition (DEC = Decentralized or HIER = Hierarchical) and the solution
methodology.

With a distributed approach, different physical or logical entities, like trains, block
sections or infrastructure managers, may have a certain decisional capacity and ne-
gotiate with other entities for the access to shared resources. Decisional entities may
be organized at the same or at different hierarchical levels. In the latter case, entities
at the higher level guide the behavior of lower level entities and the final solution can
be reached after a bottom-up or a top-down negotiation. With a bottom-up negotia-
tion, the low level entities take the main decisions and a high level entity checks the
decision and, if necessary, asks for modifications to the low level entities. With a top-
down negotiation, the high level entity takes the main decisions on the basis of some
aggregated model and leaves detailed decisions to the low level entities. The latter

226 F. Corman et al.

may ask for modifications, for example if no feasible solution can be found given the
decisions of the high level entity.

The timetabling problem is typically solved through a top-down decomposition
in which tentative timetables are first produced at the higher level and then checked
for feasibility on the basis of detailed models. A well-known example of this ap-
proach is given by the Dutch system DONS (van den Berg and Odijk 1994), in which
CADANS (Schrijver and Steenbeek 1994) produces cyclic timetables at nation-wide
level based on macroscopic models and then STATIONS (Zwaneveld et al. 2001)
assigns platforms and routes to trains in a railway station based on a more detailed
model.

A recent top-down approach to timetabling is proposed by Caimi et al. (2009).
With this approach, train service intentions are first generated at the higher level and
then a detailed network-wide timetable is built at the lower level by decomposing
the network in condensation and compensation zones. Condensation zones are main
station areas while compensation zones are open tracks between stations. Detailed
timetables are produced in each zone almost independently from each other. The
notion of portals is then introduced in order to coordinate the passing times of trains
at the border between condensation and compensation zones.

Differently from timetabling, distributed train rescheduling is typically ap-
proached with a bottom-up hierarchical approach (Jia and Zhang 1994; Mazzarello
and Ottaviani 2007; Strotmann 2007) or with a single level decentralized approach
(see Table 2). In fact, the rescheduling problem is heavily constrained locally by the
current train positions and by the existing timetable. Therefore, the main decisions
have to be taken locally, while higher level decisional entities address the global
feasibility issue of local solutions.

On the whole, in the literature on distributed approaches to train rescheduling
still few decision support systems are able to quickly and effectively reschedule train
movements in practical networks. Despite the efforts devoted to developing sophisti-
cated dispatching procedures, most of the existing approaches suffer from a lack of a
general methodology or are designed to solve fictitious instances of traffic flow per-
turbation. Specifically, from Table 2, among the single level decentralized approaches
only Lee and Gosh (2001) study a practical network, while among hierarchical ap-
proaches only Mazzarello and Ottaviani (2007) and Jia and Zhang (1994) report on
practical experiences.

At least five critical requirements for a good system operability can be envis-
aged: (i) DSSs should be able to compute dispatching solutions within limited time;
(ii) DSSs for line dispatchers should be able to recover local feasibility in presence
of multiple train delays or disruptions, i.e., the adjusted timetable must be compli-
ant with the actual train positions and infrastructure status; (iii) DSSs for network
dispatchers should be able to check rapidly the local solutions for global feasibility;
(iv) DSSs should provide good quality solutions also when dealing with complicated
and dense railway networks. (v) DSSs should operate with accurate input data. If the
quality of input data is poor, it is unlikely that the solutions provided by the DSSs
will be effective in practice. A critical prerequisite of good DSSs is therefore the use
of reliable methods for traffic prediction and data estimation.

This work contributes to filling the gap between theory and practice of train
rescheduling. Specifically, we refer to the first four critical requirements described

Centralized versus distributed systems to reschedule trains 227

above. The basic methodology for railway traffic regulation and coordination is based
on the ideas recently developed within the European project COMBINE 2 (Pacciarelli
2003) and then exploited by Mazzarello and Ottaviani (2007), Strotmann (2007). In
this paper, a systematic study of the hierarchically distributed framework is provided
and a comparison is carried out with the centralized approach. Differently from pre-
vious papers, an exact algorithm is used for rescheduling trains and difficult practical
instances are utilized for the assessment.

4 Centralized rescheduling system

This section describes the decisional kernel of the dispatching support system
ROMA, that we use as a DSS for the line dispatcher. ROMA detects and solves train
conflicts while minimizing the maximum and average consecutive delay in lexico-
graphic order (D’Ariano et al. 2008). In this study, we use the rerouting function
of ROMA only for the purpose of disruption recovery and not in the optimization
module. This choice limits the need for coordination between dispatching areas to
scheduling decisions only. Rerouting decisions are taken by the network dispatcher
as a preliminary decision before the scheduling phase. The decisional kernel works
as follows. For a given set of real-time disturbances, a conflict resolution procedure
computes a new feasible schedule (i.e., deadlock-free and conflict-free) compatible
with the status of the network, by defining orders and times for all trains at each block
section.

The underlying model used by ROMA to formulate the conflict resolution prob-
lem is a job shop with no-store and no-swap constraints. This problem is formulated
with an alternative graph (Mascis and Pacciarelli 2002) and by using the blocking
time theory to compute arc weights (see, e.g., Pachl 2002). The main value of the
alternative graph is the microscopic and flexible modeling of the network topology at
the level of railway signal aspects and operational rules.

We next summarize the main aspects of the alternative graph formulation used in
this paper. A more detailed description can be found, e.g., in Corman et al. (2010),
D’Ariano et al. (2008). In case of fixed block signaling, each pair [train, block sec-
tion] corresponds to a node in the alternative graph and the arcs between nodes rep-
resent precedence constraints. Other constraints relevant to the railway practice can
be included into the model (see, e.g., D’Ariano 2008; D’Ariano et al. 2007a, 2007b;
D’Ariano and Pranzo 2009). A train route is viewed as a job in the alternative graph.
A job is a sequence of operations, i.e., block sections that must be traversed sequen-
tially by the train. A fixed running time for each operation is known in advance, that
is the minimum time occurring between the starting of consecutive operations. A pos-
sible additional waiting time can be necessary in order to solve train conflicts. A train
schedule defines the starting time of each operation. Since a block section cannot host
two trains at the same time, a potential conflict occurs whenever two or more trains
require the same block section. In this case, a passing order must be defined between
the trains that is modeled in the graph by introducing a suitable pair of alternative
arcs for each pair of trains traversing the same block section. A deadlock-free and
conflict-free schedule is obtained by selecting one of the two alternative arcs from

228 F. Corman et al.

each pair, in such a way that there are no positive length cycles in the graph (i.e.,
deadlock). In order to evaluate a train schedule, we use the maximum consecutive
delay as the main performance indicator of a solution. The maximum consecutive
delay can be computed as the length of the longest path in the graph when exactly
one arc from each alternative pair is selected.

4.1 Illustrative example

Let us illustrate the construction of the alternative graph for a small railway network
with 9 block sections and three trains (A, B and C). The route of train A is given by
the sequence of operations A1, A4, A5, A6, A7, A9. The route of train B is B2, B4,
B5, B6, B7, B8 while the route of train C is C9, C7, C6, C5, C4, C3. The three
trains share the same path from block section 4 to 7. Additionally, trains A and C

share the block section 9. Trains B and C are slow trains and enter their first block
section at release time 0 and 100, respectively. Their minimum running time on each
block section is 20 time units. Train A is a fast train that enters its first block section at
release time 210 and runs on each block section of its route with a minimum running
time of 10 time units. All the setup times are fixed to 10 time units. There are only
three points that are relevant for the delay computation, namely the block sections 3,
8 and 9. Trains A, B and C are scheduled to leave the network at exit time 270, 120
and 220. There is therefore no extra time added to the travel time of each train in the
network.

Figure 1 (top) shows a space-time diagram of the timetable solution. For clarity,
we only show the running and setup time of the relevant block sections. Figure 1
(bottom) then presents the corresponding alternative graph formulation. We denote
a node with the pair (train, block section) of the associated operation or with the
pair (train, exit point), except for dummy nodes. The selected alternative arcs are
represented by dashed arcs. For clarity, the running and setup times are not depicted
in the alternative graph. The three fixed arcs departing from node 0 model the release
time of each train, whereas the arcs entering node n model the objective function.
Since the initial delay is zero, the weight of the latter arcs is equal to the exit time of
the associated trains from the network as specified in the timetable (but with negative
weight). Since there are no delays, the longest path in the graph has length equal to 0.

Figure 2 (top) shows the space-time diagram of the optimal solution to the real-
time railway traffic management problem for a disturbed situation in which the en-
trance of train B is delayed by 185 time units. The dotted line for train B represents
its free running path, computed by considering its new entrance time and disregarding
the presence of the other trains. The new exit times are 270, 220 and 340 for trains
A, B and C, respectively.

Figure 2 (bottom) presents the optimal solution in terms of alternative graphs.
Since train B is delayed, its release time and its minimum exit time are updated in
the graph. Furthermore, there is an additional waiting time for train B to enter block
section 4 that causes a maximum consecutive delay of 35 time units. The other trains
are on time.

Centralized versus distributed systems to reschedule trains 229

Fig. 1 Timetable solution: space-time diagram (top) and alternative graph (bottom)

4.2 Train scheduling procedures

Given a timetable, the entrance position of each train in the network and the current
status of the infrastructure, each train scheduling procedure implemented in ROMA
is in charge of computing quickly a feasible schedule for each train, i.e., defines a fea-
sible entrance time of all trains on each block section. The following three scheduling
procedures are tested in this paper:

– First Come First Served (FCFS): This is a well-known dispatching rule which gives
precedence to the train arriving first at a block section. This rule requires no dis-
patching action since trains pass at merging or crossing points on the basis of their
actual order of arrival and not necessarily as in the timetable.

– ARI (Automatische Rijweg Instelling): This rule is a fully automated version of the
route setting procedure used in the Netherlands (Berends and Ouburg 2005). Deci-
sions on train orders are taken every time a conflict is detected. If both conflicting
trains have an entrance delay below 3 minutes the train order is assigned according
to the timetable for conflicting trains requiring the same track and according to the
First Come First Served rule for conflicting trains requiring different incompatible

230 F. Corman et al.

Fig. 2 Optimal train scheduling solution to the disturbed situation

tracks. If at least one of the conflicting trains is delayed by more than 3 minutes,
conflicting trains are scheduled on the basis of train priorities: first intercity trains,
then local trains and finally freight trains. For trains with the same priority, prece-
dence is given to the train with the smallest number of scheduled stops after the
conflicting point.

– Branch and Bound (BB): This is an exact scheduling algorithm that explores all the
reordering alternatives and chooses the one minimizing the maximum consecutive
delay. Here, we consider a truncated branch and bound (D’Ariano et al. 2007a)
that returns near-optimal schedules for practical train scheduling problems within
a computation time compatible with operational needs.

The resolution of the train scheduling problem formulated by alternative graphs
requires a computation time that is rapidly increasing with the dimensions of the
graph. Precisely, the number of disjunctions considered (alternative arcs) increases
quadratically with the number of trains and linearly with the number of shared re-
sources (block sections or stopping platforms). Furthermore, the increase in compu-
tation time is different for the various algorithms considered. The computation times
of FCFS and ARI increase polynomially in the number of variables, while the one of
the exhaustive search increases exponentially in the worst case.

Centralized versus distributed systems to reschedule trains 231

5 Distributed rescheduling system

This section addresses the problem of controlling the railway traffic in large networks.
In this paper, large network means that a single centralized ROMA system is unable
to control the traffic in the whole network within the short time available for com-
putation. In what follows, a large railway network is partitioned by traffic controllers
on a geographical basis, since the decomposition of the network into smaller areas
should be performed statically. The ideal size of each area clearly depends on the
expected traffic pattern in the controlled area, and this parameter has effects on the
solution quality.

The following subsections describe the architecture of the distributed system, in-
troduce the aggregate formulation adopted to detect global infeasibilities, and present
a novel procedure to coordinate the local scheduling solutions.

5.1 System architecture

Figure 3 shows the distributed system architecture in terms of actors involved and
information flow. The system is designed to support hierarchically the work of two
line dispatchers and a network dispatcher.

Each area is controlled by a local ROMA, and two local ROMAs exchange infor-
mation about their solutions, coordinated at a higher level. If a local ROMA is not
able to compute a feasible schedule, a local infeasibility is found, i.e., conflicts and/or

Fig. 3 Framework of the distributed rescheduling system

232 F. Corman et al.

deadlocks that involve several trains over the local area. In case of local infeasibility,
the line dispatcher is asked to take control actions. On the other hand, the coordination
procedure may fail, resulting in a global infeasibility, i.e., conflicts and/or deadlocks
that involve several trains over several local areas. In this other case of infeasibility,
the network dispatcher is asked to resolve the situation. This is achieved by impos-
ing additional constraints at global level to the coordination level of the dispatching
system or by communicating new control actions to line dispatchers.

The coordination level is in charge of coordinating the solution processes by ex-
changing relevant local information while detecting and solving global infeasibilities.
Only aggregate data describing the interactions between trains running in adjacent ar-
eas are sent to the coordinator, that has to solve global infeasibilities (e.g. by changing
train orders at the borders) and to transmit quickly the border constraints to the local
ROMAs. If no global infeasibility is found, the coordination results in exchanging the
relevant border information between the areas. A compact representation of variables
and constraints of each area limits the size of the set of data to be managed, avoiding
the coordination level to become the bottleneck of the procedure.

A communication protocol has been implemented between the local ROMAs and
the coordination level. Reliable and fast exchange of messages between the involved
actors is necessary to achieve a synchronized and coordinated behavior. To this end, a
standard protocol for high performance computing, Message Passing Interface (Mes-
sage Passing Interface Forum 1994), is used to effectively support concurrent and
parallel execution of processes, as well as inter-process communication.

5.2 Formulation with alternative and border graphs

We now describe the mathematical models for solving and coordinating the schedul-
ing solutions of local solvers (i.e., local ROMAs). A limited amount of local infor-
mation is exchanged in order to ensure that a set of locally feasible schedules is
globally feasible. The information sent by the local ROMAs to the coordinator is
extracted from the alternative graph representation of the traffic flow in each local
area. For each train passing from an area to another one we consider border nodes
in the alternative graph. These nodes are associated to the operations representing
trains crossing the borders between areas. Note that each block section at the border
between two areas is included in both areas. Similarly, the associated border nodes
are duplicated.

Figure 4 (top) shows the space-time diagram of a solution to the real-time railway
traffic management problem for the disturbed situation of the illustrative example in
which train B is delayed by 185 time units. The proposed solution is obtained by
dividing the railway network in two local areas, computing the optimal solution for
each local area, checking the global feasibility of the local solutions. The three trains
(A, B and C) traverse both local areas, called x and y. Trains A and B run from area
x to area y while train C runs from area y to area x.

Figure 4 (bottom) reports the local alternative graphs of the proposed solution. The
border nodes in the two graphs are A5, A6, B5, B6, C5 and C4. In the left graph,
the release time of train C is the time operation C5 starts in the other graph, while
the minimum exit time of train A and train B is computed as their free running till

Centralized versus distributed systems to reschedule trains 233

Fig. 4 Optimal local solutions but sub-optimal global solution

the end of block section 5. In the right graph, the release time of train A (B) is the
starting time of operation A5 (B5) in the left graph, while the minimum exit time
of train C is computed as its free running till the end of block section 5. In both the
local areas, the trains are scheduled at block section 5 in such a way that C precedes
B and B precedes A. The local solutions are locally optimal schedules and also result
in a globally feasible solution. However, the global solution is sub-optimal. Train B

has a conflict with train C on block section 4, with an additional waiting time of 5
time units, while train A has several conflicts with train B on block sections 4, 5, 6
and 7. The most delayed train is train A that has a maximum consecutive delay of
50 time units. This simple example shows that there is an interesting gap between
the optimal solution of the global area and the solution obtained by coordinating the
optimal solutions of the local areas.

Another disturbed situation is next studied for the timetable of the illustrative ex-
ample. Trains A and B are delayed at their entrance in the network by 20 and 120
time units, respectively. Figure 5 (top) shows the space-time diagram of the optimal
local solutions for the two areas. Specifically, the maximum delay in the left graph is
equal to 30 time units since train C has an additional waiting time on block section 5,

234 F. Corman et al.

Fig. 5 Optimal local solutions but infeasible global solution

caused by train B . Similarly, the maximum delay in the left graph is equal to 30 time
units.

In the new disturbed situation, the optimal solutions of the two areas do not match
and the coordinator will detect a global infeasibility as follows. The local ROMA
controlling area x decides to give precedence to train B over train C for block sec-
tion 5. Hence, there is a positive length path in area x from node B5 to node C5 (see
Fig. 5 (bottom-left)). Conversely, the local ROMA controlling area y decides to give
precedence to train C over B on block section 5. In this case, there is a positive length
path in area y from C5 to B5. The global situation is not known by the two ROMAs,
which consider perfectly feasible their respective plans. On the other hand, at higher
level the coordinator detects a positive length cycle involving nodes B5 and C5, that
corresponds to the deadlock situation depicted in Fig. 5 (top). The coordinator must
ask one of the two solvers to change the order between trains B and C in order to get
a globally feasible solution (i.e., in order to avoid the deadlock situation).

In the remaining part of this subsection, we describe how global infeasibilities
between areas can be easily detected by an aggregate formulation. Based on the pro-
posed decomposition of the network and the modeling of border situations, we define
the border graph GB = (VB,AB), which consists of the set VB of all border nodes
and the set AB of all border arcs. Note that nodes 0 and n are also nodes of the border
graph, since these nodes represent a common reference for all areas. Let bi , bj be two

Centralized versus distributed systems to reschedule trains 235

border nodes. The set of border arcs is defined as follows. If a directed path from bi

to bj exists in one of the solutions for the local areas, the arc (bi, bj) belongs to AB .
The weight of (bi, bj) is the length of a corresponding longest directed path in this
local solution. The border graph (its arcs and the arc weights) is therefore a function
of the current local solutions. The following theorem shows that the local solutions
produced by the local ROMAs are globally feasible if and only if there are no positive
length cycles in the resulting border graph.

Theorem 1 Consider a global area composed by k local areas. Given a locally fea-
sible solution for each local area, the union of the k solutions is globally feasible if
and only if the border graph has no positive length cycles.

Proof Consider the global alternative graph associated to the whole region. This is
obtained by sewing together the k local alternative graphs. By definition, a solution
of the global alternative graph is feasible if and only if it contains no positive length
cycles. A positive length cycle in the global graph can either belong entirely to a local
area, or can involve nodes belonging to several areas. The former case cannot occur
since all local solutions are feasible. The latter case occurs if and only if there is a
positive length cycle involving at least two border nodes. This means that in each
local area there is a directed path connecting a pair of border nodes, the total length
of these paths being positive. Thus, there is a cycle in the global graph if and only if
the border graph contains a positive length cycle, which concludes the proof. �

Each local ROMA transmits to the coordinator the list of all border nodes, together
with the information concerning the route chosen for each train. The coordinator then
matches the border nodes of different areas in order to build an aggregate represen-
tation of the interactions among the areas. Additional information computed by each
local ROMA is the length of the longest path between every pair of border nodes. The
coordinator exchanges with the local ROMAs only information related to the border
nodes. This information is communicated by each ROMA to the coordinator that has
to detect situations of global infeasibility. From Theorem 1, the coordinator simply
has to build the border graph and check for the existence of positive length cycles.
This can be computed in a fast way by means of existing graph search algorithms.
For example, the algorithm of Floyd and Warshall requires a computing time O(n3),
where n is the number of nodes of the border graph.

The left-hand side (right-hand side) of Fig. 6 shows the border graph for the ex-
ample of Fig. 4 (Fig. 5). In the border graph on the left-hand side of Fig. 6 there is no
positive length cycle. For reasons of clarity, we did not depict the (positive) weight of
each border arc in the graph. On the other hand, in the border graph on the right-hand
side of Fig. 6 there are several positive length cycles involving two or more of the
following border nodes: B5, B6, C4 and C5. The border arcs causing at least a cycle
are emphasized in black in Fig. 6.

When a global infeasibility is detected, the coordinator may either impose prece-
dence constraints among some trains at border nodes or impose the same value for
the exit time from an area and the entrance time in the subsequent area for some train
(see Sect. 5.3). Each local ROMA will then look for a new schedule in which these

236 F. Corman et al.

Fig. 6 Border graphs of the feasible (left) and infeasible (right) global solutions

Fig. 7 General sketch of the
schedule coordination procedure

constraints are satisfied. After possible iterations for defining a feasible schedule, the
resulting solution will be globally feasible if and only if a locally feasible solution
can be found by all local ROMAs and the border graph has no positive length cycles.

5.3 Schedule coordination procedure

Figure 7 shows a new schedule coordination procedure that is based on an iterative
exchange of information between two local solvers and the coordinator. At each step,
the train scheduling problem in each local area is solved by the corresponding local
solver. The coordinator checks whether the local solutions are consistent and result
in a globally feasible solution, if not it communicates some constraints at the border
between areas to the local solvers. The two steps are repeated until a globally feasible
solution is found or a termination criterion is met. For the two areas, the local solu-
tions are consistent when the local solvers compute the same times (and orders) for
all operations associated to the border nodes between the two areas.

We introduce the border variables B(i) = (T (i),O(i)) for each scheduling itera-
tion i so that a consistency check can be done between the local solutions. Variables
B(i) are used for bidirectional communication between the local ROMAs and the
coordinator. A local ROMA sends a complete solution to the coordinator (times and
orders). In response, the coordinator sends a partial solution (release times and partial

Centralized versus distributed systems to reschedule trains 237

orders) to the local ROMAs, regarding constraints at the borders that must be satisfied
by the local solver at iteration (i + 1). In the communication from the coordinator to
the local solvers at iteration i, the border variables T (i) contain the minimum en-
trance times at which the trains can enter the block sections at the borders. O(i) is
the set of partial orders for the trains at the borders, and clearly depends on T (i).

For each local area, we define the border variables Bx(i) = (Tx(i),Ox(i)), rep-
resenting times and orders of all trains running in the area x at iteration i. For two
areas x1 and x2, the local solutions of the different areas are consistent if the values
of border variables Bx1(i) and Bx2(i) are the same for all the border nodes contained
in both areas.

The initial values of the border variables, B(1), are computed as follows. Each
local ROMA first computes the minimum starting time of each operation in its lo-
cal alternative graph by running trains at maximum speed without considering the
interactions among them, and communicates the exit time of every train to the co-
ordinator. The coordinator then propagates these exit times to the neighboring area,
as the minimum entrance times T (1). The set O(1) is left empty. Consequently, the
local areas adjust the values of the border variables. This procedure converges after
a finite number of iterative adjustments since the values of the border variables are
updated progressively.

Given a set X of local areas and the border variables B(1), the coordination pro-
cedure gets a solution from each local area, computed by one of the scheduling algo-
rithms described in Sect. 5.3. The scheduling problem of each local area is decoupled
from the one of other areas, so that the local ROMAs can compute their solutions
by concurrent and parallel execution. If a local ROMA is not able to find a feasible
schedule, a local infeasibility is reported to the line dispatcher that will have to im-
plement other dispatching actions in its local area such as the modification of some
train routes.

After computing a feasible schedule for both local areas, each local ROMA re-
ports the new values for the border variables and the longest paths between each pair
of border nodes. The coordinator collects this information, builds the border graph
and analyzes the local solutions at network level. If the local solutions are globally
feasible and consistent, the coordination procedure ends by returning the local solu-
tions. If the local solutions are not globally feasible and consistent, the coordinator
calls an update strategy to compute additional coordination constraints, and the over-
all procedure is iterated with new values for the border variables. If a given time limit
of computation is reached before a globally feasible solution is found, the procedure
reports a global infeasibility. In this case, the network dispatcher is asked to take
scheduling decisions different from the ones computed by the local solvers, such as
specify a new processing order between some operations at the area borders.

The simple update strategy implemented in this paper to compute B(i + 1) is as
follows. An inconsistency is detected when there is at least one train crossing a border
between the two areas with an exit time from an area different from the entrance time
in the subsequent area. In this situation, the coordinator imposes a new minimum
entrance time for the train in the subsequent area. If a train exits area x1 and enters
area x2 and its entrance time in area x2 is smaller than its exit time from area x1, the
coordinator propagates the exit time from the previous area to the next one. In other
words, the train is forced to enter area x2 not before the exit time from area x1.

238 F. Corman et al.

When the inconsistency involves train ordering, the coordinator also imposes the
same order among the trains at the border in both areas, as follow. If the infeasibility
involves two trains running in the same direction, the train order of the previous area
is imposed to be the same in the following area. On the other hand, if the infeasibility
involves two trains running in opposite directions, the train order is obtained by giving
precedence to the first train reaching the border in the schedules of both local areas.
In our computational experience, this simple procedure quickly converges to globally
feasible solutions since only a few local decisions propagate to the other area.

6 Test case

This section presents the experiments performed to evaluate the centralized and dis-
tributed systems over a large sample of real-life instances. The aim of the study is
to assess how much train delays could be minimized by centralized and distributed
approaches. We compare the solutions obtained by simple and advanced scheduling
algorithms, further compared to the dispatching rule used in practice in the Nether-
lands. The procedures of the two systems are implemented on a PC equipped with
two processors at 1.6 GHz, 2 GB Ram and Windows XP operating system. For both
systems the time limit of execution is 60 seconds. In the distributed system, each run
of the scheduling algorithm is truncated after 10 seconds of computation.

6.1 Description of the instances

The topology of the railway network around the main station of Utrecht is similar to
a star with 5 main directions crossing each other (see Fig. 8). The main lines relaying
the North and South regions of the Netherlands are connected to the lines to the West
and the East. The network is delimited by the following stations: Utrecht Overvecht
on the line to Amersfoort, Driebergen-Zeist on the line to Arnhem, Culemborg on

Fig. 8 Railway network around Utrecht Central station

Centralized versus distributed systems to reschedule trains 239

the line towards Den Bosch, Vleuten on the line to Rotterdam and The Hague plus
Maarssen on the line towards Amsterdam. In total, the diameter of the area is around
20 km long.

This is one of the most complex railway areas in the Netherlands. In total, the
network includes more than 600 block sections. The interlocking area of Utrecht
Central station has, alone, around 200 block sections and more than 100 switches,
leading to a large amount of inbound and outbound routes. Utrecht Central station
provides 20 platform tracks, most of which might be reserved to two trains at a time.
Most of the platform tracks are used by through traffic, i.e., trains running in the
opposite direction, even if some trains change direction after their stop at a platform.
There are also three dead-end platforms. We use one peak hour of the 2008 timetable
that schedules up to 80 trains. The trains are mostly for passenger services, operated
by NS (Nederlandse Spoorwegen), except for a few freight trains.

In the centralized system the network is managed as a whole, while in the distrib-
uted system the network is divided into two adjacent areas, as shown in Fig. 8. At the
borders between the two areas there are 20 platform tracks of Utrecht Central station.
The operations at the area borders represent the 23 trains traversing the two areas.
The other 57 trains only run on a single area. The same division of the dispatching
task is also adopted in actual operations.

Practical statistical entrance delay distributions are studied that cause initial delays
in the network. For the given timetable, we consider more than 33000 train events
(arrivals, departures, dwell processes and passing times) that have been recorded at
Utrecht Central station in April 2008 by ProRail. A statistical fitting procedure (Yuan
2006) is adopted to set the parameters of the Weibull distributions, which are used to
characterize the delays of different trains and the variation in the dwell time process.

From the calculated statistical distributions, we investigate 90 random timetable
perturbation instances with delayed entrance times and dwell time extensions. Each
instance considers one hour of time horizon of traffic prediction, with 80 trains in
the network. The average entrance delay is around 90 seconds per train while the
maximum entrance delay is 390 seconds. These instances represent an average level
of perturbed operations over one month of observation. We combine each delay in-
stance with a set of six infrastructure scenarios that result in increasingly reduced
availability of infrastructure at Utrecht Central station.

Table 3 Description of the disruption scenarios considered

Infrastructure Blocked % Unavailable % Rerouted

scenario platforms platforms trains

i – 0 0

ii 7 8 10 10

iii 7 8 12 13 14 25 21

iv 2 3 7 8 12 13 14 35 35

v 2 3 7 8 12 13 14 18 40 45

vi 2 3 7 8 10 12 13 14 16 17 18 55 50

240 F. Corman et al.

Table 3 describes the six infrastructure scenarios (see Column 1). Column 2 re-
ports the specific platforms that are blocked and completely unavailable for traffic,
Column 3 the percentage of unavailable platform tracks at Utrecht Central station,
and Column 4 the percentage of trains on the hourly timetable that need to be rerouted
to another station platform. The train rerouting is limited to the trains that cannot per-
form their scheduled trip in the station interlocking area with their original route since
the assigned platform is blocked. It is worth being noted that scenarios (v) and (vi)
require trains running on a single track in different traffic directions, thus resulting in
an additional difficulty for the dispatching process due to possible deadlocks.

In total, we consider a set of 540 disturbance instances (i.e., all the combinations
of the 90 timetable perturbations and of the 6 infrastructure scenarios). In the next
subsection, we will compare the centralized and distributed approaches over all the
540 disturbance instances.

6.2 Computational results

This subsection compares the global solutions obtained by the centralized and dis-
tributed systems. We consider the three scheduling procedures described in Sect. 4.
For both the centralized and distributed systems, Table 4 reports the average behav-
ior for the ARI procedure, Table 5 for the FCFS procedure and Table 6 for the BB

Table 4 Average results on the two approaches by scheduling trains via the ARI procedure

Tests Centralized system Distributed system

Infra
case

Comp
time

Max
delay

Avg
delay

Comp
time

Max
delay

Avg
delay

Coord
constr

Sched
iter

Glob
inf

i 10.5 271 10.9 4.8 276 11.9 14 1.1 0%

ii 11.9 437 22.7 7.2 437 23.3 15 1.2 4%

iii 13.7 584 32.6 7.7 561 31.5 27 2.0 17%

iv 13.9 584 47.0 8.5 561 46.8 27 2.0 17%

v 13.2 1515 66.2 8.6 1520 63.3 27 2.0 16%

vi 15.4 1515 65.2 7.7 1520 64.6 28 1.8 22%

Table 5 Average results on the two approaches by scheduling trains via the FCFS procedure

Tests Centralized system Distributed system

Infra
case

Comp
time

Max
delay

Avg
delay

Comp
time

Max
delay

Avg
delay

Coord
constr

Sched
iter

Glob
inf

i 0.1 134 2.8 0.2 141 2.9 13 1.0 0%

ii 0.1 390 14.4 0.3 390 14.2 14 1.1 5%

iii 0.1 495 23.4 0.3 493 23.0 17 1.2 8%

iv 0.1 503 33.8 0.3 503 34.0 17 1.2 8%

v 0.1 1515 56.8 0.3 1520 55.3 17 1.2 8%

vi 0.1 1515 64.1 0.5 1520 62.1 28 1.8 22%

Centralized versus distributed systems to reschedule trains 241

Table 6 Average results on the two approaches by scheduling trains via the BB algorithm

Tests Centralized system Distributed system

Infra
case

Comp
time

Max
delay

Avg
delay

Comp
time

Max
delay

Avg
delay

Coord
constr

Sched
iter

Glob
inf

i 0.6 77 1.6 0.5 77 1.6 13 1.0 0%

ii 2.3 221 7.5 0.6 221 7.3 16 1.2 9%

iii 6.6 235 13.4 1.9 235 13.7 18 1.3 12%

iv 6.8 248 17.3 1.8 248 17.7 17 1.2 14%

v 60.0 1515 56.8 22.6 1520 42.0 17 1.2 11%

vi 60.0 1515 64.0 25.8 1520 43.2 24 1.5 29%

algorithm. Each row of the tables reports the average results aggregated over the
90 timetable perturbation instances and for a given infrastructure scenario (see Col-
umn 1). Columns 2–4 describe the performance of the centralized system in terms
of computation time (in seconds), maximum and average consecutive delays (in sec-
onds). Similarly, Columns 5–7 give the same performance indicators for the distrib-
uted system. In both systems, the train delays are computed at all stations and at
the exit from the overall network. The last three columns report further information
on the distributed system. Column 8 presents the average number of border con-
straints imposed by the coordinator in order to recover the global feasibility, Column
9 the average number of scheduling iterations in the schedule coordination procedure,
Column 10 the percentage of iterations that result in a global infeasibility. For each
scheduling iteration, a new border graph is computed in order to check the global
feasibility of the current local solutions. On average, the border graph has around
600 border nodes and 1100 border arcs. For all tested instances, there is no infeasibil-
ity and inconsistency in each final solution returned by the centralized and distributed
systems. This interesting result is probably due to the choice of dividing the proposed
two-area railway network at the platform tracks of Utrecht Central station.

Table 4 reports the average results for the implemented ARI dispatching rule. The
centralized and distributed systems present global solutions that do not differ much
in terms of maximum and average consecutive delays, with the distributed system
performing slightly better. This is due to the fact that ARI considers a combination
of local scheduling rules and train priorities, which is only relatively sensitive to the
problem decomposition and to the actual traffic situation. Both systems are able to de-
liver a feasible solution within 15 seconds, and the distributed system is always faster
than the centralized one. Despite the solution process at the local level is heuristic,
the coordination does not result in a major workload, being always able to resolve all
the infeasibilities within up to 2 iterations of coordination.

Table 5 gives the average results of the FCFS procedure. Also in this case, the two
systems present similar global solutions in terms of consecutive delays. This is due
to the fact that FCFS does also not take decisions by evaluating the propagation of
train delays. Both systems are again very fast to solve the scheduling instances, even
if for this heuristic the distributed system is slightly slower than the centralized one.
This is in part due to the overload introduced by the coordination layer and in part to

242 F. Corman et al.

technical reasons related to the computation of the local schedules, that in practice is
not completely performed in parallel due to the iterative exchange of information.

Table 6 presents the average results of the BB algorithm. The centralized system
is more time consuming than the distributed one, the difference being more evident
in case of strong disruptions. This is due to the direct impact of the instance size and
complexity on the computation time of BB (the global alternative graphs have more
than 5000 alternative pairs while each of the two local alternative graphs has less than
3000 alternative pairs). However, the global solutions reported for the two systems
are very similar in terms of maximum consecutive delays. The distributed system
reports smaller average consecutive delays, specially for the infrastructure scenarios
(v) and (vi). This is probably due to the iterative use of BB in the distributed solving
procedure.

Comparing the solutions computed by the BB algorithm and by the other schedul-
ing procedures, BB outperforms both ARI and FCFS, for both the centralized and
distributed systems. This is due to the better performance of BB in minimizing the
consecutive delays compared to the local rules.

The last three columns of Tables 4, 5 and 6 give other relevant information about
the distributed framework. The number of coordination constraints and of schedul-
ing iterations are two indicators on the information exchanged between the two local
ROMAs and the coordinator. Comparing the results for the different infrastructure
scenarios, when the level of disturbances increases we conclude that more coordina-
tion constraints have to be imposed and more scheduling iterations are required to
obtain globally feasible solutions.

During the iterative scheduling procedure, the percentage of global infeasibilities
at intermediate iterations (see the last column of the tables) is also increasing when
dealing with more disrupted scenarios. However, the final iteration of the schedule
coordination procedure is always able to return a globally feasible solution. It is in-
teresting to note that this indicator does not depend on the scheduling procedure used
by the local ROMAs.

Figures 9 and 10 give a detailed view on the performance of the centralized
and distributed systems when using the BB algorithm. Each plot is done for the
90 timetable perturbation instances of Sect. 6.1 and one infrastructure scenario. The
x-axis shows the instances ordered by increasing average entrance delay, while the
y-axis reports the average consecutive delay for each instance. The plots give an idea
of the low correlation between entrance and consecutive delays. We found similar fea-
tures when comparing other input/output factors such as the number of delayed trains
or other punctuality measures. Differently, the average consecutive delay increases
appreciably with the variation of the infrastructure scenario, since when reducing the
available infrastructure more traffic is scheduled on the same platforms and there are
more potential conflicts causing a larger delay propagation.

In the scenarios from (iii) to (vi), the distributed system outperforms significantly
the centralized system. The distributed system is more robust to changes in the en-
trance delays in the scenarios (iii) and (iv), and it is systematically better in the sce-
narios (v) and (vi). The main reasons for this behavior are seemingly the following.
On the one hand, it is difficult for the centralized system to compute optimal solu-
tions in a short computation time when trains interact heavily and there is a limited

Centralized versus distributed systems to reschedule trains 243

Fig. 9 Comparative diagrams of average consecutive (output) delays against timetable perturbation in-
stances sorted by average entrance delay, scenarios i–iii, BB algorithm

244 F. Corman et al.

Fig. 10 Comparative diagrams of average consecutive (output) delays against timetable perturbation in-
stances sorted by average entrance delay, scenarios iv–vi, BB algorithm

Centralized versus distributed systems to reschedule trains 245

capacity available in the station interlocking areas. On the other hand, the network
decomposition into sub-problems keeps the complexity within an acceptable level
for the local ROMAs, and the coordination procedure is still able to guide the local
solvers to find globally feasible solutions.

7 Conclusions and future research

This paper presents models, procedures and experiments on centralized and distrib-
uted rescheduling systems for the management of a complex and densely occupied
railway area of the Dutch network. Heuristic and exact train scheduling algorithms
plus novel coordination procedures have been investigated on several timetable per-
turbation instances and infrastructure scenarios. The distributed system with the BB
algorithm for the local ROMAs is faster than the centralized ROMA solved by BB,
and shows significantly better performance in terms of the consecutive delays, spe-
cially for serious traffic disturbances. Differently, when using the FCFS procedure
the centralized system is faster than the distributed one, but the average consecutive
delay may increase up to 75% compared to the results of BB, and an even larger gap
is obtained when comparing BB with the ARI procedure.

Future research should be dedicated to develop more sophisticated techniques for
traffic control of large and busy networks. Following this research line, a number of
issues should be addressed. Since Theorem 1 holds for any number of areas, effective
coordination techniques could be developed for managing larger networks with more
than two dispatching areas. To this aim, the coordinator should have more decisional
capacity in order to solve possible cycles in the border graph of multiple areas (i.e.,
deadlocks involving trains running in different areas). The impact of coordination
actions on the quality of the global solutions is also a problem that requires further
research. The impact of various subdivisions of the network into local areas should
be investigated more extensively. Finally, other features, such as rerouting and speed
regulation, should be integrated in the decision support systems in order to face prac-
tical needs of railway operators.

Acknowledgements We thank the Dutch infrastructure manager ProRail (specially D. Middelkoop and
L. Lodder) for providing the instances. This work is partially supported by the Dutch programs “Towards
Reliable Mobility” of the Transport Research Centre Delft and by the Italian Ministry of Research, Grant
number RBIP06BZW8, project FIRB “Advanced tracking system in intermodal freight transportation”.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Adenso-Díaz B, González MO, González-Torre P (1999) On-line timetable re-scheduling in regional train
services. Transp Res, Part B 33(6):378–398

Berends N, Ouburg N (2005) Beschrijving ARI-functionaliteit. Technical report 20, ProRail Internal Spec-
ification (in Dutch), Utrecht, the Netherlands

246 F. Corman et al.

Caimi G, Burkolter D, Herrmann T, Chudak F, Laumanns M (2009) Design of a railway scheduling model
for dense services. Netw Spat Econ 9(1):25–46

Chou YH, Weston PF, Roberts C (2007) Dynamic distributed control for real-time rescheduling of railway
networks. In: Hansen IA, Radtke A, Pachl J, Wendler E (eds) Proceedings of the 2nd international
seminar on railway operations modelling and analysis, Hannover, Germany

Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2010) A tabu search algorithm for rerouting trains during
rail operations. Transp Res, Part B 44(1):175–192

D’Ariano A (2008) Improving real-time train dispatching: models, algorithms and applications. PhD The-
sis, TRAIL Thesis Series T2008/6, The Netherlands

D’Ariano A, Pranzo M (2009) An advanced real-time train dispatching system for minimizing the propa-
gation of delays in a dispatching area under severe disturbances. Netw Spat Econ 9(1):63–84

D’Ariano A, Pacciarelli D, Pranzo M (2007a) A branch and bound algorithm for scheduling trains in a
railway network. Eur J Oper Res 183(2):643–657

D’Ariano A, Pranzo M, Hansen IA (2007b) Conflict resolution and train speed co-ordination for solving
real-time timetable perturbations. IEEE Trans Intell Transp Syst 8(2):208–222

D’Ariano A, Corman F, Pacciarelli D, Pranzo M (2008) Reordering and local rerouting strategies to man-
age train traffic in real-time. Transp Sci 42(4):405–419

Goddard E (2006) Overview of signalling and train control systems. In: The 9th institution of engineering
and technology professional development course on electric traction systems, Manchester, UK. pp
336–350

Hansen IA, Pachl J (eds) (2008) Railway timetable and traffic: analysis, modelling and simulation. Eurail-
press, Hamburg

Hirai C, Tomii N, Tashiro Y, Kondou S, Fujimori A (2006) An algorithm for train rescheduling using
rescheduling pattern description language R. In: Allan J, Brebbia CA, Rumsey AF, Sciutto G, Sone
S, Goodman CJ (eds) Computers in railways X. WIT Press, Southampton, pp 551–561

Iyer RV, Gosh S (1995) DARYN—A distributed decision-making algorithm for railway networks: Model-
ing and simulation. IEEE Trans Veh Technol 44(1):180–191

Jacobs J (2004) Reducing delays by means of computer-aided ‘on-the-spot’ rescheduling. In: Allan J,
Brebbia CA, Hill RJ, Sciutto G, Sone S (eds) Computers in railways IX. WIT Press, Southampton,
pp 603–612

Jia LM, Zhang XD (1994) Distributed intelligent railway traffic control: a fuzzy-decision making-based
approach. Eng Appl Artif Intell 7(3):311–319

Lamma E, Mello P, Milano M (1997) A distributed constraint-based scheduler. Artif Intell Eng 11(2):91–
105

Lee TS, Gosh S (2001) Stability of RYNSORD—a decentralized algorithm for railway networks under
perturbations. IEEE Trans Veh Technol 50(1):287–301

Mascis A, Pacciarelli D (2002) Job shop scheduling with blocking and no-wait constraints. Eur J Oper Res
143(3):498–517

Mazzarello M, Ottaviani E (2007) A traffic management system for real-time traffic optimisation in rail-
ways. Transp Res, Part B 41(2):246–274

Message Passing Interface Forum (1994) MPI: a message passing interface standard. Int J Supercomput
Appl High Perform Comput 8(3)

Missikoff M (1997) An object-oriented approach to an information and decision support system for railway
traffic. In: Proceedings of the 1st international conference on knowledge-based intelligent electronic
systems, pp 633–641

Nie L, Hansen IA (2005) System analysis of train operations and track occupancy at railway stations. Eur
J Transp Infrastruct Res 5(1):31–54

Pacciarelli D (2003) Deliverable D3: Traffic regulation and co-operation methodologies—Code
wp4urdv7001d. In: Project COMBINE 2 “enhanced COntrol centres for fixed and moving block
sIgNalling systEms—2”—Number: IST-2001-34705

Pachl J (2002) Railway operation and control. VTD Rail Publishing, Mountlake Terrace
Parodi G, Vernazza G, Zunino F (1996) Stability and deadlock avoidance in distributed system for traffic

control. IEEE Trans Veh Technol 45(4):732–743
Ping L, Axin N, Limin J, Fuzhang W (2001) Study on intelligent train dispatching. In: Proceedings of the

4th IEEE international conference on intelligent transportation systems, pp 949–953
Rodriguez J (2007) A constraint programming model for real-time train scheduling at junctions. Transp

Res, Part B 41(2):231–245
Şahin İ (1999) Railway traffic control and train scheduling based on inter-train conflict management.

Transp Res, Part B 33(7):511–534

Centralized versus distributed systems to reschedule trains 247

Salido MA, Abril M, Barber F, Ingolotti L, Tormos P, Lova A (2007) Domain-dependent distributed models
for railway scheduling. Knowl-Based Syst 20(2):186–194

Schöbel A (2009) Capacity constraints in delay management. Public Transp Plann Oper 1(2):135–154
Schrijver A, Steenbeek A (1994) Dienstregelingontwikkeling voor Railned: Rapport CADANS 1.0. Tech-

nical report, Centrum voor Wiskunde en Informatica, Amsterdam, the Netherlands, In Dutch
Strotmann C (2007) Railway scheduling problems and their decomposition. PhD thesis, Universität Os-

nabrück
Takagi R, Weston PF, Goodman CJ, Bouch C, Armstrong J, Preston J, Sone S (2006) Optimal train control

at a junction in the main line rail network using a new object-oriented signalling system model. In:
Allan J, Brebbia CA, Rumsey AF, Sciutto G, Sone S, Goodman CJ (eds) Computers in railways X.
WIT Press, Southampton, pp 479–488

Törnquist J (2006) Railway traffic disturbance management. PhD thesis, Blekinge Institute of Technology
Tsuruta S, Eguchi T, Yanai S, Ooshima T (1999) A coordination technique in a highly automated train

rescheduling system. In: IEEE international conference on systems, man, and cybernetics
van den Berg JHA, Odijk MA (1994) DONS: Computer aided design of regular service time-tables. In:

Murthy TKS, Brebbia CA, Mellitt B, Sciutto G, Sone S (eds) Computers in railways IV. WIT Press,
Southampton, pp 109–116

Wegele S, Slovák R, Schnieder E (2007) Real-time decision support for optimal dispatching of train opera-
tion. In: Hansen IA, Radtke A, Pachl J, Wendler E (eds) Proceedings of the 2nd international seminar
on railway operations modelling and analysis, Hannover, Germany

Yuan J (2006) Stochastic modelling of train delays and delay propagation in stations. PhD thesis, TRAIL
Thesis Series T2006/6, The Netherlands, 2006

Zwaneveld PJ, Kroon LG, Van Hoesel SPM (2001) Routing trains through a railway station based on a
node packing model. Eur J Oper Res 128(1):14–33

	Centralized versus distributed systems to reschedule trains in two dispatching areas
	Abstract
	Introduction
	Problem definitions
	Overview of the related literature
	Centralized rescheduling system
	Illustrative example
	Train scheduling procedures

	Distributed rescheduling system
	System architecture
	Formulation with alternative and border graphs
	Schedule coordination procedure

	Test case
	Description of the instances
	Computational results

	Conclusions and future research
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

