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Abstract

Purpose of Review Cardiovascular diseases are the leading cause of deaths worldwide. Many complex cellular and molecular
pathways lead to myocardial remodeling after ischemic insults. Anatomy, function, and viability of the myocardium can be
assessed by modern medical imaging techniques by both visualizing and quantifying damages. Novel imaging techniques aim for
a precise and accurate visualization of the myocardium and for the detection of alternations at the molecular level.

Recent Findings Magnetic resonance imaging assesses anatomy, function, and tissue characterization of the myocardium non-
invasively with high spatial resolution, sensitivity, and specificity. Using hyperpolarized magnetic resonance imaging, molecular
and metabolic conditions can be assessed non-invasively. Single photon-emission tomography and positron-emission tomogra-
phy are the most sensitive techniques to detect biological processes in the myocardium. Cardiac perfusion, metabolism, and
viability are the most common clinical targets. In addition, molecular-targeted imaging of biological processes involved in heart
failure, such as myocardial innervation, inflammation, and extracellular matrix remodeling, is feasible.

Summary Novel imaging techniques can provide a precise and accurate visualization of the myocardium and for the detection of
alternations at molecular level.

Keywords Myocardium - Infarction - MRI - Hyperpolarized MRI - PET - SPECT

Introduction

Cardiovascular diseases (CVD) are the leading cause of
death worldwide and consist of a variety of diseases from
cardiac dysfunction to aneurysm rupture [1-3]. In this re-
view, we describe how novel imaging techniques including
magnetic resonance imaging (MRI), hyperpolarized MRI
(hMRI), positron-emission tomography (PET), and single
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photon-emission computed tomography (SPECT) tech-
niques can be used to image myocardial infarction (MI)
and myocardial remodeling post-MI. MI develops when re-
duced blood flow and lack of oxygen lead to death of
cardiomyocytes via necrosis, inflammation, replacement
of extracellular space by fibrosis, protein infiltration, and
myocardial disarray [4, 5]. Overall, fibrosis is thought to
be the final common pathway in various myocardial
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diseases [6]. Intense fibrosis leads to scar formation [7ee,
8—11], which further changes the shape and function of the
left ventricle (LV) and can be manifested as dilation and
thinning of the myocardium, hypertrophy of the remote
areas surrounding MI, and overall decline of the heart func-
tion (Fig. 1) [3, 12—14]. All of these features can be accessed
by kinematic imaging over the heart cycle [3].

To image heart function, ultrasound and computed tomog-
raphy (CT) are applied besides the above mentioned tech-
niques [3, 15, 16]. Nuclear medicine imaging techniques,
namely PET and SPECT, are used to measure changes in
perfusion, metabolism, and molecular pathways at the cellu-
lar level during the remodeling [3]. Tracer molecule owing a
capability to bind into defined receptor or other molecule
steers radionuclide or other compound which enhances im-
age contrast into target tissue [17]. Although tracers have
been developed for MRI and SPECT, the most sensitive tech-
nique is still PET [3]. To add sensitivity of MRI, novel tech-
niques based on hMRI have been developed which have en-
abled imaging of the cell cycle and cell metabolism [18¢].

MRI

Cardiac magnetic resonance imaging (cMRI) contains a
wide variety of options to study cardiac anatomy, function,
infarct scar, and fibrosis and to characterize the myocardium
by relaxation time mapping, perfusion, water diffusion, wall
movement, and myocardial stiffness [19, 20]. cMRI is cur-
rently the golden standard to assess anatomy and function of
the myocardium non-invasively with high spatial resolution
and accuracy [3, 15, 16].

Acute Myocardial Infarction

Adverse Remodelling

Functional cMRI

The anatomy and functional images from the LV are typically
imaged by acquiring rapidly either with multiple 2D- or 3D-
cine images that are covering the whole heart during more
than 95% of the cardiac cycle [21]. Images allow the accurate
determination of end diastolic volume (EDV) and end systolic
volume (ESV) which are further used to calculate ejection
fraction (EF), stroke volume (SV), and cardiac output (CO)
[3, 12, 15, 16, 22]. Reduced EF together with increased EDV
and decreased myocardial thickness are the clearest signs of
reduced systolic function and remodeling [12, 13, 15, 23, 24].
Additionally, EF and EDV have been shown to increase as a
function of time after MI reperfusion in human [25], swine
[20], and mice [26]. As LV becomes globally thinner, MI scar
tissue expands and causes extra workload in the LV, hypertro-
phy, and expansion of the healthy myocytes to maintain CO
[12, 27]. Recently, texture analysis applied on MRI cine im-
ages was demonstrated to differentiate nonviable and viable
MI areas and remote areas of the myocardium [28]. Texture
analysis finds the patterns and relationships among pixels
from heterogeneities within the imaging target [28].

There are also several other methods to study anatomy and
function of the heart. Bright-blood technique is used for the
detection of hemorrhage in the myocardium [29] whereas
dark-blood technique is used to improve the discrimination
of myocardium and adjacent blood pool revealing small areas
of MI in the endocardium [30]. Myocardial tagging is an im-
aging technique which assesses the motion and deformation of
LV myocardium with good temporal and spatial resolution
[31]. Therefore, myocardial deformation and motion stiffness
caused by MI and fibrosis can be detected by myocardial
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Fig.1 Schematic picture showing gross changes in adverse cardiac remodeling post-MI (adapted with permission from Springer Nature: van den Borne

SW) [14]
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tagging [32, 33]. Feature tracking is a novel image analysis
technique for myocardial tagging that was shown to be a fea-
sible and robust technique to detect LV motion where data
analysis is faster compared to myocardial tagging [33].

Contrast Agent Imaging: Late Gadolinium
Enhancement and Extracellular Volume

The current gold standard to assess and localize the chronic MI
area in clinics is the contrast agent (CA)-based late gadolinium
enhancement (LGE) technique. Gadolinium (Gd) accumulates
into expanded extracellular space in irreversibly damaged MI
tissue and its washout back to the blood stream is delayed,
which shortens 7' relaxation time in the MI area [7¢¢]. Thus,
Gd accumulation is detected as a delayed hyperintensity in 77-
weighted MR images (Fig. 2) [7+¢]. Delayed hyperintensity in
the myocardium and signal from blood is hard to distinguish.
To improve contrast between infarct scar and blood in LGE, a
T, preparation was added between inversion pulse and image
acquisition [34]. Cons of the LGE technique include the inabil-
ity to show the quality of the scar, emphasis on extracellular
water content, and failure to detect diffuse fibrosis and global
changes in the myocardium after the injury [15, 35]. In a recent
myocardial permeability study, measured with albumin-bound
Gd, alternations were associated with remodeling between
acute and chronic MI [36]. T} mapping before and after contrast
injection together with hematocrit were essential to calculate
the extracellular volume (ECV) [15, 16, 37]. Larger ECV frac-
tions were measured in MI (54 + 1%) than in remote myocar-
dial tissue (29 £2%) [38]. Similar ECV differences between
MI and healthy myocardium (25 +3%) have been reported in
the myocardium [39].

ECV technique is a sensitive method to detect the distribu-
tion of the cellular and extracellular interstitial matrix com-
partments [6]. It has been shown to reflect the extent of myo-
cardial fibrosis and has been validated against collagen vol-
ume fraction (Table 1) [40]. It has been reported to agree better
with the collagen volume fraction than the post-contrast 77
alone [41] and to be more accurate in the detection of acute
MI compared to LGE [7+¢]. Additionally, ECV is used to
evaluate the transmural extent of MI [7¢¢].

Conventional Relaxation Times

Visualization of the myocardial tissue and detection of both
acute and chronic MI can be done without CA. These tech-
niques offer quantitative assessment of the alternations in the
composition of myocardial tissue based on intrinsic water
properties, longitudinal 77 [7ee, 42, 43] and transversal 75
relaxations [42, 44], to generate contrast within the myocardi-
um [6]. T}-weighted images are typically used for anatomical
imaging and 7,-weighted images for edema and imaging of
transient ischemia (Table 1) [45]. T} and 75 relaxations can be

mapped by acquiring multiple relaxation weighted images and
by fitting a curve to signal intensities pixel-by-pixel manner to
form relaxation time maps [35, 44, 46]. Both T} and 7, map-
ping also allow visualization and quantification of global
changes in the myocardium (Table 1) [11, 44, 46].

T relaxation time is elevated during MI development [6,
10, 38, 39, 47] and it has been shown to distinguish between
reversible and irreversible damages in post ST-elevation MI
(STEMI) [22, 48, 49]. In chronic MI, native 7 relaxation
times are lower than in acute MI because edematous and ne-
crotic tissues in the acute MI are replaced by smaller amounts
of expanded extracellular collagen [7¢, 50]. Therefore, T
mapping can be used for diagnostic purposes to detect differ-
ent pathological states in the myocardium (Table 1) [6, 39,
40].

T, relaxation determines edema via increased 75 relaxation
time resulting from an increased amount of interstitial free
water [28]. Therefore, 75 relaxation time is suitable for the
determination of the area at risk in acute MI [6, 28, 40].
However, T, suffers from a poor contrast-to-noise ratio com-
pared to 7' and longitudinal rotating frame relaxation time
(T',) [51]. T>* relaxation time can be chosen when myocardial
iron content is used to detect myocardial hemorrhage since
T,* relaxation time is more sensitive for magnetic susceptibil-
ities than 75 due to the accumulated iron content (Table 1) [15,
28, 40, 52].

T1, Relaxation Time

Another advanced technique is based on the mapping of a
longitudinal rotating frame relaxation time (7',) which mea-
sures relaxation during a radiofrequency (RF) pulse [42, 53].
T, relaxation is sensitive to slow molecular motions (range of
0.1 to 10 kHz in vivo compared to fast molecular motions at
Larmor frequency at 10-500 MHz which are used in 77 and 7,
relaxation time measurements) [7+¢]. In general, 7}, relaxation
time is always between 7 and 7, relaxation times ap-
proaching 7, when spin-lock pulse power nears zero [51].
Increased T, relaxation time associates with increased extra-
cellular volume and fibrotic area in MI [37, 53] and correlates
with LGE in mice (Fig. 2) [7¢e, 54], pigs [51], and humans
[55] after MI. One limitation of the T, relaxation time map-
ping in clinics is the relatively high specific absorption rate
(SAR) causing tissue heating [7¢].

Relaxation Along Fictitious Field

Relaxation along a fictitious field (RAFF) in the nth rotating
frame (RAFFn) is a novel MRI relaxation time technique to
perform rotating frame relaxation time measurements with
less SAR [7ee, 56, 57+, 58¢¢]. RAFF takes advantage of the
fictitious magnetic field which is produced by a fast sweep of
the effective RF field [56, 57¢¢]. Advantages of the low SAR
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Fig. 2 Relaxation time maps, LGE, cine, and a corresponding histology
image with sirius red—stained section from the infarcted mouse heart
21 days after infarct. Red arrow indicates the infarct area and black/

become more evident when RAFF in the higher rank (n) ro-
tating frames (RAFFn), an extension of RAFF, is used.
Typically, n varies between 1 and 5 in imaging applications
[56, 57+¢]. The contrast between MI and remote areas has been
demonstrated with RAFFn technique in mice and the MI area
was equally accurately detected as with T ,, LGE, and histol-
ogy (Fig. 2) [7+¢]. Trarr, relaxation times are also elevated
and more sensitive than 7', in the detection of fibrotic area in
the hypertrophic myocardium in mice [59].
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white arrow shows the remote control area. Bl homogeneity was
verified to be nominal + 10% Hz in the area of the whole myocardium
(adapted from Yla-Herttuala E) [7¢¢]

Hyperpolarization

A novel imaging technique to measure real-time metabolic ac-
tivity without ionizing radiation is hyperpolarized MRI
(hMRI). The most common technique of hMRI is dynamic
nuclear polarization (DNP). Most often, DNP is based on the
dynamics of the downstream metabolism of [1-13C]-labeled
pyruvate which is the final product of the glycolytic glucose
breakdown [18¢]. In healthy myocytes and in aerobic
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Table 1  Feasibility of conventional parametric mapping methods in
different diseases and tissue characteristics

T Iy* T, ECV
AMI Hemorrhage . o . 2
Edema . 27 . .
Necrosis . o o .
Fibrosis Focal/regional* ° ° . .
Diffuse/global* 27 ° . .
e = useable

* = potential
7?7 = unknown
° =not useable

*Diffuse/global refers to phenomena affecting to the whole myocardium
and focal/regional refers to localized abnormalities in the myocardium

AMI, acute myocardial infarction; ECV, extracellular volume

conditions, pyruvate is converted to acetyl-CoA and CO,/bi-
carbonate via pyruvate dehydrogenase [18¢]. In anaerobic con-
ditions, the lack of oxygen shifts energy conversion to lactate
formation via lactate dehydrogenase [18¢]. Imaging [1-;5C]-
labeled pyruvate with hMRI is over 10,000 times more sensi-
tive than the conventional MR spectroscopy which makes it
possible to accurately characterize and image low natural abun-
dances of metabolic compounds in healthy and ischemic tissues
[18<]. hMRI with DNP has potential to add much more sensi-
tivity and specificity for the characterization of the ischemic
area and effects of the revascularization therapies since DNP
technique reflects energy homeostasis [18¢]. Fast 7} decay (~
45 s for [1-13C]-labeled pyruvate) of the substrate limits the
hMRI applications [18+]. Big efforts have been made to make
hMRI available for human use [60] although most hMRI car-
diac imaging studies are still done in experimental animals
[60—63]. In a pig reperfusion model, a significant increase in
lactate level after myocardial reperfusion was found whereas
bicarbonate level remained low after 5 min reperfusion [64]
which clearly demonstrates fast metabolic alternations after re-
perfusion. Supporting these findings, an elevated level of lac-
tate and a decreased level of bicarbonate were found in an
ex vivo infarction study and myocardial reperfusion studies
(Fig. 3) [61, 65, 66]. Moreover, in an in vivo porcine study,
LV wall motion was retained when bicarbonate level returned
back to normal, but LGE was unchanged after reperfusion
(Fig. 3) [62]. Additionally, decreased pH due to increased gly-
colysis and intracellular proton and lactic acid production were
found in ischemic myocardium [18e, 67, 68]. Reduction of the
Krebs cycle flux, where the ladder production from [1-;5C]-
pyruvate to different metabolic compounds takes place, was
correlated to the LV systolic dysfunction in rats [69]. Along
with the above myocardium studies, hMRI has been used to
study diabetic cardiomyopathy, fibrosis, hypertrophy and cor-
onary artery disease in animal models, and patients with prom-
ising results [18e, 70].

Other MRI Techniques

Myocardial perfusion gives useful information about cap-
illary blood flow in the myocardium. Myocardial perfu-
sion can be measured without CA by techniques of arte-
rial spin labeling [71] and blood oxygen level-dependent
contrast [15]. CA is used in myocardial angiography,
where blood flow inside coronary arteries can be mea-
sured since the blood flow is alternated in the area of
MI compared to the surrounding heart muscle [72]. CA-
MRA has also been used to determine microvascular ob-
struction in swine acute MI model with high accuracy [22,
71]. Increased ECYV, loss of cardiomyocytes and therefore
loss of orientational structure, increases water diffusion in
MI compared to the rest of the myocardium [3] which can
be imaged with the diffusion weighted MRI [73].
Diffusion tractography, [3] measuring the orientation of
cardiomyocytes, has grown in the CMRI field since dif-
fusion tractography was introduced in rat MI model [74];
MI area is disturbing the normal form of crossing helical
fiber architecture of normal myocytes. Bright-blood,
which is gradient-echo based and black-blood, which is
a spin-echo based, 7,-weighted sequence, can be used to
assess myocardial structure, acute MI and ischemic areas
with good accuracy in patients [15, 75]. Stiffness of MI
area and the rest of the myocardium is also studied by
MRI elastography where the MI area is discriminated
from the rest of the myocardium by the difference be-
tween the motion stiffness of those arecas (MI, 4.6 +
0.7 kPA; healthy, 3.0+£0.6 kPA) [73, 76]. Moreover,
cMRI has an ability to determine with great accuracy mi-
tral valve [77] and aortic valve [78] malfunctions, which
often occur as MI develops and therefore imaging the
function of mitral and aortic valves might give additional
information about the heart’s condition [77].

SPECT and PET

SPECT and PET represent nuclear imaging techniques that
enable mapping of radiotracer concentration and kinetics in
the myocardium with very high sensitivity [79].
Improvement in PET and SPECT imaging technology has
led to the evolution of imaging beyond the isolated assess-
ment of myocardial perfusion, toward molecular-targeted
imaging of biological processes involved in heart failure,
such as myocardial metabolism, innervation, inflammation,
and extracellular matrix remodeling. PET and SPECT scan-
ners are increasingly integrated with either CT or MRI sys-
tems into PET-CT or PET-MRI hybrid imaging devices,
which facilitate the localization of a molecular signal, by
fusion with high resolution morphologic images [80].
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Fig.3 Short axis imaging after 60-min LAD occlusion in pigs, at baseline
and 1 week post-reperfusion. Color intensity is normalized to pyruvate
seen in the LV cavity. Stunned myocardium (/eff) demonstrated
normalization of bicarbonate (bic), absence of delayed enhancement
(DE), and normalization of function at 1 week. In the MI (right),

Myocardial Perfusion

Myocardial perfusion imaging with SPECT or PET enables
evaluation of location, extent, severity, and reversibility of myo-
cardial perfusion defects in patients with known or suspected
coronary artery disease (CAD), contributing to the detection of
ischemic etiology of heart failure [81]. In addition to the assess-
ment of relative distribution to the perfusion, PET with radio-
tracer kinetic modeling can be used to quantify myocardial
blood flow (MBF) in absolute terms (mL/g/min) at rest and
during vasodilator stress that allows the computation of coro-
nary flow reserve (CFR) [81]. Quantification of regional MBF
and CFR by PET may identify microvascular dysfunction, bet-
ter characterize the extent and severity of CAD in multi-vessel
disease, detect balanced decreases of MBF in all major coronary
artery vascular territories, and provide prognostic information
beyond regional myocardial ischemia [82, 83]. Reduced CFR is
a typical feature of a cardiomyopathic heart as a consequence of
microvascular dysfunction even in the absence of epicardial
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bicarbonate production remained absent at 1 week; lactate (lac) was
only seen in the peri-infarct region (arrow) and delayed enhancement
clearly delineates the MI (adapted with permission from John Wiley
and Sons: Lau AZ) [62]

CAD [84, 85]. Outcome studies have supported microvascular
dysfunction as an independent contributing factor to the symp-
toms and progression of heart failure and reduced CFR was a
predictor of adverse cardiac events in ischemic and dilated car-
diomyopathy [84, 85].

Myocardial Viability

Myocardial viability and scarring can be assessed using per-
fusion imaging using specific viability protocols. In addition,
18F-fluorodeoxyglucose (18F-FDG) PET can be used to de-
tect ischemic myocardium that is dysfunctional, but viable and
has potential for recovery of the contractile function after re-
vascularization [86]. Viable myocardium shows preserved
18F-FDG uptake, whereas markedly reduced or absent uptake
indicates the presence of scar. A preserved or increased uptake
of 18F-FDG in the presence of reduced myocardial perfusion,
known as flow-metabolism mismatch, is the most commonly
used marker of hibernating myocardium that is capable of
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functional recovery after revascularization (Fig. 4). 18F-FDG
PET is a sensitive technique to detect viability and it predicts
functional recovery upon revascularization. A pooled analysis
of 24 studies in 756 patients demonstrated a weighed mean
sensitivity and specificity of 92% and 63%, respectively, for
the detection of regional functional recovery [86].
Retrospective studies have also indicated lower annualized
mortality rates of those with viable myocardium who

FDG(G)

18F-FDG

-
SA basal

Fig. 4 Myocardial viability study using 18F-fluorodeoxyglucose (18F-
FDG) and myocardial perfusion study at rest using O-15-water. The
patient had 3-vessel obstructive coronary artery disease, contractile
dysfunction in the territory of the left anterior descending (LAD)
coronary artery, reduced left ventricle ejection fraction (35%), and high
surgical risk. Resting perfusion is reduced in the LAD territory (white

underwent revascularization (4%) versus those with viability
who did not undergo revascularization (17%) [88].

The value of 18F-FDG PET in guiding decisions on revas-
cularization assigned 430 heart failure patients with an ejection
fraction below 35% to either management assisted by 18F-FDG
PET imaging or standard care [89]. Although the study overall
showed only a nonsignificant trend toward reduction in cardiac
events for 18F-FDG PET assisted management, 18F-FDG PET

line). Viability study shows absence of 18F-FDG uptake in the apex,
but partially preserved uptake elsewhere in the LAD territory indicating
partially preserved viability. VLA vertical long axis, HLA horizontal long
axis, SA short axis (adapted with permission from Springer Nature:
Kiugel M) [87]
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assisted management improved outcomes in the subgroup of
patients whose treatment adhered to the recommendations by
imaging [89, 90], especially in patients with a large amount of
hibernating myocardium [91]. Similarly, an observational study
evaluating survival benefit from revascularization according to
the extent of ischemic, scarred, and viable myocardium found
survival benefit from revascularization in patients with hiber-
nating myocardium > 10% of the left ventricle [92]. Current
guidelines recommend that myocardial revascularization should
be considered in patients with chronic ischemic heart failure
with ejection fraction <35% in the presence of viable myocar-
dium [93].

Myocardial Metabolism

In addition to 18F-FDG, there are other PET tracers for the
assessment of different aspects of myocardial metabolism [94,
95]. 11C-labeld acetate (11C-acetate) allows robust non-
invasive measurement of myocardial oxygen consumption in
the left and right ventricles independently of the substrate
utilization [94]. This provides the means to estimate the oxy-
gen cost of contractility, the efficiency of myocardial forward
work. The finding of decreased efficiency of myocardial for-
ward work is a consistent and early finding in cardiomyopathy
caused by different etiologies [94]. Myocardial substrate me-
tabolism can be studied in detail by fatty acid analogs, such as
18F-fluoro-6-thia-heptadecanoicacid or 11C-palmitate. The
former reflects myocardial fatty acid utilization, whereas the
latter reflects the flux of fatty acid metabolism through the cell
including lipid pool storage, beta-oxidation, and tricarboxylic
acid cycle [96]. Imaging of myocardial metabolism with PET
has been used for evaluation of many medical and device
therapies on the metabolism of the failing heart [94, 95].

Cardiac Sympathetic Innervation

Cardiac sympathetic imaging provides a non-invasive approach
to assess alterations in cardiac sympathetic nerve function in
cardiomyopathies [96, 97]. Heart failure is associated with an
increased sympathetic tome characterized by increased release
and decreased reuptake of norepinephrine by cardiac sympathet-
ic nerve endings. Currently, cardiac sympathetic function is most
commonly evaluated by SPECT imaging with 1231I-
metaiodobenzylguanidine (1231-MIBG), an iodinated neuro-
transmitter analog [97]. Uptake of 123I-MIBG in the heart is
primarily mediated by the norepinephrine transporter (NET), an
energy-dependent uptake mechanism. Cardiac uptake is usually
measured relative to background mediastinal activity in planar
images (heart-to-mediastinum ratio). Many studies have demon-
strated that cardiac uptake of 123I-MIBG is reduced in individ-
uals with heart failure and indicate that 1231-MIBG can be used
as an independent predictor of heart failure progression and
cardiac mortality [96-99].
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11C-Metahydroxyephedrine (11C-HED) is a NET ligand
that has been used for PET imaging of cardiac sympathetic
function. Compared with SPECT, PET imaging provides a
quantitative measure of sympathetic nerve function and iden-
tifies regional heterogeneity of innervation. The extent of re-
duced neural activity assessed with quantitative 11C-HED
PET has been shown to be a predictor of sudden cardiac arrest
independently of EF, infarct volume, symptoms, and natriuret-
ic peptide levels in CAD patients who were candidates for an
implantable cardioverter defibrillator placement for primary
prevention of sudden cardiac death [100]. Despite benefits in
terms of quantification and assessment of regional distribu-
tion, widespread clinical imaging with 11C-HED has been
limited by the short radioactive half-life (20 min) and the need
for an onsite cyclotron. N-[3-Bromo-4-(3-18F-fluoro-
propoxy)-benzyl]-guanidine (LMI1195) is a novel PET tracer
that has been recently evaluated for evaluation of cardiac sym-
pathetic neuronal function in man [101, 102]. Like MIBG, this
agent is a benzylguanidine analog, but labeled with 18F. 18F
has a radioactive half-life of 120 min that would allow distri-
bution to sites without an onsite cyclotron.

New Tracers for Ml and Remodeling

New PET and SPECT tracers targeting the molecular mecha-
nisms underlying repair of myocardial injury have been stud-
ied as potential markers of functional outcome after an acute
MI [103]. Molecular imaging of the cellular mechanisms of
myocardial remodeling can potentially provide new bio-
markers for early detection, risk stratification, and evaluation
of response to therapy in heart failure.

The ov33 integrin is a mediator of angiogenesis and its ex-
pression is markedly upregulated in the myocardium after MI
[104, 105]. In addition to the endothelium, it is expressed by both
activated cardiac myofibroblasts and macrophages after MI[105,
106]. Thus, av33 integrin has been studied as a potential target
for imaging angiogenesis and repair of myocardial injury.
Molecular imaging of ocv33 is based on tracers that contain the
RGD peptide subunit (the arginine-glycine-aspartate motif) that
binds to the activated ocv33 integrin. Several PET tracers
targeting av[33 integrin have been evaluated in experimental
models of MI [104, 106—113] and in patients with MI
[114-116]. Studies have shown increased uptake of RGD-
based radiotracers at the site of infarction as early as 3 days,
peaking at 1-3 weeks after MI. The uptake correlates with an-
giogenesis, infarct scar formation, and adverse remodeling
(Fig. 5). The value of imaging of ocv33 integrin in predicting
outcome of infarcted tissue after MI and demonstrating effects of
therapies aimed at accelerating repair after M1, such as angiogen-
ic gene therapy [117], still remains to be studied.

Inflammatory response after MI is another target that has
been studied for predicting functional recovery after MI.
Studies have shown increased myocardial uptake of metabolic
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markers 18F-FDG [118] and 11C-methionine [119] reflecting
inflammatory activity after recent MI. Uptake of 18F-FDG early
after an acute MI inversely correlated with the degree of func-
tional recovery [119]. Pentixafor is a novel 68Ga-labeled PET
tracer that binds to CXCR4 chemokine receptor mediating leu-
kocytes accumulation at the sites of inflammation [120—122]. In
experimental and human MI, increased pentixafor uptake was
detected by PET in the infarcted tissue early after injury. After
the initial pro-inflammatory phase, cells that promote tissue re-
pair are the major inflammatory cell population in the infarcted

PET imaging
[68Ga]DOTA-RGD

Fig. 5 Images of myocardial av[33 integrin upregulation evaluated by
68Ga-DOTA-RGD PET after experimental myocardial infarction (MI) in
rat. Autoradiographs of cross sections of the left ventricle show increased
tracer uptake (green and red color) in the infarcted myocardium peaking
at 1 week post-MI persisting at 4 weeks post-ML Infarction is visible in

myocardium [123, 124]. Molecular imaging may help to under-
stand time course and contributions of the pro- and anti-
inflammatory mechanisms after MI.

Other radionuclide imaging approaches have been evaluat-
ed to assess molecular mechanisms underlying myocardial
fibrosis, such as activation of matrix metalloproteinases
[125-127] and activation of the renin-angiotensin-
aldosterone system [128, 129]. Molecular imaging with a
radiolabeled ligand of the angiotensin receptor 1, 11C-
KR31173, demonstrated changes in myocardial expression

Autoradiography
[68Ga]DOTA-RGD

By - s

the corresponding section stained with hematoxylin and eosin (HE).
Micro-PET/CT images show increased tracer uptake in the anterolateral
wall of the left ventricle (arrow) 1 week after infarction (adapted with
permission from Springer Nature: Kiugel M) [87]
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of angiotensin receptor 1 in a pig model of chronic MI and the
radiotracer was tolerated also in humans [128]. Although new
tracers for imaging M1 are in a relatively early stage of devel-
opment, studies have already shown that molecular imaging
of the new targets can clarify pathogenesis of heart failure and
be potentially useful to study effects of therapies.

Conclusion

Anatomy, function, and viability of the myocardium can be
assessed by modern medical imaging techniques by both visu-
alizing and quantifying damages. Novel imaging techniques are
capable of precise and accurate visualization of the myocardium
and detection of alternations at molecular level. Magnetic reso-
nance imaging assesses the myocardium non-invasively with
high spatial resolution and high contrast between myocardium
and blood, cardiac function and tissue characterization of the
myocardium. Molecular and metabolic conditions can also be
assessed non-invasively with novel hyperpolarized magnetic
resonance imaging. Single photon-emission tomography and
positron-emission tomography are the most sensitive tech-
niques to detect biological processes, including cardiac perfu-
sion, metabolism, and viability in the myocardium.
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