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Abstract
Purpose of Review The aim of the review was to identify and describe recent advances (over the last 3 years) in cardiac magnetic
resonance (CMR) imaging in patients with chronic kidney disease (CKD). We conducted a literature review in line with current
guidelines.
Recent Findings The authors identified 22 studies. Patients with CKD had left ventricular global and regional dysfunction and
adverse remodeling. Stress testing with CMR revealed a reduced stress-response in CKD patients. Native T1 relaxation times (as
a surrogate markers of fibrosis) are elevated in CKD patients, proportional to disease duration. Patients with CKD have reduced
strain magnitudes and reduced aortic distensibility.
Summary CMR has diagnostic utility to identify and characterize cardiac involvement in this patient group. A number of papers
have described novel findings over the last 3 years, suggesting that CMR has potential to become more widely used in studies in
this patient group.
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Abbreviations
CV Cardiovascular
CKD Chronic kidney disease
CMR Cardiac magnetic resonance
EF Ejection fraction
ESRD End stage renal disease
LV Left ventricle
LVH Left ventricular hypertrophy

Introduction

Chronic kidney disease (CKD) covers a wide spectrum of pa-
thology, from early, subclinical changes in renal function in pa-
tients with multiple co-morbidities to end-stage renal disease
(ESRD) where renal replacement therapy is required to sustain
life [1]. In high income countries, the prevalence of CKD is
approximately 10–13% [2] and estimates suggest that world-
wide, in 2013, almost 1 billion people died as a result of CKD
[3]. However, individuals with early CKD are more likely to die
of cardiovascular (CV) disease than they are to progress to ESRD
[4]. Increased CV risk is due to a combination of both traditional
risk factors (e.g., hypertension, diabetes, coronary artery disease)
and novel factors (e.g., subclinical ischemia, arteriosclerosis, ar-
terial stiffening, hemodynamic insults) [3–5]. As CKD pro-
gresses, the risk of CV disease becomes increasingly exaggerat-
ed—with an increasing excess of arrhythmia, sudden cardiac
death and congestive cardiac failure [5–7].

This excess of CV disease is intrinsically linked to cardiac
structural and functional abnormalities, which start to develop
early in CKD. These include left ventricular hypertrophy
(LVH), ventricular dilation, cardiac dysfunction, and
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myocardial fibrosis, which together are sometimes referred to
as a “uremic cardiomyopathy” [6, 7]. Detection and ultimately
reversal of these cardiac abnormalities is an important goal for
improving the morbidity and mortality of CKD patients. In
recent years, the use of cardiac magnetic resonance (CMR)
imaging to detect these abnormalities has been an area of
development and CMR use as an investigative tool in this
patient group has gained traction.

CMR imaging provides multiparametric information in a
single scan, uniquely integrating function with pathology.
CMR is the gold standard for quantification of myocardial
volumes and function [8]. CMR has superior accuracy and
precision when compared with echocardiography [9, 10]. In
the CKD population, CMR also has lower inter-observer var-
iability than echocardiography and is thus ideally suited to
clinical research [11]. An example of a typical CMR research
exam in this patient group is depicted in Fig. 1. In our group,
we aim to keep CMR scans under 45 min, reaching a com-
promise between patient comfort and imaging yield.

There are a number of techniques available for character-
izing myocardial function (volumes, ejection fraction (EF),
peak systolic strain, strain rate) and pathology (contrast-
enhanced CMR, parametric mapping) (Table 1).

CMR has a number of important limitations, including lon-
ger examination times than with echocardiography or comput-
ed tomography, and lower temporal resolution than echocar-
diography. CMR is unsuitable for claustrophobic patients, or
for patients with hemodynamic instability, as the patient is
removed from direct care. Patients with intra-cranial and intra
ocular ferromagnetic objects, as well as cochlear implants and
certain cardiac pacemakers are contraindicated from undertak-
ing CMR examination [12]. However, despite these limita-
tions, CMR remains an attractive tool for characterizing car-
diac pathology within the CKD population and this article
aims to summarize recent developments within the field as
well as providing a synopsis of recent studies in this popula-
tion that utilized CMR.

Methodology

In order to provide a focused update on the developments and
findings from CMR studies characterizing cardiac involve-
ment in CKD over the last 3 years, a systematic literature
review was performed. This was done in accordance with
the PRISMA [13] guidelines by two researchers (KM,
KMcD) (Fig. 2) who independently searched PubMed and
Web-of-Science using the following keywords and variations
on them: ‘Renal failure’, ‘Chronic kidney disease’,
‘Hemodialysis’, ‘Renal’, ‘Renal transplant’, ‘Cardiac magnet-
ic resonance’, ‘cardiac imaging’.

Our search was restricted to peer-reviewed journals and
human subjects. Editorials, reviews, studies with fewer than
10 patients or those not published in English were excluded.

Study Selection

Abstracts of all potential titles were reviewed by KM and
KMcD. References of relevant reviews and all full papers
were searched to retrieve any additional papers, repeating
the process until no new papers were found (Table 2).

The Utility of CMR to Characterize Myocardial
Involvement in Patients with Chronic Kidney
Disease

Myocardial Remodeling

Utilizing CMR, pediatric and adult patients with CKD and
incident HD have recently been reported to have LVH, when
matched to healthy controls [15, 20]. In fact, it is well known
that a significant proportion of patients with CKD have LV
hypertrophy, which is associated with increased mortality [36,
37] and cardiac arrhythmia [36]. This has led to LV mass
regression being the focus of a number of clinical trials [19,
38], as, theoretically, this should be associated with a

Fig. 1 Utility of CMR in patients with chronic kidney disease. A
multiparametric (contrast-free) scan of a participant of the Cardiac
Uraemic fibrosis Detection in DiaLysis patiEnts study (CUDDLE study
ISRCTN99591655) demonstrates the utility of CMR to assess various
indices of cardiovascular function. a–c Mid-left ventricular short axis
slices. a Cine imaging (balanced-steady state free precession) used to
assess cardiac volumes, mass, and function. b T1 parametric mapping
(in this case a Modified Look-Locker Inversion Recovery, (MOLLI)
sequence) is a technique typically acquired in mid-diastole with the
potential to identify diffuse myocardial fibrosis. c Tagged CMR is
considered to be the gold standard for myocardial strain through post-
processing with harmonic phase algorithm. d Phase-contrast imaging is
utilized to investigate aortic distensibility (red arrow–ascending aorta,
yellow arrow–descending aorta)
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reduction in mortality and sudden cardiac death. Surprisingly,
a recent meta-analysis [39] looking at 73 trials and over 6500
patients did not identify a clear association between LV mass
regression and mortality. A possible explanation for this is that
most of the studies (87%) utilized echocardiography to quan-
tify LV mass. One of the advantages of CMR is the use of a
retrospectively ECG-gated axial stack of cine imaging to ac-
curately delineate endo- and epicardial borders at end-diastole
and systole [40]. This obviates the need for assumptions that
the left ventricle is an ellipsoid object, such as with the bi-
plane equation used in echocardiography. In the future, a
meta-analysis of only CMR studies considering LV mass re-
gression would of course be of interest, but currently there are
insufficient numbers of CMR studies to make this a meaning-
ful exercise.

Avoidance of fluid overload and targeting blood pressure
control in patients on HDmay prevent LV dilation and remod-
eling, and result in LVmass regression—a recent observation-
al study demonstrated that a greater indexed LV mass was
independently associated with greater systolic blood pressure
and with greater LV indexed end diastolic volume [24].

As an alternative to conventional hemodialysis, nocturnal
hemodialysis holds promise. Two recent studies have investi-
gated whether the avoidance of significant fluid shifts by
performing dialysis overnight for longer periods of time or
more frequently than three times per week might result in
myocardial remodeling and regression in LV hypertrophy.

Both studies demonstrated LV mass regression [18, 25], this
may have been related to better BP control [23]. When the
authors of one of these studies [25] looked at associates of
adverse cardiac remodeling in their study population over
the year of their study follow up they found volume and pres-
sure overload were the biggest factors contributing to negative
myocardial changes. Following this logic, it is not surprising
that more frequent, or longer nocturnal dialysis led to LVmass
regression [22]. Neither of these two studies was fully ran-
domized but their findings were in keeping with an earlier
randomized study [41]. While these findings are encouraging,
the next step would be to establish whether this CMR detected
myocardial remodeling translates into improved clinical
outcomes.

Further insights into the acute effects of HD and
hemodiafiltration on myocardial function were recently
described in an ambitious study where patients underwent
CMR imaging during their dialysis therapy [16••]. The
authors of this study must be commended for overcoming
multiple logistical challenges in order to address this is-
sue. Both modalities resulted in reduced global and re-
gional myocardial contractile function during treatment,
with the severity being proportional to ultrafiltration rate
and BP reduction with partial recovery post therapy.
Performing CMR during dialysis is no simple feat and
must be relatively arduous for both patients and profes-
sionals involved. For this reason, it is highly likely that

Fig. 2 Flow chart of review
process
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studies of this nature will involve very small numbers of
patients only. A large-scale clinical trial involving this
method of imaging is currently not practical.

However, slightly larger studies are possible in the dialy-
sis population by making small changes to in-center dialysis
regimens. For example, Odudu has demonstrated in a study

Table 2 Relevant articles published in the last 3 years assessing cardiac involvement in CKD utilizing CMR

Author Year Population Renal patients Main findings

Incidental findings
Rutherford et al., [14] 2017 ESRD 161 15% clinical significant incidental findings

in this population.
Myocardial structure and function
Arnold et al., [15] 2016 ESRD (pediatric) 25 Compared to controls, pediatric ESRD patients had higher

LV mass, reduced cardiac output.
Buchanan et al., [16••] 2016 ESRD 12 Intra-dialytic CMR revealed transient segmental LV

systolic dysfunction.
Dundon et al., [17] 2014 Post-renal transplant 18 AV fistula ligation post-transplant was associated

with a regression in LV mass, improvement in
RV function.

Friesen et al., [18] 2015 ESRD 11 Nocturnal hemodialysis was associated with regression
in LVand RV mass.

Odudu et al., [19] 2015 ESRD 73 Patients undergoing cooler HD experienced a regression
in LV mass and had improved aortic distensibility.

Odudu et al., [20] 2016 ESRD 54 ESRD patients had reduced magnitudes of peak systolic
strain as assessed using tagged CMR, reduced aortic
distensibility, and higher LV mass, when compared to controls.

Patel et al., [21] 2014 Renal transplant 119 Left ventricular hypertrophy and left atrial dilatation pre-transplant
were independent predictors of mortality

Ross et al., [22] 2016 ESRD 67 LV remodeling at 1 year might be related to volume and
pressure overload related to hemodialysis.

Sarak et al., [23] 2017 ESRD 57 Change in mean arterial pressure correlated with change in
indexed LV mass over a 1 year period of either conventional
or nocturnal hemodialysis.

Wald et al., [24] 2014 ESRD 56 Ventricular dilatation appears to be an independent determinant
of LV mass

Wald et al., [25] 2016 ESRD 67 Patients switched to nocturnal HD experienced a regression
in LV mass when compared with patients on conventional HD.

Ischemia assessment
Parnham et al., [26] 2015 Renal transplants 20 Myocardial perfusion reserve index was reduced in renal transplant

recipients when compared with hypertensive controls using
adenosine-stress CMR.

Parnham et al., [27] 2016 ESRD, Renal transplant 23, 10 CKD patients have a reduced myocardial oxygen response to adenosine
stress, potentially due to renal function

Ripley et al., [28] 2014 ESRD 41 Dobutamine stress CMR is well tolerated and safe in patients with ESRD
with no serious adverse effects.

Advanced CMR assessment
Edwards et al., [29•] 2015 CKD 43 Patients with early CKD had higher T1 and ECV values, and

lower global longitudinal strain when compared with
hypertensive patients and healthy
controls.

Gimpel et al., [30] 2017 ESRD 20 Phase-contrast CMR identified diastolic dysfunction
Graham-Brown et al., [31•] 2016 ESRD 35 ESRD on long-term dialysis had higher T1 relaxation times and

reduced peak longitudinal and circumferential strain when
compared with healthy volunteers.

Graham-Brown et al., [32] 2017 ESRD 20 T1 is unaffected by patient fluid status; T1 analysis is a
reproducible technique, accounting for intra- and inter- observer
variability, and inter-center variability.

Holman et al., [33] 2017 ESRD 10 T2* CMR identified hepatic but not cardiac iron loading
in 80% of patients taking iron supplementation.

Rutherford et al., [34•] 2016 ESRD 33 ESRD patients had higher T1 relaxation times and reduced
peak longitudinal strain when compared with healthy volunteers.

Tolouian et al., [35] 2016 ESRD 17 T2* CMR identified hepatic but not cardiac iron loading
in 50% of patients taking
iron supplementation.

LV left ventricle, ESRD end stage renal disease, CKD chronic kidney disease, CMR cardiac magnetic resonance
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of 73 incident HD patients that cooling dialysate fluid could
potentially slow cardiac remodeling, with patients random-
ized to cooled dialysis versus normal HD regimen
experiencing a reduction in LV mass and volumes at 1 year
[19]. In this study, there was no improvement in ejection
fraction which was the study primary outcome, however
peak systolic strain, which is perhaps a more sensitive mark-
er of cardiac function, was preserved by the intervention.
Assessment of myocardial strain using CMR is a developing
area of interest within the renal population and is discussed
further later in this review.

Candidates for renal transplantation could potentially
be risk-stratified based on CMR imaging data recently
reported [21], with pre-transplantation LV hypertrophy
and left atrial dilatation being independent predictors
of mortality post-transplantation. A possible treatment
for LV hypertrophy regression post-transplantation is
the ligation of any patent arterio-venous fistulae [17].

Myocardial Tissue Characterization

One of the big challenges of imaging the renal popula-
tion is that it is not possible to use gadolinium-based
contrast agents in ESRD patients because of concerns
regarding nephrogenic systemic fibrosis [42]. This has
therefore stimulated interest in the nephrology commu-
nity in alternative techniques to quantify tissue abnor-
malities such as parametric mapping. Native T1 map-
ping measures the longitudinal relaxation of hydrogen
ions after applying inversion magnetization pulses [43,
44]. If renal function is good enough to permit the use
of gadolinium-based contrast agents, post-contrast T1
maps may be acquired, and utilizing the serum hemato-
crit, then the extra-cellular volume fraction can be cal-
culated [45]. If native T1 time is prolonged, then this
may represent a tissue abnormality such as an increase
in interstitial space (fibrosis, amyloid deposition), or
edema (myocardial infarction or inflammation, e.g.,
myocarditis). T2 mapping measures the transverse decay
time of hydrogen ions, and the main cause of raised T2
values is edema (myocardial infarction or inflammation)
[46]. T2* mapping has been developed in view of the
paramagnetic properties of iron (present as ferritin and
hemosiderin) in the myocardium and liver [46]. Thus,
iron deposition (from iron supplementation, or due to
intra-myocardial hemorrhage) results in a low T2* sig-
nal on parametric mapping.

CKD is associated with myocardial interstitial fibrosis
[47]. Recent research has described how native T1
values were higher than controls in patients with early
stage CKD [29•], ESRD on hemodialysis for < 6 months
[34•] and in patients on hemodialysis for > 12 months
[31•]. In fact, looking at septal native T1 values (ms)

across the three publications, native T1 values increase
with a longer duration of hemodialysis supporting the
fact that the degree of interstitial fibrosis is proportional
to the disease duration.

A further paper recently published describes native
T1 mapping as a robust technique with excellent intra-
observer, inter-observer, and inter-study variability as-
sessment [32]. T1 acquisition on T1MES phantoms
[48] between two centers, as well as inter-center analy-
sis of native T1 datasets acquired in patients with CKD-
derived comparable T1 values, supporting the use of
parametric mapping as an exploratory endpoint in mul-
ticenter studies. However, tissue correlation of native T1
mapping in the renal population has not yet been done
and some may argue that before it becomes a standard
imaging sequence in renal CMR studies this hurdle
should be overcome.

T2* mapping has been applied to patients with CKD to
investigate for potential iron overload. This is as these patients
get erythropoietin and parenteral iron infusions for iron defi-
ciency to due reduced iron absorption and release from tissues
[49]. Interestingly, 50% of the patients in one group [35] and
80% in another recently described group [33] had reduced
hepatic T2* signal in keeping with iron overload. There was,
however, no evidence of myocardial iron loading in either
study.

Myocardial Strain Assessment

There are several techniques for assessing myocardial strain
with CMR. This is of importance in the renal population, as
there is emerging evidence that patients with renal disease
have abnormal strain despite normal LV ejection fraction.
The bespoke strain methods include phase-contrast [50], tag-
ging [51], displacement encoding with stimulated echoes
(DENSE) [52, 53], and cine-derived strain [54, 55].

Myocardial tagging derives strain estimation by im-
aging and tracking tissue markers (“tags”) induced by
changes to the tissue magnetization [51]. Tagging is
considered as the gold standard reference method for
CMR strain [56]. Feature-tracking (FT) involves retro-
spective motion tracking of cine imaging. While vendor
dependent, most cine-strain techniques derive strain by
tracking the displacement of the endo- and epicardial
borders, while taking into account columns of pixels
in the myocardium [54]. While the derivation of strain
from cine imaging has utility in keeping scanning time
short in this patient group, there is a trade-off with
greater measurement variability when compared to be-
spoke strain techniques [55, 57].

Patients with early CKD have been described to have
reduced global longitudinal strain and strain rate com-
pared with controls utilizing FT [29•]. This trend was
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observed in HD patients < 6 months vintage utilizing
tagging [20] and FT [34•], and in HD patients >
6 months vintage [31•]. Interesting insights from a pe-
diatric population [30] utilizing phase-contrast describe
markedly reduced early diastolic ventricular function in
CKD patients without LV hypertrophy on CMR.
Abnormalities in myocardial strain could therefore rep-
resent some of the first detectable changes in the hearts
of CKD patients and in future may even have a role in
screening or identifying patients with subclinical dis-
ease, who are theoretically at greater risk of more ad-
vanced cardiac disease.

Assessment of Myocardial Ischemia

Myocardial ischemia assessment with CMR can be dichoto-
mized into the assessment of inducible wall-motion abnormal-
ities by infusing dobutamine or by the use of vasodilator-stress
perfusion testing to identify an inducible perfusion defect. The
use of dobutamine infusion results in a rise in the myocardial
metabolic demand, through chronotropic stimulation.
Myocardial segments subtended by a stenosed coronary artery
are unable to meet the metabolic demands, and appear
hypokinetic [58]. Dynamic LV outflow tract obstruction can
occur, resulting in false positive wall motion “abnormalities.”

Vasodilator-stress testing makes use of vasodilator agents
such as adenosine or regadenoson causing a 3-5× fold coro-
nary vasodilatation in normal coronary arteries, while ste-
nosed vessels are unable to vasodilate to the same extent.
The infusion of gadolinium contrast at peak stress and at rest
enables the clinician to identify regions of inducible ischemia.
This is one of the most sensitive non-invasive techniques
available for the identification of myocardial ischemia [59,
60]. This technique is however unsuitable in patients with
reduced eGFR [58]. Blood oxygen level dependent (BOLD)
CMR is similar to T2* mapping in making use of the para-
magnetic effect of deoxyhemoglobin to observe a signal drop,
in tissues with reduced tissue oxygenation, due to epicardial
coronary artery stenosis or impaired microcirculation [61].

The safety and feasibility of dobutamine stress CMR was
recently described in patients with ESRD [28]. 93% of the
patients achieved 85% of the age-predicted heart rate. Ten
percent of the completed stress scans were positive for induc-
ible wall motion abnormalities and there were no serious ad-
verse events reported. Adenosine-stress CMR was utilized in
renal transplant recipients with no known coronary artery dis-
ease, with the myocardial perfusion reserve index (an assess-
ment of perfusion) being reported as being lower in transplant
recipients when compared with hypertensive controls [26].
CMR angiography was also acquired in this patient group,
with 35% of the patients having 50% coronary artery stenosis.
Adenosine-stress CMR coupled with BOLD was investigated
in patients with ESRD and in transplanted patients without

known coronary artery disease [27]. The mean signal intensity
in both patients with CKD and in patients post-transplant were
lower than that acquired in hypertensive individuals or in nor-
mal controls, with the lowest myocardial oxygen response to
stress being in CKD patients on dialysis, then in CKD patients
pre dialysis. Renal transplantation recipients appeared to have
an improved tissue oxygen response, but still significantly
different from healthy volunteers.

Aortic Stiffness

Arterial stiffening, through arteriosclerosis, is one of the ear-
liest signs of subclinical cardiac involvement of CKD [62].
CMR enables the measurement of aortic pulse wave velocity
by contouring the ascending and descending aorta on phase-
contrast MR to derive the temporal shift and thus pulse wave
velocity [63]. Aortic distensibility can be calculated by
contouring a short axis view of the ascending aorta on cine
imaging and obtaining an aortic pulse pressure via brachial
cuff [63].

Patients with a 3 months HD vintage had reduced aortic
distensibility and increased aortic pulse wave velocity when
compared to healthy controls [20]. Aortic distensibility was
preserved in a study group of HD patients using cooled dial-
ysate fluid [19]. Studies suggest that increased arterial stiff-
ness and reduced aortic distensibility are pathophysiologically
associated with arterial hypertension and an increase in LV
loading. This in turn leads to LV hypertrophy, which is in turn
associated with adverse events. Thus, detecting reduced aortic
distensibility in patients with CKD has the potential to be an
early biomarker of circulatory dysfunction.

Non-Cardiac Findings on a Cardiac Scan

While the main focus of CMR scans is to assess myocardial
changes in CKD patients, the initial coronal, longitudinal, and
transverse planes of the thoracic cavity and upper abdomen
are acquired by radiographers for study planning. This leads to
imaging a significant volume of the patients’ bodies beyond
the organ of interest, which may reveal important pathology.
While this is not directly relevant to characterizing myocardial
disease involvement, we felt this is an important point to dis-
cuss in view of increased use of CMR in studies in patients
with CKD. Recently, a paper reported the incidence of non-
cardiac findings in a CKD stage 5 population as being seven
times greater than what was previously reported in an all-
comers CMR study [14, 64]. While this study was limited
by its retrospective nature, researchers utilizing CMR in renal
populations should consider its findings seriously. It is the
responsibility of researchers to ensure that there are robust
reporting pathways in place for any obtained images and that
all individuals are fully informed about the potential conse-
quences of incidental findings.
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Limitations and Challenges of CMR in this Population

While there has been excellent progress in characterizing car-
diac involvement in chronic kidney disease over the last
3 years, there are a number of important limitations, which
the authors encountered on reviewing these papers. Most of
the studies carried out were observational in nature, not ran-
domized, and investigated small numbers of patients (n < 25).
There is a lack of prognostic utility of these novel imaging
markers described in the review. There is potential through
collaborative work of randomized, multicenter studies
assessing the prognostic utility of these markers on composite
endpoints.

Another important challenge in this patient group is the
relation of timing of imaging to dialysis and the resultant
fluctuant fluid changes, which could give differing hemody-
namic measurements depending on loading conditions. This is
especially important in multicenter studies.

Conclusions

Over the last 3 years, there have been a number of studies
investigating the CV system in patients with CKD utilizing
CMR. This shows that CMR is a multiparametric tool with
diagnostic utility in this patient group. While further work
needs to be undertaken in these patients, there is potential
for CMR-derived endpoints to be utilized in larger studies in
this group of patients.
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