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Abstract
The aim of this study was to assess the risk of replacing meat with plant-based analogues with respect to mycotoxin exposure, 
as a proof of concept to demonstrate the need for a proper regulatory framework for mycotoxins in meat imitates. Hence, we 
considered a full replacement of meat consumption with soy-based meat analogues and we evaluated the exposure to  AFB1 
and OTA, based on the Italian National Food Consumption Survey INRAN-SCAI 2005–2006 and the European Food Safety 
Authority occurrence data. The overall health impact from soy-based food consumption and a meat-free diet was quantified 
in terms of Disability-Adjusted Life Years (DALYs) in three different contamination and consumption scenarios. The sub-
stitution of meat products with soy-based imitates would prevent up to 406.2 colorectal cancer cases/year/country associated 
with 532 healthy years of life. However, we also determined an increased risk of liver cancer and loss of healthy life-years 
due to  AFB1 exposure and a potential risk of renal cancer as due to an increased intake of OTA, leading up to 1208 extra 
cancer cases associated with the loss of 12,080 healthy life-years/country. Shifting to a plant-based diet actually eliminates 
a cancer risk factor such as processed meat, however, higher and unexpected risks could arise if mycotoxins are not properly 
regulated in plant-based meat alternatives. Taking into account the ubiquitous occurrence of mycotoxins, also in the light 
of climate change, and the growing trend toward plant-based meat analogues, greater importance should be given to actual 
food consumption trends and correlated with updated natural toxins regulations and risk assessments.
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Introduction

Over the past few years reducing the consumption of 
animal-based foods has been considered a key element 
for healthy and sustainable diets (Springmann et al. 2018; 
McMichael et al. 2007; Willett et al. 2019). For this rea-
son, plant-based alternatives, such as dairy and meat 
substitutes have been developed and are continuously 
expanding in the food market (Boukid 2021; Curtain and 
Grafenauer, 2019). The European market of plant-based 
meat alternatives (PBMA) was valued at €4.4 billion in 
2019 and is expected to grow by 70% in the next 6 years 
up to €7.5 billion by 2025 (Geijer and Gammoudy 2020). 
A recent survey showed that 42% of European consumers 
purchase plant-based sausages, burgers, and mince at least 
once per month and 24% at least once per week (Gebhardt 
et al. 2020). PBMA, also known as meat analogues are 
usually produced with wheat gluten, or legumes such as 
chickpea, pea, or soybeans (Boukid 2021; Kumar et al. 
2017). Among them, soy proteins are of high interest for 
meat analogues especially because of their high protein 
quality (Kumar et al. 2017), although the content of cer-
tain essential amino acids like L-methionine is lower com-
pared to animal proteins (Friedman and Brandon 2001).

Although the urgency to decrease meat consumption 
has been largely debated in the literature discussing the 
impact in terms of sustainability and health (Ekmekcioglu 
et al. 2018; Stanton et al. 2022; Willett et al. 2019), little 
to nothing has been done so far to assess the risk related to 
an extensive consumption of plant-based meat analogues 
(Kołodziejczak et al., 2022; Mayer et al. 2022).

As a matter of fact, it must be noticed that shifting toward 
meat imitates can lead to a substantial change of exposure to 
certain food contaminants compared to an omnivore diet, as 
reported by several authors (LeBlanc et al. 2005; Penczynski 
et al. 2022). In particular, Penczynski et al. (2022) pointed 
out a significantly higher exposure to OTA in vegans com-
pared to omnivores based on human biomonitoring (both in 
urine and blood). Starting from the dietary recall data, the 
authors discussed the potential association of this increased 
exposure to the higher consumption of bean-based food in 
the vegan population.

As recently reviewed (Mihalache et al. 2022), mycotoxins 
such as aflatoxin B1 and ochratoxin A may occur in soy and 
legumes at significant concentrations and without a regula-
tory ceiling (EFSA 2020a, 2020b).

The most common health metric used for quantifying the 
health impact of contaminants is the Disability-Adjusted 
Life Year (DALY), where one DALY is equal to 1 year of 
healthy life lost (Membré et al. 2021). This metric is also 
used by the World Health Organization (WHO) for the 

estimates of the global burden of diseases (Hay et al., 2017) 
and of foodborne diseases (Devleesschauwer et al. 2015).

The lack of proper consideration of an increased con-
sumption in current risk assessment may indeed expose the 
vegetarian and vegan population to a higher risk of exposure 
to these contaminants compared to the omnivores, mainly 
considering that consumption collection in use for risk 
assessment is often more than a decade old and therefore 
does not reflect the current consumption pattern.

This study, therefore, aims to be a proof of concept to 
demonstrate the need of a proper regulatory framework 
for mycotoxins in meat imitates. For this purpose, a full 
replacement of meat consumption with soy-based products 
was considered, using consumption data retrieved from the 
Italian National Food Consumption Survey INRAN-SCAI 
2005–2006, which is the latest Italian consumption report 
currently available. Soy was selected among other plant-
based proteins based on the availability of evidence-based 
data (i.e., low numbers of samples provided for other leg-
umes such as peas and chickpeas with 100% left-censored 
data) (EFSA 2020a, 2020b). However, the consumption and 
contamination data from this study are retrieved from official 
EFSA reports and may therefore well represent the current 
occurrence pattern (EFSA 2020a, 2020b). Uncertainties and 
knowledge gaps are therefore discussed in a proper section.

Overall, to our best knowledge, this is the first attempt to 
evaluate under a risk assessment (RA) approach the poten-
tial health concern deriving from an increased mycotoxin 
exposure in alternative diets.

Materials and Methods

To assess the health impact in an extreme scenario with a 
full replacement of meat with soy-based meat analogues we 
first collected contamination data of aflatoxin B1  (AFB1) 
and ochratoxin A (OTA) in soy from the most recent EFSA 
reports (EFSA 2020a, 2020b) and consumption data for meat 
from the latest Italian National Food Consumption Survey 
INRAN-SCAI 2005–06. After identifying the most relevant 
adverse health effects of  AFB1 and OTA, we assessed Italian 
consumers’ dietary exposure in the full substitution scenario 
and performed a risk characterization. Afterward, the num-
ber of extra liver cancer cases due to exposure to  AFB1 were 
calculated based on data from literature, consumption sce-
narios, and contamination scenarios. The burden of disease 
was quantified in gained DALYs/year/country. In order to 
provide a more comprehensive overview of the health impact 
of fully replacing meat with soy-based meat analogues, we 
also took into consideration the burden of disease associated 
with the consumption of processed meat. Processed meat 
is classified by the International Agency for Research on 
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Cancer (IARC) as a Group 1, carcinogenic agent to humans, 
while red meat is in Group 2A, probably carcinogenic for 
humans, based on their associations with colorectal cancer 
(CRC) (IARC 2019). Hence, for the estimation of prevented 
CRC cases and associated DALYs, only data for processed 
meat was used.

Identification of the Most Relevant Adverse Health 
Effects

Recent reports from EFSA with results from several Euro-
pean countries found that soy was contaminated with myco-
toxins such as aflatoxins and OTA (EFSA 2020a, 2020b). 
IARC classified  AFB1 as a group I carcinogen and estab-
lished the following order for the toxicity of the aflatoxins: 
 AFB1 >  AFG1 >  AFB2 >  AFG2 (IARC 2019). High exposure 
to  AFB1 can cause acute aflatoxicosis which has a high mor-
tality rate and high risk of liver cancer while low chronic 
exposure is associated with cirrhosis and liver dysfunction 
(EFSA 2020a). The global cancer statistics show that the 
main risk factors of hepatocellular carcinoma (HCC) are 
chronic infection with hepatitis B virus (HBV) or hepatitis 
C virus (HCV), and ingestion of food contaminated with 
aflatoxins (Bray et al. 2018). Besides liver cancer,  AFB1 
exposure is known to cause other adverse health effects 
like stunting (Rasheed et al. 2021) and immune suppres-
sion (Turner et al. 2007). However, we estimated the burden 
related to liver cancer as this outcome is the only endpoint 
that has a reliable etiology mechanism (WHO 2020).

OTA is a genotoxic, nephrotoxic, neurotoxic, and hepa-
totoxic mycotoxin (EFSA 2020b) and has been classified 
by the IARC in the group 2B as a possibly carcinogenic 
agent to humans (IARC 2019). OTA is absorbed fast in the 
body but is poorly metabolized and eliminated slowly, which 
leads to accumulation in the body (EFSA 2020b). In vitro 
studies show that exposure to OTA induces gene mutations 
and chromosome damage in mammalian cells, while in vivo 
research indicates genetic damage and gene mutations in 
rats and mice with the cancer target site being the kidney 
(EFSA 2020b). The genotoxicity of OTA manifests through 
microscopic kidney lesions in female pigs and kidney tumors 
in male rats (EFSA 2020b).

Hence, the main risk that can come with soy consump-
tion considered for this study is the risk of liver cancer due 
to aflatoxins. For OTA, risk characterization was based on 
the Margin of Exposure (MOE) approach regarding renal 
cancer.

Soy/Soy‑Based Food Consumption

The consumption data was retrieved from the Italian 
National Food Consumption Survey INRAN-SCAI 2005–06. 

Soy-based food was not among the questionnaire’s items, 
hence we simulated that each meat item would be made 
with soy, as many meat analogues are nowadays, and used 
the consumption data from those items. The cross-sectional 
survey was conducted between October 2005 and Decem-
ber 2006 using consecutive 3-day food records. The number 
of respondents was 3323 out of which 1822 were females 
and 1501 males. The age varied between 0.1 months and 
97.7 years and were grouped according to EFSA Compre-
hensive European Food Consumption Database in Exposure 
Assessment (EFSA 2011) like this: infants (N = 16; up to and 
including 11 months old); toddlers (N = 36; 12–35 months 
old); other children (N = 193; 3–9 years old); adolescents 
(N = 247; 10–17 years old); adults (N = 2313; 18–64 years 
old); elderly (N = 290; 65–74  years old); very elderly 
(N = 228; 75 > years old).

Consumption Scenarios

The FoodEx2 hierarchical system for classifying and 
describing food was used for collecting the consumption 
data. FoodEx2 contains descriptions of a large number of 
food items aggregated into boarder food groups and dif-
ferent levels of food categories (EFSA 2011). The level of 
each food item from this study is presented in Supplemen-
tary file S1. Consumption data are from the INRAN-SCAI 
survey conducted in 2005–06, where plant- and soy-protein 
based products were not included. Therefore, a full replace-
ment of meat consumption to simulate vegetarian and vegan 
diets was preferred over a partial replacement. The foods 
that were simulated to be replaced with meat analogues 
included mammals meat, poultry meat, processed whole 
meats, and sausages. The processed whole meats include raw 
and cooked cured/seasoned pork/bovine/poultry meat (i.e., 
pork ham, beef ham, and pancetta) and the sausages include 
fresh sausages (i.e., Italian-style sausage, fresh spiced sau-
sages in casing, and fresh bratwurst) and preserved/partially 
preserved sausages (i.e., cured unripened/ripened sausages 
and cooked sausages). For processed meats consumption the 
category “total processed meats” (i.e., pork ham and pre-
served sausages) was taken into consideration. The intake 
of each food per consumer category can be seen in Supple-
mentary file S1.

It must be noticed that data consumption from the 
INRAN-SCAI survey indicated a maximum meat con-
sumption of 70 g/day, while the current FAO data reported 
a consumption of meat of 82 kg/capita/year in Italy (FAO 
2018) which is 224 g/day. This discrepancy can be explained 
based on the changes in lifestyle over the past two decades. 
Besides the baseline (BS) scenario based on the consump-
tion frequency from the INRAN-SCAI survey, two alterna-
tive scenarios (AS) were considered to reflect an increased 
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consumption of meat, which was then fully replaced by soy-
based meat imitates. Thus, the AS consisted of:

• AS1 considering an increased consumption of meat alter-
natives with soy of 50%,

• AS2 considering an increased consumption of meat alter-
natives with soy of 100%,

Problem Formulation and EFSA Exposure Scenarios

The purpose of this assessment was to model the potential 
chronic dietary exposure to  AFB1 and OTA and the potential 
health impact in the Italian population in the case of a full 
substitution of meat with soy-based meat analogues.

The exposure scenarios were based on data summarized 
in EFSA reports (EFSA 2020a, 2020b). Three types of sce-
narios were considered using contamination data from EFSA 
(EFSA 2020a, 2020b): (i) the optimistic scenario (OS) where 
the contamination values used were for the mean Lower 
Bound (LB)  (AFB1 = 170 ng/kg; OTA = 950 ng/kg), (ii) the 
pessimistic scenario (PS) (conservative) where the contami-
nation values used were for the mean Upper Bound (UB) 
 (AFB1 = 780 ng/kg; OTA = 2260 ng/kg), and (iii) the worst-
case scenario (WCS) where the contamination values used 
were for the 95th percentile (P95) UB  (AFB1 = 1300 ng/kg; 
OTA = 5300 ng/kg). For each scenario, the mean and P95 
of the chronic dietary exposure were estimated using the 
Dietary Exposure (DietEx) tool from EFSA while the risk 
characterization was performed using the Rapid Assessment 
of Contaminant Exposure (RACE) tool from EFSA.

Exposure Assessment and Risk Characterization

The estimated daily intake (EDI) of  AFB1 and OTA was 
calculated according to Eq. (1):

where Cmycotoxin = the concentration of the mycotoxins 
found in soy (µg/kg), CONsoy = soy consumption in g/day, 
and bw = bodyweight.

For substances that are both genotoxic and carcinogenic 
EFSA stated that no level of exposure is considered safe and 
no health-based guidance values (HBGV) are appropriate 
(EFSA 2012). Instead, the MOE approach is recommended. 
The MOE is the ratio of the benchmark dose lower confi-
dence limit  (BMDL10) and the consumers’ exposure to the 
contaminant as shown in Eq. (2):

(1)EDI (�g∕kg bw∕day) =
Cmycotoxin × CONsoy

bw

(2)MOE =
BMDL10

EDI

The values of  BMDL10 were 0.4 µg/kg bw/day for  AFB1 
for the incidence of hepatocellular carcinoma in rats (EFSA 
2020a) and 14.5 µg/kg bw/day for OTA considering its neo-
plastic effects (EFSA 2020b). The magnitude of the MOE is 
related to the risk level and EFSA concluded that an MOE 
of 10,000 or higher is of low concern, while an MOE lower 
than 10,000 raises a health concern from a public health 
point of view (EFSA 2012).

For the cumulative risk assessment of  AFB1 and OTA, 
we used the total margin of exposure  (MOET). The  MOET 
was calculated as the sum of the MOEs (Eq. (3)) and it was 
considered to indicate risk if it was lower than 10,000.

Estimation of the Relative Risk of Colorectal Cancer 
from Processed Meat Intake, Hepatocellular Carcinoma 
(HCC) from  AFB1 Exposure, and the Potential Impact 
Fraction in Dietary Change

The relative risk (RR) describes the probability of an out-
come in an exposed population group compared with an 
unexposed population group. In our study, the RR was based 
on amount of food ingestion (processed meats for the RR of 
CRC) or exposure to contaminants  (AFB1).

For the RR of CRC due to processed meat consumption 
we used data from a recent study conducted by the Cancer 
Epidemiology Unit from Oxford, UK on 474,996 men and 
women (Knuppel et al 2020). The results indicate a RR of 
1.18 for consumers who eat 20 g/day of processed meat.

The research regarding the carcinogenicity of aflatoxins 
shows that there is sufficient evidence for  AFB1,  AFG1, and 
 AFM1 for induced liver tumors (IARC 2019). Ming et al. 
(2002) determined a RR of 3.5 when the level of  AFM1 in 
participants with HCC was > 3.6 ng/l. Hence, we used these 
data as a starting point to model the RR depending on the 
processed meat intake and exposure to  AFB1 and report it 
as a decreased/increased risk of CRC and HCC following 
Eqs. (4) and (5):

where RRliterature is the RR from the literature for a spe-
cific dose reported in the literature and RRi and  exposurei 
are the RR and exposure to mycotoxins/intake of processed 
meat for the baseline and alternative scenarios.

The potential impact fraction (PIF) is a measure used to 
calculate the proportional change in a disease incidence, 
prevalence, burden, or mortality (Barendregt and Veerman 
2010).

(3)MOE
T
= 1∕

(

1∕MOE
AFB1 + 1∕MOE

OTA

)

(4)� =
lnRRliterature

Dose

(5)RRi = exp
(

� × exposure
i

)
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For the number of prevented CRC cases due to elimina-
tion of processed meats from the diet the PIF formula was 
the following (Eq. 6):

where P is the prevalence of the risk factor (consumption of 
processed meat) which we retrieved from the Global Burden 
of Disease (GBD) database (0.00031), P’ is the counterfac-
tual, and RR is the relative risk of CRC.

We calculated the prevented CRC cases and averted 
DALYs by multiplying the PIF with the incidence of CRC/
capita associated with processed meat consumption using 
data from GBD 2006 in order to align the CRC data with 
our consumption survey data (GBD 2019).

At the same time, the PIF was analyzed to investigate 
the impact of each scenario on the risk of HCC due to the 
change in soy/soy-based food consumption. The PIFs were 
compared between the baseline scenario and all of the alter-
native scenarios. The estimated change in the health out-
come due to exposure to  AFB1 was calculated as shown in 
Eq. (7):

where RRbase scenario is the relative risk of HCC (due to 
exposure to  AFB1) in the current consumption data from 
the INRAN-SCAI survey and RRalternative scenario is the 
relative risk of HCC calculated in the alternative scenarios 
with increased soy-based food consumption.

Estimation of Population Risk for  AFB1‑Induced Liver 
Cancer

The risk of hepatocellular carcinoma (HCC) for Italian 
consumers due to ingestion of soy-based food contaminated 
with  AFB1 was calculated per 100,000 individuals with the 
following Eq. (8):

The average HCC potency for  AFB1 was adopted from 
the Joint FAO/WHO Expert Committee on Food Additives 
(JECFA) (WHO 2017). JECFA established an HCC potency 
of 0.3 cancer cases per 100,000 persons/year/ng  AFB1/kg 
bw/day for HBV-positive individuals and a potency of 0.01 
cancer cases per 100,000 persons/year/ng  AFB1/kg bw/day 
for HBV negative individuals. For the calculation of the 
average HCC potency for Italian consumers, we used data 
from the GBD (GBD 2019) and found that the prevalence 
of the burden for  HBV+ individuals is 0.76%, meaning that 

(6)PIF =

(

P − P�
)

(RR − 1)

P(RR − 1) + 1

(7)PIF =
RRalternative scenario − RRbase scenario

RR base scenario

(8)
Population risk (per 100, 000 individuals) =

EDI × Average HCC potency

99.24% are  HBV− individuals. Hence, the average HCC 
potency was calculated as shown below:

Estimating Health Burden by Calculating DALY

The DALY is the sum of years of healthy life lost due to 
premature mortality (YLL) and years of healthy life lost due 
to disability (YLD).

The DALYs due to  AFB1-induced liver cancer in Italy 
based on contaminated soy food consumption were cal-
culated by multiplying the mean annual incidence of 
 AFB1-induced liver cancer with the DALY/one case of  AFB1 
liver cancer cases. Based on the data from GBD (2019) we 
calculated the DALY/case related to liver cancer causes. 
The prevalence of all causes of liver cancer in Italy in 2019 
was 12,643 and the DALY 131,542. By dividing the former 
by the latter, we obtained the DALYs per capita (10). The 
prevalence of CRC in Italy due to intake of processed meats 
was 18,419 associated with 24,129 DALYs. By following the 
same steps mentioned previously we obtained the DALYs 
per capita due to CRC caused by intake of processed meat 
(1.31).

The overall health impact that comes with the dietary 
pattern change in each AS was calculated as the DALY dif-
ference between AS and BS as shown in Eq. (10):

W h e n  Δ DA LY  >  0  =  h e a l t h  l o s s  a n d  w h e n 
ΔDALY < 0 = health gain due to the dietary pattern change.

Statistical Analysis

The data from this study were analyzed using Microsoft 
Excel 19 (Microsoft, Redmond, Washington) and SPSS 
Statistics 26 (IBM Software Group, Chicago, IL). Dietary 
Exposure (DietEx) and the Rapid Assessment of Contami-
nant Exposure (RACE) tools were used for the estimation 
of dietary exposure and risk characterization (https:// www. 
efsa. europa. eu/ en/ scien ce/ tools- and- resou rces).

The MOEs and PIFs were displayed as scatter plots while 
the number of extra/prevented HCC cases/CRC cases and 
gained/averted DALYs were depicted through bar charts 
using Tableau Software 2020.1 (Salesforce, Seattle, WA).

(9)
Average HCC potency =

(

HBV+prevalence×

HCC potency) + (HBV− × HCC potency)

(10)ΔDALYAS = DALYAS − DALYBS

https://www.efsa.europa.eu/en/science/tools-and-resources
https://www.efsa.europa.eu/en/science/tools-and-resources
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Results

Data from the European Commission show that Italy is the 
main soya beans producer in the EU with 1,001,200 tonnes 
being produced annually. The consumption of meat and 
dairy alternatives increased by 84% in the last 5 years (EC 
2020) and the plant-based food industry grew by 49% in 
the last 2 years (EC 2021). All of these data support the 
on-growing demand and consumption of meat alternatives 
and led to the authors’ decision to use the INRAN-SCAI 
2005–06 report as a reference for consumption data.

Exposure Assessment and Risk Characterization 
for the Baseline Scenario (BS), Alternative Scenario 
1 (AS1), and Alternative Scenario 2 (AS2)

The mean estimated daily intake (EDI) of  AFB1 ranged from 
0.05 ng/kg bw/day to 6.50 ng/kg bw/day, while the mean 
EDI for OTA was between 0.29 and 26.5 ng/kg bw/day. For 
high consumers, the P95 EDI ranged from 0.12 to 7.03  AFB1 
ng/kg bw/day and from 0.66 up to 28.67 OTA ng/kg bw/day. 
Figure 1 shows the MOEs for the optimistic, pessimistic, and 
worst-case scenarios. To see the EDI and MOE estimated in 
all the scenarios and for each consumer group check Sup-
plementary file S1.

The mean MOEs for  AFB1 ranged from 61.54 to 7716, 
while the mean MOES for OTA ranged from 547.17 to 
50,056. The P95  AFB1 MOEs ranged from 65.47 to 3038 
while for OTA the P95 MOEs were between 582.12 and 
21,887. Most of the MOEs for OTA in the optimistic and 
pessimistic scenarios are > 10,000. However,  AFB1 MOEs in 
all the scenarios and OTA MOEs for the worst-case scenario 
were < 10,000. This is of high concern as EFSA stated that 
MOEs < 10,000 may pose a threat to consumers’ health, in 
this case related to liver and renal cancer.

If  AFB1 and OTA were to co-occur for the cumulative 
risk assessment we would use the total margin of exposure 
 (MOET). In this case, the mean  MOET would be between 
55.32 and 6685 and the P95  MOET between 51.95 and 2929, 
indicating once again the potential risk consumers expose 
themselves to by the consumption of soy-based food.

In AS1 and AS2 the mean EDI of  AFB1 was between 0.08 
and 13 ng/kg bw/day, while for OTA it was between 0.29 and 
53 ng/kg bw/day. The P95  AFB1 values ranged from 0.18 to 
14.06 ng/kg bw/day, and for OTA from 0.66 to 57.34 ng/kg 
bw/day. Figure 2 displays the mean and P95 MOEs values in 
the alternative scenarios (AS1 and AS2) for  AFB1 and OTA 
exposure based on three contamination scenarios: optimis-
tic scenario (OS), pessimistic scenario (PS), and worst-case 
scenarios (WCS).

Fig. 1  Mean and P95 MOEs 
values in the baseline scenario 
(BS) for  AFB1 and OTA expo-
sure based on three contamina-
tion scenarios: optimistic sce-
nario (OS), pessimistic scenario 
(PS), and worst-case scenarios 
(WCS); values > 10,000 indicate 
a low health concern (colored 
green), while values < 10,000 
indicate a high health concern 
(colored red)
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The mean  AFB1 MOEs were between 235 and 5144, 
while for OTA the mean MOEs values were between 1526 
and 49,477. The MOEs values for the P95 were extremely 
low for  AFB1 ranging from 32.72 to 2252, while for OTA 
the values were in the interval of 32.72–21,887. The co-
occurrence of  AFB1 and OTA would lead to a mean  MOET 
between 82.98 and 13,371, while the P95  MOET would be 
between 76.70 and 5847. Except for a few cases in the AS1 
OS where there were a few instances when the OTA MOE 
was > 10,000 in the other contamination scenarios and AS2, 
all the MOEs were < 10,000.

Few studies have assessed consumers’ dietary exposure 
to aflatoxins and OTA due to intake of soy-based food. Lee 
et al. (2022) reported that the dietary exposure of South 
Koreans to total aflatoxins (AFs) in soybean paste in dif-
ferent exposure scenarios is 0.1012–0.1080 ng/kg bw/day 
with MOEs between 730 and 22,642, while Lee et al. (2009) 
reported even lower exposure scenarios between 0.0033 and 
0.01 ng/kg bw/day. Both studies, likely in consideration of 
the different approach adopted, reported a lower exposure 
to AFs following consumption of soy than the one estimated 
for Italian consumers in this study.

Brazilian consumers’ exposure to AFs due to beans intake 
is 0.007 μg/kg bw/day (7 ng/kg bw/day) which is in the range 
of our mean EDI in the BS, but still lower than in the AS1 
and AS2 (Franco et al. 2019). Based on tofu, beans, and 

products consumption, the mean EDI of  AFB1 for Vietnam-
ese consumers is between 0.1 and 0.8 ng/kg bw/day with an 
MOE of 2909 (Huong et al. 2016) indicating a lower level 
of exposure than in our study no matter the consumption 
scenario.

The EDI of OTA for Czech consumers due to intake of 
spices, seasoning, and legumes varied between 0.11 and 
22.6 ng/kg bw/day which is similar to our mean EDI in 
the BS and lower than in our alternative scenarios (Ostry 
et al. 2015). The mean dietary exposure to OTA of pregnant 
women from Bangladesh who had pulses in their diet was 
between 400 and 8070 ng/kg bw/day and a positive correla-
tion was found between pulses and OTA exposure. However, 
the high exposure might be due to other contaminated food 
items such as nuts, seeds, and vegetables (Kyei et al. 2022). 
Vietnamese consumers’ dietary exposure to OTA based on 
tofu, beans, and products consumption is between 0.2 and 
0.7 ng/kg bw/day with MOEs > 10,000 (Huong et al. 2016), 
depicting a lower exposure than the one reported herein in 
all our scenarios.

Fig. 2  Mean and P95 MOEs 
values in the alternative sce-
narios (AS1 and AS2) for  AFB1 
and OTA exposure based on 
three contamination scenarios: 
optimistic scenario (OS), 
pessimistic scenario (PS), and 
worst-case scenarios (WCS); 
values > 10,000 indicate a low 
health concern (colored green), 
while values < 10,000 indicate 
a high health concern (colored 
red)
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Relative Risk (RR) of CRC Due to Eliminating 
Processed Meat and HCC from  AFB1 Exposure in BS, 
AS1, and AS2

The relative risk of CRC in the BS, AS1, and AS2 was com-
pared with a free-meat diet model. Hence, the RR of CRC 
due to processed meat intake in meat-based diets varied 
between 1.04 and 1.7 in the BS, indicating an increased risk 
of CRC by up to 1.7 times higher when compared with no 
consumption of processed meats.

Based on the intake of processed meat in the AS1 and 
AS2, the RRs of CRC varied between 1.07 and 2.9, implying 
that the risk of CRC can potentially be 2.9 times higher in 
AS2 due to the increased consumption of processed meat. 
The PIF showing the decreased risk of CRC due to pro-
cessed meat consumption is presented in Fig. 3.

Consumers that adopt a free-meat diet are at 28% less 
risk of CRC compared with consumers from BS. The risk 
of CRC in a free-meat diet decreases even more when com-
pared with processed meat consumption from AS1 with 
6–54% lower risk, while for AS2 a free-meat diet could 
reduce the risk of CRC by up to 65%.

The relative risk (RR) of HCC in the baseline scenario 
was compared with a model where no contamination would 
take place. Thus, the RR values based on the mean EDI 
ranged from 1.01 in the optimistic scenario to 9.6 in the 
worst-case scenario indicating that based on the consump-
tion and contamination data, the risk of liver cancer can 

Fig. 3  The potential impact fraction (PIF) for the mean and P95 
intake (g/day) of processed meat in the baseline scenario (BS), alter-
native scenario 1 (AS1), and alternative scenario 2 (AS2)

Fig. 4  The potential impact fraction (PIF) for the mean and P95 EDI of  AFB1 in the alternative scenario 1 (AS1) and alternative scenario 2 
(AS2) in three types of contamination scenarios: optimistic scenario (OS), pessimistic scenario (PS), and worst-case scenarios (WCS)
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be up to nine times higher for consumers exposed to  AFB1 
than those with no exposure levels. The RRs for P95 were 
between 1.37 and 11.55 indicating that high consumers in 
the worst-case scenario are up to 11 times more likely to be 
burdened by  AFB1 than those with no exposure. To see the 
RRs in all of the scenarios and for each consumer group 
check Supplementary file S1.

Based on the mean EDI of  AFB1 in AS1 and AS2 the 
RRs of HCC were between 1.02 and 92.19, while for the P95 
exposure the RRs were between 1.23 and 123.62, indicat-
ing a higher risk of HCC when compared with the exposure 
from the baseline scenario. Figure 4 displays the PIF for the 
mean and P95 EDI of  AFB1 in the alternative scenario 1 
(AS1) and alternative scenario 2 (AS2) in three types of con-
tamination scenarios: optimistic scenario (OS), pessimistic 
scenario (PS), and worst-case scenarios (WCS).

By increasing the consumption frequency by 50% (AS1) 
we can see that the mean PIF was between 0.9% and 77% and 
the P95 PIF was between 2 and 239% indicating that increas-
ing the consumption of  AFB1-contaminated soy-based food 
by 50% the risk of HCC increases by up to 239%. The risk 
of HCC is even higher when the consumption is increased by 
100% (AS2) with the mean PIF ranging between 1 and 860% 
and the P95 PIF between 14 and 1055%. Thus, compared 
with the baseline scenario which reflects an older consump-
tion pattern, the alternative scenarios, which reflect a more 
accurate dietary pattern, indicate that the risk of HCC can 
be up to ten times higher.

Estimation of the Prevented CRC Cases 
in a Free‑Meat Diet, the Population Risk for  AFB1‑ 
Induced Liver Cancer, and Health Burden Using 
DALYs

By completely replacing processed meats with soy-based 
meat analogues, a decrease in number of CRC cases is 
expected. Hence, we compared the prevented CRC cases 
in a free-meat diet with the extra liver cancer cases by con-
sumption of AFB1-contaminated soy-based meat analogues.

Figure 5 shows the number of extra HCC cases due to 
 AFB1 exposure and prevented CRC cases due to the elimi-
nation of meat from the diet in the BS, AS1, and AS2 based 
on three contamination scenarios optimistic scenario (OS), 
pessimistic scenario (PS), and worst-case scenarios (WCS).

The mean numbers of prevented CRC cases in the BS 
were between 11.6 and 23.7 (0.02–0.04/100,000 individuals) 
while for high consumers (P95) up to 223.66 CRC cases/
year/country (0.37/100,000 individuals) could be prevented 
by completely eliminating processed meat from the diet. In 
AS1 and AS2 the mean value was as low as 82.7 CRC cases/
year/country (0.13/100,000 individuals) while for high con-
sumers the value was up to 406.2 prevented CRC cases/year/
country (0.7/100,000 individuals).

Based on the contamination scenarios, in the BS the 
mean numbers of  AFB1-induced liver cancer were as low 
as 4.69 HCC cases/year/country (OS; substitution of meat 
sausages with soy sausages) and as high as 131.8 HCC 
cases/year/country (WCS; substitution of mammals meat 

Fig. 5  Number of extra liver cancer cases due to exposure to  AFB1 
(colored red) and number of prevented CRC cases (colored green) 
due to replacing processed meats with soy-based meat analogues for 

the mean and P95 values in BS, AS1, and AS2 based on three con-
tamination scenarios: optimistic scenario (OS), pessimistic scenario 
(PS), and worst-case scenarios (WCS); CC—cancer cases
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with soy) (0.0078–0.22/100,000 individuals). For high 
consumers (P95), the risk is even higher ranging from 12.9 
HCC cases/year/country to 230.3 extra HCC cases/country 
(0.02–0.38/100,000 individuals) depending on the contami-
nation scenario and the type of meat that was substituted 
with soy.

The total number of extra HCC cases for the mean and 
P95 exposure in the WCS was between 301 and 604 HCC 
cases/country (0.5–1.01/100,000 individuals). In the AS1 
and AS2, the lowest mean number of  AFB1-induced liver 
cancer cases was 7.04/year/country, while the highest was 
263.76 HCC cases/year/country (0.01–0.44/100,000 individ-
uals). The P95 exposure revealed extra HCC cases between 
19.3 and 460.6/country (0.03–0.77/100,000 individuals). 
In the WCS at P95, the total number of extra cancer cases 
in AS1 was 906 HCC cases/year/country (1.51/100,000 
individuals), and in AS2 1208 HCC cases/year/country 
(2.02/100,000 individuals). To see the cancer cases in all 
of the scenarios and for each consumer group check Sup-
plementary file S1.

For the burden of HCC and CRC, we calculated the 
DALYs that would be gained/averted due to exposure to 
 AFB1/full replacement of meat with soy-based meat ana-
logues in the BS, AS1, and AS2 based on three contami-
nation scenarios: optimistic scenario (OS), pessimistic sce-
nario (PS), and worst-case scenarios (WCS) (Fig. 6). To see 
the DALYs gained/averted in all of the scenarios and for 
each consumer group check Supplementary file S1.

The mean number of DALYs that would be averted by 
substituting processed meat in the BS was between 15.14 
and 31 DALYs/year/country (0.02–0.05/100,000 individ-
uals) while for P95 it was up to 76 DALYs/year/country 
(0.12/100,000 individuals). In the AS1 and AS2 the lowest 
mean value was 108.4 DALYs/year/country (0.18/100,000 
individuals), while the highest P95 value was 532 DALYs/
year/country (0.64/100,000 individuals) indicating that up 
to 532 healthy years of life would be gained by eliminating 
processed meat from the diet.

Based on the mean value exposure in the BS the gained 
DALYs per country due to liver cancer varied from 46.93 
(OS; substitution of meat sausages with soy sausages) to 
1318.8 DALYs/year/country (WCS; substitution of mam-
mals meat with soy) (0.07–2.21/100,000 individuals), while 
for the P95 exposure the gained DALYs/year/country were 
between 129.1 (OS; substitution of meat sausages with soy 
sausages) and 2303.2 DALYs/country (WCS; substitution of 
mammals meat with soy) (0.21–3.86/100,000 individuals) 
which translates to the loss of 2303 healthy years of life/
year/country. In the WCS P95, the total number of gained 
DALYs was as high as 6040 DALYs/year/country (10.14/ 
100,000 individuals). The gained DALYs based on the mean 
value exposure varied from 70.4 in the AS1 (OS; substitu-
tion of meat sausages with soy sausages) to 2637 DALYs/
year/country in the AS2 (WCS; substitution of mammals 
meat with soy) (0.11–4.42/100,000 individuals) while for 
the P95 exposure the gained DALYs/country were between 
193.6 in the AS1 and 4606 DALYs/year/country in the 

Fig. 6  The number of DALYs gained  (colored orange) due to  AFB1 
burden and DALYs averted (colored blue) due to replacing processed 
meat with soy-based meat analogues for the mean and P95 values in 

BS, AS1, and AS2 based on three contamination scenarios: optimis-
tic scenario (OS), pessimistic scenario (PS), and worst-case scenarios 
(WCS)
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AS2 (0.32–7.73/100,000), revealing that a 100% consump-
tion increase of contaminated soy-based food could lead 
to the loss of up to 4606 healthy years of life/year/coun-
try. In the WCS P95, the total number of gained DALYs in 
AS1 was 9060 and in the AS2 it was 12,081/year/country 
(15.21–20.28/100,000 individuals).

While the number of extra HCC cases was three times 
higher than the number of prevented CRC cases, the number 
of gained DALYs was 22 times higher than the number of 
averted DALYs depending on the contamination and con-
sumption scenarios. That is also because the relative survival 
rate for liver cancer is 31% when it is localized (https:// www. 
cancer. org/ cancer/ liver- cancer/ detec tion- diagn osis- stagi ng/ 
survi val- rates. html), while for colon and rectal cancer it is 
90–91% when it is localized (https:// www. cancer. org/ cancer/ 
colon- rectal- cancer/ detec tion- diagn osis- stagi ng/ survi val- 
rates. html), indicating a higher burden of disease for liver 
cancer. This is also supported by the DALYs/capita for liver 
cancer (10) versus CRC (1.31).

Our results, based on the assumption of a full meat 
replacement and following calculation based on available 
 AFB1 occurrence data, reveal an increased risk of cancer and 
a high number of extra liver cancer cases due to increased 
consumption of soy-based meat imitates contaminated with 
 AFB1. The population at risk includes consumers from the 
vulnerable groups (i.e., pregnant women, and the elderly) 
which is of high importance as these consumers are more 
susceptible to diseases than other consumers.

Previous studies have assessed the risk of  AFB1-induced 
cancer liver due to intake of contaminated cereals, pea-
nuts, rice, tofu, and beans. A few studies reported higher 
risks of cancer than our study. Kortei et al. (2021) reported 
between 1.62 and 37.15 extra cancer cases/100,000 indi-
viduals through  AFB1-contaminated maize intake. Kimanya 
et  al. (2021) estimated 2.95  AFB1-induced liver cancer 
cases/100,000 individuals, respectively, 1480 cases/coun-
try in Tanzania mainly based on maize consumption. An 
even higher number of estimated cancer cases was reported 
by Nugraha et al. (2018) where the values ranged between 
1.5 and 6668 cancer cases/100,000 individuals due to 
maize consumption and between 0.1 and 35 liver cancer 
cases/100,000 individuals due to peanuts consumption in 
Indonesia. Biomonitoring in Portugal showed that the risk 
of liver cancer due to aflatoxins exposure based on the deter-
ministic approach is 0.167 extra cancer cases/100,000 indi-
viduals (Martins et al. 2020), in China the number of extra 
HCC cases/100,000 individuals is 0.125 (Chen et al., 2022), 
and 0.011/100,000 individuals based on a total diet study 
in France (Sirot et al. 2013) which is in the range of the 
number of cancer cases in our scenarios (0.007–0.77 can-
cer cases/100,000 individuals) (Supplementary file S1). In 
Vietnam, the number of extra HCC cases based on tofu and 
beans consumption is between 0 and 0.1/100,00 individuals 

(Huong et al. 2016), while due to consumption of maize, 
rice, and peanuts the number of HCC cases is between 0.21 
and 55.45/100,000 individuals (Do et al. 2020) suggesting 
a higher number of HCC cases than in Italy.

Based on Eq.  (10) (ΔDALYAS =  DALYAS −  DALYBS) 
the difference in DALYs is > 0 indicating a health loss and 
the burden of disease associated with the consumption of 
 AFB1-contaminated soy-based meat analogues due to the 
shift in dietary patterns.

Martins et  al. (2020) reported the gain of 1.7 
DALYs/100,000 individuals, respectively, 171.5 DALYs/
country due to consumers’ exposure to aflatoxins in Portu-
gal. These results are comparable with the gained DALYs 
in our scenarios (0.07–7.7 gained DALYs/100,000 indi-
viduals). In China the number of DALYs gained due to 
exposure to aflatoxins is extremely higher than in our study 
with reported gained DALYs of 21,625/100,000 individu-
als (Chen et al. 2020), while in Tanzania the number of 
gained DALYs due to the burden of  AFB1 is 56,247/country 
(Kimanya et al. 2021).

Eneroth et al. (2017) assessed the risk–benefit assess-
ment of nut consumption accounting for cardiovascular 
health benefits and the carcinogenic effects due to exposure 
to  AFB1. In their study, an increased nut consumption would 
prevent > 7000 cardiovascular diseases and save 55,000 
DALYs/country for stroke and 22,000 DALYs/country for 
myocardial infarction, while the  AFB1 exposure would lead 
to the gain of 159 DALYs/country.

A survey conducted in six European countries (Denmark, 
France, Germany, Italy, Poland, and Spain) showed that the 
preferred PBMAs are burger patties, slices, shredded meat, 
steaks, sausages, nuggets, and tofu (Gebhardt et al. 2020). 
As plant-based meat and plant-based milk are the leading 
categories of all plant-based food consumed by flexitarians 
in Europe (Smart Protein Project 2021) the exposure to plant 
toxins is expected to continue growing over the next years if 
no proper regulation will be set in place, further increasing 
the risks that come with the shift in dietary patterns.

Critical Discussion of the Study Outcome

Sources of Uncertainty and Limitations

This study has unquantified uncertainties such as under/
over-reported consumption data and a large proportion of 
left-censored data (93%). It must be noted, however, that 
consumption and occurrence data used in our study are 
obtained from official reports (EFSA 2020a, 2020b), and 
therefore such uncertainty also affects—and are a limita-
tion of—the current risk assessment. Our substitution model 
was based on a deterministic approach, speculating that all 
of the consumers would substitute the meat products with 

https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
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soy-based meat imitates in the same manner and in all sce-
narios. Hence, variability in the substitution was not taken 
into account. This has clearly led to a potential overestima-
tion of the overall exposure, risk and benefit.  Although the 
consumption data used are relatively old, the BS fits with 
previous consumption patterns while AS1 and AS2 reflect 
actual meat consumption patterns which we replaced with 
soy-based meat analogues.

Moreover, due to recent findings that indicate a higher 
exposure to OTA for vegans than omnivores (Penczynski 
et al. 2022), the RA took into consideration only vegetarians 
and vegans by completely replacing mammals and poultry 
meat with soy. Due to the difficulties in performing a par-
tial replacement of meat consumption and the lack of inclu-
sion of soy-based products in the INRAN-SCAI 2005–2006 
dietary survey, omnivore and flexitarian exposure was not 
included in this study. Considering that the growth of plant-
based imitates market is also due to the large uptake of these 
products in the omnivore and flexitarian diets, this is a clear 
limitation in our approach.
Potential Impact of the Study on Policy Making

The health metric DALY was used to adequately present to 
policymakers the health burden related to mycotoxin expo-
sure that comes with the shift toward PBMAs. Worth of 
notice, that although it is known that soy and legumes may 
be contaminated with mycotoxins, large surveys targeting 
meat- and milk alternatives are still lacking and no proper 
regulations are in place at the moment (Mihalache et al. 
2022).

The authors are fully aware that a full replacement sce-
nario is unlikely to be adopted because consumers have dif-
ferent eating behaviors with some individuals being small 
legume eaters while the others are high eaters. In addition, 
not only soy but a large variety of legumes are used so far 
for the production of meat imitates currently marketed in 
Europe, and not all of them are prone the mycotoxins con-
tamination as soybeans are. However, our approach clearly 
showed the increased risk of cancer based on the consump-
tion of  AFB1-contaminated soy meat analogues, making it 
easy to correlate it with contamination and consumption data 
and communicate “what if all individuals ate the same given 
amount?”.

The authors also acknowledge the importance of alterna-
tive protein sources to ensure sustainable dietary patterns 
in the United Nations Sustainable Goals (UN SDGs) policy 
framework (https:// www. un. org/ susta inabl edeve lopme nt/). 
However, in order to support a real shift toward healthier 
and more sustainable dietary habits, the policymakers should 
also consider adapting the current regulatory framework to 
include new products and patterns. Unfortunately, the cur-
rent turnover in dietary and occurrence surveys used for risk 
assessment do not reflect the quick uptake of new dietary 

styles, especially among the younger population. Hence, 
efforts are required both from the scientific and regulatory 
bodies to carefully assess the current consumption trends, 
collect proper and not left-censored occurrence data and 
increase the monitoring and analysis studies of mycotoxins 
in PBMAs. The data could be used by the EU for implement-
ing maximum limits of mycotoxins in meat alternatives as 
such is the case for other food items like wheat and maize.

The RA presented here is of interest from a public health 
perspective because it presents the toxicological risk that 
might arise from soybeans used as meat replacers in different 
contamination and consumption scenarios. As mycotoxin 
contamination is a ubiquitous problem (De Ruyck et al. 
2020) with  AFB1 being responsible for 25,000–155,000 
worldwide HCC cases per year (Liu and Wu 2010) and the 
consumption of meat analogues is continuously growing, 
greater importance should be given to actual food consump-
tion trends and correlated with updated natural toxins regu-
lations and risk assessments.

Conclusion

This study represents a first attempt to evaluate the risk 
assessment of a full replacement of meat with soy-based 
analogues with regards to mycotoxin exposure. Although 
it must be regarded as a proof of concept with large limi-
tations mainly due to gaps in knowledge and subsequent 
assumptions, it clearly shows that the change in dietary 
habits should come with a proper change in the food safety 
regulatory framework.

By eliminating processed meat from the diet, up to 406.2 
CRC cases/year/country could be prevented, indicating the 
gain of 532 healthy years of life/year/country.

Nonetheless, the alternative scenarios that reflect a more 
accurate consumption pattern with recent contamination 
data from EFSA revealed that the consumption of contami-
nated soy-based meat analogues could lead up to 1208 extra 
liver cancer cases associated with the loss of 12,080 healthy 
life-years/country. Hence, shifting to PBMAs has a clear 
advantage at least due to the elimination of a cancer risk fac-
tor such as processed meat. However, if mycotoxins occur-
rence is not regulated in PBMAs, we could end up with a 
higher and unexpected risk for consumers.

Future studies focusing on natural toxins exposure can be 
conducted in a similar manner emphasizing on other com-
mon PBMAs such as peas, chickpeas, and seitan, and dif-
ferent types of diets such as omnivore and flexitarian. To get 
reliable RAs and reduce the associated uncertainties, data 
gaps in mycotoxin occurrence and food consumption should 
be solved. This clearly requires efforts from the scientific 
community and the regulators to keep up with the quick shift 
toward plant-based dietary patterns.

https://www.un.org/sustainabledevelopment/
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