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Abstract
Foodborne illnesses occur due to contamination by pathogenic microorganisms. Therefore, decontaminating food is vital 
before marketing and circulation. Radio frequency (RF) heating stands out in several branches of industry, mainly food pro-
cessing, as an alternative method to conventional pasteurization which takes long process times and overheating. RF heating 
functions without relying on heat conduction. It generates internal heat by inducing the rotation of polar molecules and the 
motion of ions. The advantages of dielectric heating with greater wave penetration include rapid, uniform and volumetric 
heating, presenting high energy efficiency. Furthermore, it is an effective, validated method for eliminating pathogens 
in agricultural products and is free from chemical residues. Although many reviews have discussed this technology, few 
reviews have covered the research trends in this field in the recent years, during which the number of studies discussing 
RF treatment of foods have increased. Therefore, this review focuses on the RF applications in the food industry for pest 
control, microbial and enzymatic inactivation of solid, liquid, and powdered foods in the last five years. Besides covering 
the fundamental aspects of RF technology, we also examine its benefits and drawbacks, address the challenges it presents, 
and explore future prospects

Keywords Radio frequencies · Food safety · Heating uniformity · Microbial inactivation · Pasteurization · Thermal processing

Introduction

The expansion of formulation engineering within the food 
processing industry, coupled with the demand for diversi-
fied food products, has spurred significant advancements in 
the food ingredients market. Many of these ingredients are 

manufactured in a powdered form, underscoring the vital role 
of powder processing technology for both food producers and 
food ingredient manufacturers [1]. Powdered foods have low 
bulk weight, making transportation and storage easier [2]. 
Furthermore, reducing moisture content reduces the rate of 
quality degradation. Food powders have low water activity 
 (aw) with values equal to or less than 0.7 [3]. In this sense, 
it was expected that powdered foods would be safe from a 
microbiological point of view. Later, researchers reported that 
rehydrating powdered foods contaminated with microorgan-
isms helped repair lesions from the spores resulting in deadly 
Enterococcus outbreaks in powdered milk [4]. Contaminated 
food powder retards microbial growth. However, microorgan-
isms survive for a long time. Thus, sterilization techniques 
aimed to inactivate microbial cells in solid and liquid foods 
through denaturation of DNA at 71.06 °C for 15 s followed by 
drying with hot air at 135 to 205 °C for 5–6 s [5]. Nevertheless, 
the elevated temperatures used in traditional treatments, while 
effective in deactivating microorganisms, can result in changes 
to the sensory qualities and nutritional attributes of powdered 
substances. These alterations may include the degradation of 
vitamins, flavor, volatile oils, and bioactive properties.
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Commercial pasteurization by conventional heating for 
liquid foods reduces microorganism counts and inactivates 
undesirable enzymes [6]. Through the mechanisms of con-
duction and convection, heat is transferred from the external 
environment to the interior of the food. However, the treatment 
requires long process times and can cause overheating [7]. Fur-
thermore, fouling in the heat exchanger due to high tempera-
ture impacts to a reduction in food quality. Therefore, avoiding 
fouling in equipment that leads to overheating or insufficient 
heating is a disadvantage of pasteurization process.

For solid and semi-solid foods, conventional heat treatments 
based on exposure to hot air and humidity transmit insufficient 
thermal energy to reach the core of the product. Surface expo-
sure of food to heat causes cracks in addition to ineffective 
treatment of the core, leading to degradation of product quality 
[8]. Particulate foods such as grains and seeds (oilseeds, cereals, 
and nuts) are heat treated using dry heat, hot water, or steam. 
However, the short period of time can be ineffective, damag-
ing the vigor of the seeds. On the other hand, the long heating 
time reduces the sensory quality of the food [9]. Seeds treated 
by chemical methods, including fungicides such as methyl bro-
mide and phosphine may contain residues of these reagents. 
Furthermore, the use of fungicides can lead to increased resist-
ance of the pest or pathogen [10]. Additionally, gases originat-
ing from the chemical method damage electrical equipment and 
destroy the ozone layer when in contact with the atmosphere. 
In this sense, the search for food decontamination technolo-
gies that maintain nutritional quality and sensory properties has 
become the focus of research in recent decades. Furthermore, 
issues related to food safety have triggered several emerging 
technologies, such as pulsed electric field [11], ozone process-
ing [12], cold plasma [13], pulsed light [14], high pressure pro-
cessing [15], microwave heating [16], infrared heating [17], 
ohmic heating [18], and radio frequency (RF) heating [19].

RF technology involves dielectric and electromagnetic 
heating with longer wavelength, resulting in deeper penetra-
tion [20]. The coupling of electromagnetic waves in food 
generates heat [21]. The alternating electric field applied to 
the dielectric material causes friction between the molecules 
due to the movement of ions and rotation of polarized mol-
ecules [22]. This friction generates heat inside the product 
and avoids limitations on the heat transfer rate. In RF heat-
ing, ionic conduction predominates, with charged ions exert-
ing more influence on heat generation than water molecules. 
In food processing, RF applications include defrosting [23], 
disinfestation [10, 24], pasteurization/sterilization [25], dry-
ing [26], enzyme inactivation [27], improving gelling prop-
erties in foods [28], and modification of the internal struc-
ture of starch [29]. Additionally, volumetric heating caused 
by RF can substantially reduce the heat spent during food 
blanching [30, 31]. Moisture content influences the material 
behavior under RF processing: cellular tissues with higher 
humidity absorb more energy compared to tissues with lower 

humidity. In this way, moisture leveling through RF heating 
promotes uniform drying [32].

Although some recent reviews have widely discussed the 
RF technology [33–36], to the authors’ knowledge there 
are no reviews addressing trends in the last five years on 
the RF applications in the food industry for pest control, 
microbial and enzymatic inactivation of solid, liquid, and 
powdered foods. In this context, the aim of this review is to 
outline the foundational aspects of RF technology and its 
evolving applications in food decontamination, addressing 
its advantages and disadvantages, along with the challenges 
and prospects for expanding the technology.

Fundamentals of Radio Frequency Technology

The application of RF is a widely disseminated technology in 
the telecommunications area. Its use in the heating field began 
at the end of the 19th century. Exploration in the food process-
ing sector for blanching, dehydrating, defrosting, and cooking 
began in the mid-20th century [25]. In the 1960s, industrial 
production lines for defrosting vegetables and meat products 
began to spread RF technology [37]. Advancements in ther-
mal processing studies are increasingly apparent due to the 
progress in computational technology and the enhancement of 
dielectric performance and temperature sensors, all contribut-
ing to the evolution of RF applications.

RF is defined as a non-ionizing wave that acts at specific 
frequencies of 13.56, 27.12, and 40.68 MHz with a wavelength 
of 22.1, 11.1, and 7.4 m respectively. Industrial, scientific, and 
medical use requires specific frequencies. The Federal Commu-
nications Commission has permitted the use of radio frequen-
cies for heating at 13.56, 27.12 and 40.68 MHz to prevent RF 
interference in other areas, such as cellular telecommunications 
[7]. The thermal and electrical properties of a material placed 
in contact with an alternating electric field change due to this 
interaction [38]. The positive ions will move close to the nega-
tive pole of the electromagnetic field and vice versa, resulting in 
the phenomenon of ionic migration or conduction as illustrated 
in Fig. 1a. Furthermore, the effects of friction will generate heat 
in the dipole molecules that are rotating. These inverted move-
ments occur thousands of times per second during the oscillation 
of the magnetic field. The collision of ions inside the material 
and the friction between the dipole molecules reflect on RF heat-
ing, as shown in Fig. 1b, c.

Figure 2 displays a schematic representation of an RF 
emitting equipment. The electromagnetic waves have the 
ability to penetrate dielectric materials and induce heating 
throughout space, through polarization processes ionic or 
dipole rotation [10, 39]. Compared to microwaves, radio 
waves have greater penetration depth due to their long 
wavelength. RF heating is generated by a standard oscilla-
tory circuit and an automatic impedance matching system 
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can assist in maintaining the circuit impedance [9]. Conse-
quently, coupling power stability can be maintained during 
warm-up while maintaining a fixed frequency and control-
ling feedback. It is important to highlight that the moisture 
content of the material is the factor that most influences the 
dielectric properties [40]. Likewise, it contributes to improv-
ing heating uniformity during the RF process.

The dielectric properties of materials describe their inter-
action with an alternating electric field and quantify their 
ability to reflect, store, and transmit electromagnetic energy. 
They are expressed as the complex permittivity, ε = ε′ − jε″. 
The real component, ε′, corresponds to the dielectric con-
stant, representing the energy storage capacity of the electric 
field by the material. The imaginary component, ε″, repre-
sents the dielectric loss factor, which is related to the dis-
sipation of electric field energy in the form of heat [41]. The 
penetration depth comprises the distance from the surface of 
a dielectric material, at which the incident power is reduced 
to 1/e (e ≈ 2.718) of the original power, while electromag-
netic waves propagate through this dielectric material [25]. 
Equation (1) describes the depth of penetration.

where  dp - depth of penetration (m), c - Speed of light in 
vacuum (3 ×  108 m  s−1), and f - Frequency (Hz).

A signal analyzer connected to a sample holder by a 
probe provides the real and imaginary impedance values 
from which the dielectric properties of the material are 
computed [42]. When measuring dielectric properties using 
LCR [(Inductance (L), Capacitance (C), Resistance (R)] 
meters and impedance analyzers, a small voltage is applied 
to the ends of the target sample, which allows detection of 
the current passing through the food [43]. For values in 
the range 1–300 MHz, an LCR meter (5 Hz–3 GHz) [44] 
or impedance analyzer (20 Hz–3 GHz) [45] can provide 
accurate results. Spectrum/lattice/vector analyzers deter-
mine dielectric properties for high frequencies, in the range 
30 kHz–8.5 GHz [46]. However, there is lower accuracy 
for products with low moisture content. These analyzers 
record the phase and amplitude of a reflected wave signal 
coming from a sample of material. The attenuation and 
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Fig. 1  Radio frequency heating mechanism. a Alignment of the polar 
molecule against the electrons, b Effect of voltage, oscillatory shock 
and frictional heating, c The collision of ions causing dielectric heat-
ing of the material (food)

Fig. 2  Typical radio frequency 
heating system
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phase change of the signal are measured and interpreted 
to obtain the dielectric properties of the material [47–49]. 
Dielectric properties can be determined by transmission 
and resonance. Transmission using an open coaxial probe 
sweeps microwave frequency. However, the technique 
lacks precision in measuring low loss factors [50]. The 
technique involves immersing the probe in a liquid or in 
contact with the flat face of the solid material (or powder). 
The measurement of the reflected signal is related to com-
plex permittivity. A typical measurement system involves a 
vector network analyzer, a coaxial probe, and permittivity 
determination software. On the other hand, the resonance 
technique presents greater precision in determining dielec-
tric properties and dielectric loss [51, 52]. Resonance can 
be promoted by the metal walls of a cavity or achieved by 
the dielectric sample. A dielectric sample inside a cavity 
disturbs its electromagnetic field, changing the resonance 
frequency and quality factor. The advantages of the tech-
nique involve easy preparation, measurement, and calcu-
lation of dielectric properties [50]. As disadvantages, the 
reproducibility of the test may be compromised due to the 
small size of the sample in relation to the cavity, as well as 
each frequency evaluated requires a different cavity [53].

Applications in Food Processing

This section covers the application of the RF technology 
to control pest in food grains, reduce microbial popula-
tions in liquids and powders, and inactivate enzymes in 
solid, liquid, and powdered foods, although RF energy 
also has other applications such as cooking [54], thaw-
ing [55], drying [56], roasting [57], and pre-treatment for 
vegetable oil extraction [58].

Pest Control

Pest cause post-harvest losses of up to 20% in oilseeds 
worldwide [59]. In this sense, RF heating is an alternative to 
chemical fumigations, helping to control pest in food grains 
[60]. Furthermore, environmental concerns, the organic food 
market and pest resistance to chemicals have pressured the 
industry to develop non-chemical treatments to promote dis-
infestation. Additionally, synthetic chemicals carry risks to 
human health through product contamination.

Table 1 presents studies of food grain disinfections by RF 
heating. Appugol et al. [59] reported the effect of RF on pea-
nut quality and peanut oil to promote complete mortality of 

Table 1  Food grain disinfections by RF heating

Commodities Target pest Processing temperature 
/ holding time for 100% 
mortality of pest

Sample mass (kg) Power (kW); 
Frequency 
(MHz)

Mode Reference

Peanuts and peanuts oil Caryedon serratus Adults and eggs – 
89.96 ± 1.05 °C – 
8 min

N/A 10; 40.68 Continuous [59]

Semolina Tribolium castaneum 
(Herbst)

All life stages – 
64.40 ± 1.40 °C – 
8 min

N/A 10; 40.68 Continuous [61]

Black beans (Phaseolus 
vulgaris L.)

Acanthoscelides obtectus 
(Say.)

N/A, 50 °C – 1 min 10 and 20 12; 27.12 Batch [62]

Coix seeds Rhyzopertha dominica Adults – 50, 53, 56, and 
59 °C and holding for 
56.9, 22.8, 7.7, and 
0.0 min

1 6; 27.12 Batch [63]

Rough, brown, and 
milled rice

Rhyzopertha dominica Adults – 54 °C – 11 min 6 and 2 15; 27.12 Continuous [64]

Turmeric Lasioderma serricorne Eggs – N/A, 5.34 min
Larvae – N/A, 4.77 min
Pupae – N/A, 5.91 min
Adult – N/A, 6.06 min

N/A 10; 40.68 Continuous [65]

Wheat flour Tribolium castaneum 
(Herbst)

All life stages – 
74.6 ± 0.74 °C – 
15 min

3 10; 40.68 Continuous [66]

Mung beans Rhyzopertha dominica Adults – 54 °C – 6 min 6 6; 27.12 Batch [67]
Mung beans Rhyzopertha dominica Adults – 54 °C – 6 min 6 6; 27.12 Batch [68]
Milled rice Rice moth (Corcyra 

cephalonica)
Eggs – 70 °C – 420 s
Larvae – 56.9  °C – 

300 s
Adult – 45.8 °C – 180 s

0.2 3; 27.12 Batch [69]
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Caryedon serratus. Treatment at 89.96 °C reduced the mois-
ture content from 7.45 to 2.11% and the protein content from 
22.17 to 20.94% without changing the color of the product. 
Furthermore, the oil extraction yield increased by 18.97% 
after treatment, with improved composition through the 
reduction of saturated fatty acids and an increase in unsatu-
rated fatty acids. Similarly, Indumathi et al. [61] evaluated 
the disinfestation of Tribolium castaneum (Herbst) semolina 
using 40.68 MHz, 10 kW RF heating. Treatment with 8 min 
of exposure was sufficient to disinfest 100% of T. castaneum 
in semolina, achieving 100% mortality at 64.4 °C. To the 
authors, RF technology is a promising and ecological tech-
nology for promoting grain disinfestation.

Weevil mortality at 50 °C was investigated using pilot-
scale RF at 12 kW and 27.12 MHz [62]. The 10 kg batch 
was heated in 2.72 min, while the 20 kg batch only took 
1.29 min to reach 50 °C, demonstrating rapid heating volu-
metric. Uniform indices close to zero were obtained for both 
batches. Similarly Hou et al. [63] reported RF technology 
as a post-harvest physical insecticide for eliminating Rhy-
zopertha dominica insects in coix seeds. The authors stud-
ied different temperatures and times of the sample kept in 
ambient air inside the RF cavity. Energy efficiency occurred 
by heating the sample 50 °C by RF, keeping it 56.9 min in 
ambient air. Aiming for a short time process, just heating to 
59 °C was sufficient without exposure to ambient air. The 
RF commercial system has been effective in eliminating R. 
dominica from rice. Hou et al. [64] reported that heating at 
54 °C for 11 min was enough for pest mortality. The process 
yield was 594.8 kg  h−1 with an electrical cost of US$ 2.53 
per ton. Thus, these positive findings highlight RF as a non-
chemical pest disinfectant in post-harvest grains.

Microbial Inactivation

Microbial decontamination by RF heating is based on the 
diffusion of heat at a faster rate within the cell of the micro-
organism compared to other means. The cells are thermally 
destroyed with a low heating rate [70]. The mode of RF heat 
transfer is radiation. In this way, microbial DNA and essen-
tial proteins absorb this energy, physically modifying the 
cellular structure and function of the microorganism [2]. The 
effect of RF heat treatment to reduce microbial population 
depends on the species, cell wall structure, RF frequency, 
and heating uniformity.

Table 2 shows the population reduction of microorgan-
isms for various foods using RF technology. Liu et al. [71] 
studied low-temperature, long-term RF pasteurization of 
onion powder to evaluate the inactivation of Salmonella 
enterica. RF heating reached 66 °C in 180 s. After 38 h of 
treatment, there was a reduction in the microbial population 
of 3.4 log. Furthermore, the quality of the onion powder was 
not changed after the process. Although Salmonella is the 

indicator microorganism validating thermal pasteurization, 
several studies have reported Enterococcus faecium as a suit-
able substitute for pasteurizing spices and herbs [72–74]. In 
this sense, Wason et al. [75] evaluated RF pasteurization in 
packaging containing dried basil leaves for inactivation of 
Salmonella enterica and E. faecium. The Salmonella popu-
lation was reduced by 4.58 ± 0.14 log, while E. faecium by 
2.59 ± 0.46 log using RF treatment for 105 s vertically. After 
the process, the quality analysis demonstrated that there was 
no change in the color, total phenolic content and antioxi-
dants of the product. In this context, RF pasteurization of a 
packaged product together with steam ventilation eliminates 
cross-contamination, improves heating uniformity, avoiding 
impacts on product quality.

Jeong et al. [76] reported the effect of rice milling degree 
on RF heating rate, inactivation of Salmonella Typhimurium 
and Staphylococcus aureus and change in color. Samples 
were heated from 0 to 75 s. The highest heating rate was 
observed for the 2% grinding grade. High values of patho-
gen reduction with the same degree of grinding and 75 s of 
treatment resulted in logarithmic reductions of > 6.09 and 
> 7.90 for Salmonella Typhimurium and Staphylococcus 
aureus, respectively. The color of the samples was not dete-
riorated by RF heating, regardless of the degree of grinding, 
with no significant effect. In another study, RF technology 
was evaluated in the pasteurization of egg white powder in 
continuous mode [77]. Thermal processing for 2 h at 80 °C 
showed a logarithmic reduction of > 6.69 for Salmonella 
and > 6.78 for E. faecium. The greater resistance and similar 
kinetics to Salmonella make E. faecium a potential surrogate 
microorganism for pathogen evaluation. For the authors, the 
validated thermal process can be expanded to the egg indus-
try. Furthermore, the continuous process could process a 
larger quantity of products in a shorter time compared to sta-
tionary RF heating. Hot air, intermittent stirring, or electrode 
modifications can help improve the uniformity of continuous 
heating [92, 93].

Enzyme Inactivation

Enzymes are like biocatalysts that act in reactions in the 
metabolism and physiology of plants. However, their activi-
ties after harvest lead to food deterioration, through color 
change, generation of odors and nutritional loss [94]. In food 
grains, the most relevant enzyme is related to color change 
and the development of strange flavors due to contact with 
substrates such as lipids, polyphenols, and proteins [95]. 
Compared to disinfestation and pasteurization treatments, 
RF heating is rarely reported for enzyme inactivation.

Table 3 displays studies on enzyme inactivation by RF 
and their main findings. In general, studies compare RF with 
conventional hot water blanching and evaluate enzyme inac-
tivation, texture, weight, vitamin C content, and electrolyte 
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leakage. Yao et al. [96] observed a drop from 66.03 to 6.46% 
in the activity of the peroxidase enzyme by increasing the 
RF heating temperature from 65 to 85 °C in the treatment 
of lettuce stems. In another study, Yao et al. [97] combined 
steam-assisted RF blanching for application to lettuce 
cuboids. RF treatment at 80 °C followed by steam applica-
tion for 1 min demonstrated excellent heating uniformity and 
sample quality, with a 95% reduction in peroxidase activity 
and retention of almost 80% of vitamin C.

Sun et  al. [99] reported the effects of RF blanching 
and boiling water on the inactivation of the lipoxygenase 
enzyme, nutritional content, and grain morphology of sweet 
corn. RF heating from 50 to 80 °C reduced enzyme activ-
ity to 4.68%. Physicochemical properties such as color, tex-
ture, and nutrient content were better preserved compared 
to blanching in boiling water. According to the micrographs 
in Fig. 3, the increase in temperature during RF bleaching 
damaged the cells. On the other hand, hot water bleaching 
damaged cells more severely. Disruption of the cell wall 
exposed the cystic surfaces of the cells. This phenomenon 
is known as pectin depolymerization, responsible for the 
deterioration of the texture of foods and the softening of 
plant tissue during heat treatment [106, 107]. Yarrakula et al. 
[100] investigated lipase inactivation from pearl millet (Pen-
nisetum glaucum L.) grains by combining hot air-assisted 
RF technology. Lipase activity was reduced to 2.7% with 
the sample 15% hydrated and processed for 15 min using a 
heating rate of 5.2 °C  min−1. A longer period of exposure to 
the treatment as well as greater sample humidity improved 
the bonding properties. For the authors, the study adds value 
and promotes the use of underused gluten-free cereals due 
to rapid rancidity. Furthermore, pearl millet grains present 
nutritional and therapeutic benefits.

Advantages and Disadvantages of Radio 
Frequency Technology

The use of RF has several distinct characteristics in con-
trast to conventional heat transfer and diffusion methods. 
To prevent Ohmic heating, it is crucial to ensure that the 
electrodes do not make direct contact with the food when 
employing RF heating units. This technology is suitable 
for both liquid and solid food products, and its wave-
length exceeds that of microwave frequencies. Due to their 
greater power capacity, RF waves penetrate deeper into 
the material compared to conventional microwaves. Thus, 
heat is internally generated within the material, leading to 
a more even distribution. Furthermore, the construction 
of large-scale RF units is more convenient and contrib-
utes to improving the quality of the final product. Other 
notable advantages of this sustainable technology include 
increased energy efficiency, moisture leveling, contactless 

heating, and faster drying and curing times [108]. The 
operating and equipment costs compared to conventional 
heating systems are the disadvantages of the technology. 
The total costs of implementing RF technology can vary 
between 2500 and 6000 euros per installed kilowatt of RF 
power. The capital costs involved can be divided into: (1) 
energy generator – 20–30%; (2) applicator – >35%; (3) 
power transmission – 5–10%; (4) auxiliary instrumentation 
– 5–30%; (5) installation and startup – 5–15% [109]. How-
ever, considering that the cost per installed kilowatt of RF 
power decreases when the nominal plant power exceeds 
12 kW, and considering that electricity to run a RF power 
can come from renewable sources at a competitive price, 
and taking into account the minimization of handling, RF 
technology is an attractive choice.

Challenges and Future Perspectives

Despite being in the market for an extended period, the 
adoption of the RF technology within the industry has 
progressed at a relatively modest pace. The design of RF 
heating systems is made complex by the requirement for 
comprehensive data on the dielectric properties of food 
products, as well as the dimensions, configurations, and 
placements of RF electrodes to achieve uniform tempera-
ture distribution [70]. Furthermore, the high intensity of 
the electric field in the sample causes a dielectric break-
down, causing destruction of the product or rupture of the 
packaging [110]. Moist foods with high salt content may 
exhibit non-uniform heating at the RF frequency, leading 
to product loss [111]. Controlled food thawing is difficult 
to achieve without other heat exchange mechanism able 
to mitigate possible run away heating zones [23]. Addi-
tionally, there are still some challenges such as analysis 
in real time, lack of data for comparison, high cost due to 
electricity, and difficulty in measuring temperature with-
out contact in order to avoid interaction with the electro-
magnetic field [112].

A future of RF technology in the food industry cannot 
be imagined without the implementation of key-enabling 
technologies in this sector. Future research should focus on  
introducing in industrial applications the use of digital tech-
nology, computer simulation, and parameter evaluation. As 
variations in temperature, humidity, and electric field inten-
sity inside materials are complex during RF drying, the use  
of online digital solutions for monitoring, and measurement 
is recommended. Computer simulation allows a quick and 
low-cost analysis, without environmental limitations. It 
helps in simulating and optimizing parameters to improve 
heating uniformity, often eliminating the need for a series 
of experiments [113].
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Among the commercially accessible software for heat 
transfer and/or electromagnetic field displacement, many 
are based on finite element method, such as COMSOL Mul-
tiphysics [114] (an update of an early version called FEM-
LAB, which was used to develop and solve the first model of 
RF heating of food [115]), High-Frequency Structure Simu-
lator (HFSS-ANSYS) [116], Quickwave 3D (QW3D) [117], 
and TLM-FOOD HEATING [118]. COMSOL Multiphysics 
software allows coupling different physical phenomena and 
it has been used to simulate RF heating behaviors through 
the concurrent solution of electromagnetic and heat transfer 
equations [119]. Model parameters such as top electrode 
voltage, thermal conductivity, heat transfer coefficients, 
and dielectric properties are entered before simulation. For  
each simulation, the model geometry is based on the sample 
and the RF heating unit. After solving the simulation, the 
average temperature and heating uniformity index are deter-
mined considering the volume, surface, and target point. 
Subsequently, validating the simulation model and its solu-
tion involves heating the samples at predetermined locations 
within the RF unit. Thus, there is an understanding of the 
influence of the shape and size of granular particles on the  

uniformity of RF heating [120]. Additionally, the simulation 
helps in selecting the packaging shape [121]. Huang et al. 
[122] used COMSOL software to simulate RF heating of 
insects in soybeans in the upper, middle, and lower layers of  
the container. Experimental validation using Indian moth 
larvae indicated a differential heating of 5.9–6.6 °C more 
than the host soybean when RF treatment occurred from 25 
to 50 °C, demonstrating that the heating rate for insects was 
1.4 times higher than for soybeans. The orientation of the 
insect body in the cold point of the layers, combined with 
its size, influences the heating inside its body.

Regarding industrial application, the ultimate objective of 
the research groups is the dissemination of the technology 
on a large scale. Efforts should/could be spent to integrate 
RF processing systems in power grid supplied by renewable 
energy, eventually to design and place on the market inte-
grated RF systems, to be mounted on vehicles and transported 
and used even in rural areas, where eventually fast and reliable 
inactivation method is needed to prevent spoilage of agricul-
tural products, preventing their possible infestations before 
selling the products. However, there are gaps between funda-
mental and industrial-scale research. Equipment maintenance 

Fig. 3  Micrographs of untreated and treated sweet corn by RF and boiling-water (BW).  Adapted from Sun et al. [99], with permission from 
Elsevier



Food Engineering Reviews 

is still a bottleneck for the adoption of RF technology. Addi-
tionally, service and maintenance contracts for RF equipment 
are expensive. The electric arc is another barrier found in 
industrial processing. Arcing in RF treatment is very common 
and several methods/algorithms have been implemented in 
hardware to avoid this phenomenon. However, most of them 
end up shutting down the RF system after a certain number of 
arcing events are encountered. This division makes it difficult 
to verify the integrity of the process.

Most studies have focused on the aspect of RF heating 
uniformity and electrode placement, etc. However, the area 
of dynamic impedance matching has not received as much 
attention, demonstrating opportunities to improve the tech-
nology. Likewise, future research should seek to simplify the 
structural design of RF generation and the cavity, aiming to 
reduce costs on an industrial scale [123]. The energy con-
sumption and economic costs of an industrial technology are 
crucial factors and are ignored in fundamental research. Fur-
thermore, the variation in sample volume alters the uniform-
ity of heating and subsequent drying. Therefore, laboratory 
or pilot scale tests must be validated according to protocols 
to promote application, for example in the food industry.

Conclusion

In recent decades, researchers have explored emerging RF 
technology as a potential substitute for traditional heat treat-
ment. Furthermore, there has been extensive documentation 
of the dielectric properties of various products. The non-uni-
formity of the product can often be the main limitation of the 
treatment as it reduces the quality of the product and reduces 
food safety, favoring the development of microorganisms. In 
this context, this review addressed application trends over 
the last five years, considering RF heating as a promising 
alternative for the food industry. Studies are focused on 
simulations, equipment designs, and process optimization to 
overcome this obstacle. RF technology has been reported for 
liquid, solid, and powdered foods, as well as pre-packaged 
foods. The advantage of RF heating a packaged product is 
the reduced risk of cross-contamination. The physical state 
of food represents a particularity in studies due to different 
sizes and chemical composition. According to the objectives 
of the studies, RF proved to be a green technology for pest 
disinfestation, enzymatic and microorganisms inactivation, 
achieving food safety goals without changing the quality of 
the product. Additionally, it has the capacity to maintain 
nutritional, physicochemical, and sensory attributes due to 
shorter processing time. Published experimental results are 
mostly referred to 27.12 MHz: there is still room to explore 
the benefit of this technology at higher or lower frequency, 
considering the different penetration depths that can be 
achieved. Considering the complexity of an optimal design 

of such processes and equipment, the use of computer-aided 
food engineering methodology could definitely contribute to 
expand the use of RF-assisted processes for a more sustain-
able food industry.
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