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Abstract
Low-moisture foods such as spices, grains, and seeds constitute an important part of the human diet. Increased consumer 
concern for food safety and food quality has focused on the decontamination technologies required for low-moisture foods. 
Cold plasma treatment has been a promising novel technology in the food processing industry due to its advantages in safety, 
efficiency, versatility, and environmentally friendly nature. It has shown various capabilities on safety and quality control in 
low-moisture foods. This paper comprehensively reviewed the application of cold plasma in low-moisture foods, including 
inactivation of microorganisms, degradation of mycotoxins, influences on the quality of low-moisture foods, and promotion 
of seed germination. Cold plasma can inactivate the pathogenic microorganisms on the surface of low-moisture foods, by 
generating active species, ultraviolet radiation, and electric fields, which helps to extend the shelf life of foods while having 
minimal impact on food quality. Cold plasma technology is also an effective approach to detoxify mycotoxin-contaminated 
low-moisture foods by degrading various mycotoxins. With the manipulation of parameters for cold plasma generation, target 
functional properties of food products may be obtained. In addition, the application of cold plasma in seed germination is 
promising and could be of great significance to the global food crisis. This review also suggests that more systematic studies 
are needed to employ cold plasma in the low-moisture foods industry for selected applications.
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Introduction

Low-moisture foods (LMFs) refer to food or food ingredi-
ents with a water activity (aw) less than 0.85 [1]. They can be 
broadly categorized as natural LMFs and processed LMFs. 
LMFs such as nuts, milk powder, seasonings, peanut but-
ter, and flour were originally considered microbiologically 
safe. However, their frequent contamination with pathogenic 
microorganisms has drawn serious attention worldwide [2]. 
In 2014, more than 150 people in China were infected by 
consuming milk powder contaminated with Staphylococcus 
aureus [3]. In 2019, 21 people in the USA contracted E. coli 
O26 from eating contaminated flour [4]. Studies have reported 
the long-term prevalence of foodborne pathogens in LMFs 
or dry food processing and manufacturing environments 
[5]. Moreover, foodborne pathogens in LMFs usually have 
stronger resistance to high temperature and harsh environ-
ments than pathogens that existed in high water activity envi-
ronments [6]. For instance, molds can grow in low-moisture 
environments, and produce mycotoxins that are carcinogenic 
and teratogenic, and thus pose a challenge to food safety.
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Different physical and chemical treatment methods are 
used to minimize the safety problems associated with LMFs. 
For instance, preservatives such as benzoic acid and sorbic 
acid are often used in the food industry [7]. However, some 
chemical agents have carcinogenic and mutagenic effects and 
can cause environmental safety problems [8]. The most com-
mon physical treatment method is heat treatment,however, it 
can very likely lead to a reduction in the sensory properties 
and nutritional value of food. Also, some microorganisms 
are prone to heat resistance in a hot environment [9]. Due to 
the limitations of conventional heat treatments, the poten-
tial of new non-thermal processing techniques to solve food 
safety issues has been explored [10]. Among the non-thermal 
techniques, UV, radiation, pulsed light, and gas treatments, 
i.e., ethylene oxide, have limitations such as lower efficiency, 
overheating problems, higher cost, and chemical residue 
issues [11]. While ensuring the safety of LMFs, food indus-
try often uses different treatments to enhance the functional 
performance of LMFs in order to improve their applicabil-
ity (e.g., rheological properties, foaming ability) [12]. Seeds 
are an important part of LMFs. Seed germination is easily 
affected by environmental conditions such as temperature, 
humidity, and light [13, 14]. Under the pressure of global 
warming and the increasing world population, improving the 
seed germination rate and seedling survival rate is of great 
significance to solve the world food crisis [15]. In addition to 
external factors, seed germination is also affected by internal 
factors such as seed quality and its dormancy period [16]. To 
shorten the dormant period of seeds, various physical and 
chemical methods have been adopted.

CP is a novel non-thermal technology widely used in 
medicine, electronics, material science, and agricultural 
science. Plasma, also referred to as the fourth form of mat-
ter, can be generated either under atmospheric pressure or 
vacuum. Recent reviews on CP applications are focused on 
microbial inactivation and its degradation of mycotoxins. 
CP has been investigated for its potential to modify the 
nutritional and functional properties of LMFs [17]. CP has 
also been proved to have great potential to improve seed 
germination by enhancing seed germination rate and seed-
ling survival rate [18]. Based on the above information, this 
review provides a short introduction to CP technology with 
its detailed application in LMFs. The four main areas dis-
cussed are shown in Fig. 1.

Cold plasma Technology

Plasma Chemistry

In nature, matter generally exists in three states: solid, gas, 
and liquid [19]. With the change of temperature or pressure, 
these three states can be transformed into each other. In a 
gaseous substance, if the temperature continues to rise to 
several thousand degrees Celsius, the gas will be ionized. 
The electrons around the nucleus will get rid of the bondage, 
and the electrons and positive ions will be separated. During 
this motion, the collision occurs and the neutral atoms are 
ionized to generate electrons, positive ions, free radicals, 
and neutral particles, which constitutes the fourth state of 
matter—the plasma state [19].

Fig. 1   Graphical representation 
of this review
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Plasma can be divided into two categories: high-temperature 
plasma and low-temperature plasma [20]. In high-temperature 
plasma, the gas is completely ionized and the particle tem-
perature is as high as 106–108 K, with no heat transfer [21]. 
The low-temperature plasma is classified into thermal plasma 
and cold plasma. Thermal plasma is usually generated by the 
ionization of dense gas under high pressure and is in a state of 
thermodynamic equilibrium. CP is generated by the ionization 
of gas at atmospheric pressure or low pressure, with relatively 
high electron temperature but low ion temperature, which is in 
a non-equilibrium state [22]. This review mainly focuses on 
CP technology.

Plasma Source

CP can be generated in different ways, and each of these 
plasma generation methods has its own advantages and dis-
advantages [23]. The commonly used methods include die-
lectric barrier discharge, corona discharge, microwave dis-
charge, and radiofrequency discharge. These methods have 
been described in detail in previous literature [24], therefore 
we only discussed them briefly in this review.

Dielectric barrier discharge (DBD) is the most common 
method to generate CP. It consists of a high voltage electrode 
and a ground electrode. Insulation material covers one or both 
electrodes or floats between the two electrodes, which can 
prevent the generation of thermal plasma [25]. DBD usually 
works at a 50 Hz–10 MHz frequency and 104–106 Pa pres-
sure [26]. Its advantages include a large discharge area, room 
temperature operation, low maintenance cost, and strong steri-
lization effect, and can be applied to food in various states 
[27]. The corona discharge consists of a power supply, a trans-
former, a curved electrode, and a blower [28]. The application 
of high voltage will cause a strong electric field to concentrate 
on the curved electrode surface, and the gas near the curved 
electrode surface is induced to ionize due to the concentrated 
electric field, resulting in corona discharge plasma through 
localized gas breakdown [23]. The corona discharge is rela-
tively easy to operate, but it has limited discharge area [29]. 
The microwave discharge does not require electrodes. The 
magnetron transmits the microwaves into the process cham-
ber, and the gas absorbs the microwaves to generate heat, thus 
inelastic collisions [30]. It can work in a low-pressure environ-
ment and is able to generate a large amount of active material 
with less gas. However, the microwave discharge plasma is 
limited in space, and the application of a large area requires a 
discharge matrix [23]. The radiofrequency discharge consists 
of two coaxial electrodes, one is grounded, and the other is 
excited. The electrons are accelerated and ionized by collision 
with gas atoms [23]. It can work under low pressure to gener-
ate high-density plasma. However, radiofrequency discharge 
is expensive due to the usage of helium and argon. It is there-
fore usually used in the medical industry [31].

Application

CP has been widely used in many fields such as medical, 
machinery, environmental protection, and the food indus-
try. In the medical area, it is reported that CP could induce 
stem cell proliferation and treat cancer [32]. CP will not only 
combat the current coronavirus disease (COVID-19) crisis 
but will also help with any future viral pandemic outbreak 
[33]. In machinery, plasma is used for surface activation, 
functionalization, etching, and polymerization of nanocom-
posites to improve the structure and properties of composites 
[34]. In terms of environmental protection, the treatment 
of CP helps to reduce the number of microorganisms and 
bacterial spores, as well as the toxicity of industrial waste-
water [35].

To date, CP has been closely integrated with the food 
industry to inactivate microorganisms such as bacteria, 
molds, and yeasts in plant and animal foods, ensuring food 
safety and extending the shelf life of food [36]. For exam-
ple, it is used for inactivating Salmonella, Listeria mono-
cytogenes, and Duran virus [37], and removing aflatoxin 
B-1 from contaminated corn [38]. The application of CP 
technology has also been expanded to dissipation of agro-
chemical residues [39], such as the removal of malathion 
and chlorpyrifos on vegetables [40, 41], and the reduction 
of azoxystrobin residues on strawberry fruit [42]. CP can 
modify the physicochemical properties of food materials. It 
has been used in food processing to improve food function-
alities, such as the foaming ability and hydration properties 
of wheat flour [43]. It can also be used to promote seed 
germination and growth [44].

Although most of these studies have been carried out at 
the laboratory level, plasma equipment that can be applied to 
the food industry has already taken shape. Misra and Jo [15] 
proposed a plasma device model for food processing based 
on the European Union’s SAFE-PAG project, which consists 
of multiple plasma units assembled into a tunnel-like struc-
ture through which food passes and pathogens are eliminated 
(Fig. 2). Ziuzina et al. [45] designed a DBD reactor that puri-
fies the fruits and vegetables in the package, which includes 
two 1 m long electrodes and an adjustable discharge gap to 
process multiple flexible packages at the same time. Based 
on the above research, we propose a plasma device that may 
be applied in the food industry, as shown in Fig. 3. The CP 
system is designed by adding a conveyor belt between the 
two electrodes of the DBD reactor through which the plasma 
contacts the food surface to kill pathogens. The number of 
patents for cold plasma devices exceeds one million, but 
most of them are only based on the design of plasma devices 
and have very few practical applications in the food pro-
cessing industry. In recent years, the application of plasma 
in food processing and preservation has increased, and the 
number of patents has also increased [46].
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Cold Plasma Application in Low‑Moisture 
Foods

Inactivation of Microorganisms

With the popularization of health concepts, the safety of 
LMFs has gradually become a focus of attention. The con-
tamination of LMFs by pathogens and spoilage microorgan-
isms not only causes waste of resources but also affects the 
economic value of food. It is a common practice in the food 
industry to ensure food quality by inhibiting the growth and 
reproduction of pathogens by using various physicochemical 
sterilization methods. In many cases, preservatives used by 
the food industry contain controversial ingredients, which 
often make consumers feel disturbed [47]. Although heat 
treatment is effective in deactivating pathogens and spoil-
age microorganisms in food, pigments and nutrients are lost 
along with water, which reduces the nutritional and sensory 
quality of food [48]. Several non-thermal processing tech-
niques are alternatives to traditional heat treatment, such as 
high-pressure processing and ozonation. These techniques 
are not dependent on temperature and can maximize food 
quality, but they have certain limitations. High-pressure 

processing is not suitable for high-protein foods because 
high pressure can lead to protein denaturation and gel for-
mation [49]. Ozone is a toxic gas and may form various toxic 
by-products in food [50]. Among these new non-thermal 
technologies, CP technology has the unique advantage of 
being safe, efficient, non-toxic, and residue-free [51]. There-
fore, it is chosen by an increasing number of professionals.

Mechanisms of Microbial Inactivation

CP is effective in the field of microbial purification. Studies 
have shown that the contents of Escherichia coli, Salmo-
nella, and Listeria are significantly reduced after CP treat-
ment for a short time [52]. The effect of plasma treatment 
depends on the product type, the type of bacteria, the surface 
properties of food, and the diffusivity of the plasma species 
[53]. So far, the mechanisms of plasma sterilization have not 
been fully elucidated due to the complexity of the plasma 
species’ interaction with microorganisms.

Several studies have shown that when gases are ionized, 
the resulting UV radiation and charged particles work as 
active species to play a major role in microbial inactiva-
tion. The mechanisms of microbial inactivation by CP are 

Fig. 2   Plasma discharges 
designed for food decontamina-
tion

Fig. 3   Conceptual design of a 
plasma decontamination unit for 
the food industry
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shown in Fig. 4. In general, plasma-generated reactive spe-
cies oxidize lipids and sugars on microbial cell membranes, 
thus causing the cell membranes to rupture [54]. Reactive 
oxygen (ROS) and nitrogen species (RNS) also interact with 
peptidoglycan and important chemical bonds in the cell wall. 
C-O and C-N bonds are broken and the bacterial cell loses 
the protection as the entire cell structure is damaged [55]. 
In addition to basic cellular structures, the active species 
also react with biomolecules such as proteins, DNA, and 
lipids within bacterial cells, leading to amino acid oxidation, 
lipid peroxide formation, and DNA rupture [56]. During 
plasma generation, the intensity of initiated UV radiation is 
dependent on the plasma devices and gas types. The micro-
bial inactivation mechanisms are that the ultraviolet radia-
tion is irradiated to the biological cells where the nucleic 
acid absorbs the photon energy forming a thymine dimer to 
inhibit bacteria proliferation [57].

Fridman et al. [58] found that the electrostatic force is 
thought to destroy the cell membrane, which leads to cell 
membrane damage and even cell death. Other studies have 
shown that when the electric field strength is high enough, 
it can change the three-dimensional structure of the protein, 
causing it to separate from the cell membrane, and resulting 
in membrane perforation and leakage of cell contents [59]. 
Cui et al. [60] observed that cold nitrogen plasma (CNP) 
treatment can destroy the structure and affect the metabolism 
of L. monocytogenes biofilms. The main antibacterial mech-
anism of CNP is that large numbers of active free radicals 
generated during discharge react with biological macromol-
ecules such as phospholipids, DNA, and proteins, destroying 
the integrity of biofilms. At the same time, ROS can further 
damage the exposed bacterial cell membrane, resulting in 

increased oxidative stress of various substances in the cell. 
This inhibits the expression of quorum sensing-related genes 
and virulence genes and finally leads to bacterial cell death. 
The physical impact of CP on microorganisms is mainly the 
electrostatic force generated by some collection of charged 
particles. The study by Qian et al. [61] also obtained similar 
results. After plasma treatment, reactive species ROS and 
RNS attack the cell membrane to change its permeability, 
resulting in the leakage of inorganic ions (K, Mg+2+, Na), 
which eventually inactivates the cell. The study also pointed 
out that the effect of plasma treatment on Gram-negative 
bacteria was significantly higher than that of Gram-positive 
bacteria under the same conditions, which may be resulted 
from the differences in the peptidoglycan layer.+

Effects of Cold Plasma on Microbial Inactivation 
in Low‑Moisture Foods

Factors affecting the efficiency of plasma treatment include 
process, product, and microbial factors [25]. This review 
focuses on the effect of processing parameters on micro-
bial inactivation. An overview of the recent studies on the 
inactivation of microorganisms in LMFs by CP is shown in 
Table 1.

The electrical input parameters (power, time, frequency, 
voltage, etc.) of plasma generation affect the efficiency of 
microbial inactivation. Deng et al. [62] reported that the 
microbial inactivation efficiency of CP increased with the 
increase of voltage and frequency. Similar results were 
obtained in food-grade rice starch and spices [63, 64]. Beyrer 
et al. [63] observed that among the three power levels of 4.1, 
5.7, and 7.1 W, the inactivation rate of Bacillus coagulans 

Fig. 4   Mechanisms of microbial 
inactivation by cold plasma
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reached the highest in 5 s under 7.1 W. Charoux et al. [65] 
observed a significant reduction of 5.64 log CFU/mL in 
Bacillus subtilis vegetative cell population in black pepper 
grains after 5 min of treatment at 30 kV and 1.16 ± 0.98 log 
(CFU/g) after 3 min of treatment at 15 kV. Ahangari et al. 
[66] investigated walnut kernels treated with radiofrequency 
low-pressure cold plasma (LPCP) at different powers and 
observed that the efficiency of microbial inactivation was 
increased with the increase of power and time. The decrease 
of the microbial population was the highest at 50 W power 
and 20 min treatment time. The total viable count, coliform, 
and mold log reduction were 1.09, 0.97, and 0.89 log CFU/g, 
respectively. Appropriate increase in CP treatment time will 
also increase microbial inactivation efficiency, but longer 
treatment time is not better. Hemmati et al. [67] explored the 
effect of cold atmospheric-pressure plasma on the microbial 
load of turmeric powder. The number of aerobic viable cell 
count was observed to decrease by about 1.5 log CFU g−1 
at 7 min after plasma treatment. However, the decreasing 
effect of plasma treatment was only significant in the first 
3 min of the process. Other studies have also yielded the 
same results [76]. It is necessary to understand the optimized 
plasma treatment parameters for maximum plasma treatment 
efficiency [77].

Moreover, the selection of different plasma generation 
systems affects the microbial inactivation efficiency. Hertwig 
et al. [68] observed that after using microwave-driven plasma 
to treat pepper for 30 min, S. enterica, Bacillus subtilis spores, 
and Bacillus atrophaeus spores were reduced by 4.1, 2.4, and 
2.8 log, while radiofrequency plasma treatment did not achieve 
similar inactivation. The microbial inactivation effect is influ-
enced by the type of ionized gas in the plasma system and the 
distance from the plasma generation source. Sen et al. [69] 
used atmospheric-pressure (AP) and low-pressure (LP) plas-
mas to treat A. flavus and A. parasiticus in hazelnuts, respec-
tively. Researchers observed that higher plasma power, fre-
quency, and voltage resulted in greater inactivation in a short 
period. And regardless of plasma type (LP or AP), when the 
air was used as a reactive gas, the inactivation efficiency was 
much greater than using nitrogen. Different treatment methods 
also affect the microbial inactivation effect. Taking dried pep-
permint as an example, the total viable count (TVC) decreased 
significantly by up to 1.5 log after 7.5 min of continuous 
plasma treatment, while the total viable count (TVC) decreased 
only by about 0.8 log after 3 × 2.5 min of pulsed plasma treat-
ment. Spore-forming bacteria, Enterobacteriaceae, yeasts, and 
molds were significantly reduced after plasma treatment for 
7.5 min compared to 3 × 2.5 min treatment [70].

Different gas ionizations produce different types of com-
plex compounds. The chemical properties of the process 
gas determine the nature of reactions that occur during food 
processing. Basaran et al. [71] treated hazelnuts, peanuts, 
and pistachios with low-temperature radiofrequency plasma 

by changing the processing gas. Researchers observed that 
the use of sulfur hexafluoride was more efficient than the 
use of air as the reaction gas for the same length of time. 
Similarly, Niemira [72] studied Salmonella and E. coli on 
almonds, and also changed the distance of the food from the 
plasma generation source. By changing the distances to 2, 4, 
and 6 cm, the process gases were air and nitrogen, respec-
tively. Researchers observed that for E. coli O157:H7C9490, 
regardless of the reaction gas used, the microbial inactiva-
tion efficiency was the strongest when it was 6 cm away 
from the emitter, but for E. coli O157:H735150, the dis-
tance effect was not obvious, and the change in the distance 
did not cause the change in bactericidal efficiency. Salmo-
nella PT30 had the highest inactivation efficiency at 6 cm 
and 4 cm under the action of air and nitrogen, respectively. 
Therefore, the microbial inactivation efficiency is restrained 
by a variety of factors, and appropriate microbial inactiva-
tion parameters should be selected correspondingly to the 
appropriate strains.

The microbial inactivation efficiency is also affected by 
different food matrices. The study found that when different 
cultivars of walnut kernels are treated, the bactericidal effect 
may be different due to the different thickness of walnut 
kernels [73]. After 3, 5, and 7 min of treatment, A. flavus 
cells reduction was highest in the Mazandaran cultivar and 
lowest in the Taleghan cultivar. After 10 min treatments, the 
reduction rate of A. flavus was the highest in the Taleghan 
cultivar and lowest in the Shahmirzad cultivar. In addition to 
the aforementioned foods, plasma can significantly reduce 
microorganisms in spices [78] and dried fruits [75].

Reduction of Mycotoxins on Low‑Moisture Food 
Surfaces

LMFs lack the water necessary for microbial growth and 
reproduction, limiting microbial growth. However, some 
xerophilic spoilage fungi can grow at aw < 0.6 [79]. For 
instance, LMFs such as corn, rice, wheat, and spices are 
susceptible to contamination by Aspergillus, Fusarium, and 
Penicillium [80]. According to the Food and Agriculture 
Organization (FAO) of the United Nations, 25% of the food 
in the world is contaminated by fungal pathogens every 
year [81], causing food waste and economic losses. Certain 
fungal pathogens can produce toxic metabolite mycotoxins, 
which are highly detrimental to human health. The common 
effects are liver toxicity, kidney toxicity, carcinogenicity, 
teratogenicity, and immunosuppression [82]. Among the 
mycotoxins, the most distributed groups are aflatoxin (AF), 
fumonisin (FB), ochratoxin (OTA), T-2 toxin, zearalenone 
(ZEN), deoxynivalenol (DON), nivalenol (NIV), etc. [82]. 
There are different ways to inhibit the growth of fungal 
pathogens and decompose mycotoxins in contaminated food 
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[83–86]. However, given the specificity of the food industry, 
we should constantly seek new approaches to make up for 
the shortcomings of existing technologies.

Conventional Methods for Mycotoxin Degradation

Common methods to prevent fungal contamination from 
food include the application of pesticides, preventing pests 
and diseases, cultivating new varieties with fungal resist-
ance, and low-temperature dry storage, etc., but it is unre-
alistic to ensure that food is completely free from fungal 
contamination [87]. Mycotoxin removal from contaminated 
food is crucial, and a range of physicochemical purification 
techniques are employed in the food industry.

Physical degradation methods of mycotoxins include 
removal of contaminated fractions, ultraviolet (UV), gamma 
rays, pulsed light (PL), and more. UV irradiation has been 
shown to effectively degrade Aflatoxin B1 (AFB1). The 
absorption of UV light at 222, 265, and 362 nm by AFB1 
destroys the structure of the terminal furan ring and even-
tually reduces its toxicity [88]. Ultraviolet light is an eco-
nomical and environmentally friendly fungal inactivation 
technology characterized by low heat generation and no 
toxic waste [89]. UV radiation is limited to the low UV pen-
etration, which can only interact with contaminants on the 
food surface. It also takes a long time to achieve mycotoxin 
reduction, which may lead to the deterioration of food qual-
ity [90]. Pulsed light is the use of gas flash lamps to gener-
ate short and high-intensity flashes in the frequency range 
of ultraviolet, visible, and infrared (200–1100 nm). Pulsed 
light treatment can degrade mycotoxins [91], but its degrada-
tion pathway and degradation products are still unclear [92]. 
Moreover, the limited penetration of pulsed light can only 
remove mycotoxins on the food surface, and can eventually 
overheat the food [93]. Gamma rays can promote water split-
ting to generate a variety of reactive free radicals that can 
destroy mycotoxins [94]. Gamma rays have the advantages 
of high reactivity and strong penetration, but the free radi-
cals can also cause oxidative deterioration of nutrients such 
as lipids and vitamins in food [95].

Two methods for the chemical degradation of mycotoxins 
are ozone degradation and electrolytic oxidized water (EOW) 
degradation. Ozone is a strong oxidant, which can generate 
free radicals and change the functional group structure of 
mycotoxins to produce low-toxic products with fewer dou-
ble bonds [96]. Studies have shown that ozone can degrade 
mycotoxins in LMFs [97]. However, if the ozone concentra-
tion is too low or the treatment time is too short, mycotoxins 
cannot be effectively degraded, and long-term ozone treat-
ment will adversely affect food quality. For example, after 
ozone treatment at 5 ppm for 6 h, the appearance and flavor 
of red peppers were significantly reduced [98]. Electrolyzed 
oxidized water is produced by electrolysis of salt solution, Ta

bl
e 

1  
(c

on
tin

ue
d)

M
ic

ro
or

ga
ni

sm
Fo

od
Pl

as
m

a 
ty

pe
Pr

oc
es

s p
ar

am
et

er
K

ey
 fi

nd
in

gs
R

ef
er

en
ce

N
at

iv
e 

m
ic

ro
bi

al
 fl

or
a

H
er

bs
 a

nd
 sp

ic
es

A
ir 

pl
as

m
a

Po
w

er
: 1

.2
 k

W
Fr

eq
ue

nc
y:

 2
.4

5 
G

H
z

Tr
ea

tm
en

t t
im

e:
 3

0,
 6

0,
 9

0 
m

in

Th
e 

re
m

ot
e 

pl
as

m
a 

tre
at

m
en

t 
re

du
ce

d 
th

e 
na

tiv
e 

m
ic

ro
bi

al
 

flo
ra

 o
f t

he
 p

ep
pe

r s
ee

ds
 a

nd
 

th
e 

pa
pr

ik
a 

po
w

de
r b

y 
m

or
e 

th
an

 3
 lo

g 1
0 a

fte
r 6

0 
m

in
 

tre
at

m
en

t t
im

e.
Th

e 
lo

w
er

 in
ac

tiv
at

io
n 

of
 th

e 
na

tiv
e 

m
ic

ro
bi

al
 fl

or
a 

of
 

or
eg

an
o 

of
 1

.6
 lo

g 1
0, 

w
as

 
re

la
te

d 
to

 th
e 

m
uc

h 
lo

w
er

 
in

iti
al

 m
ic

ro
bi

al
 lo

ad
.

H
er

tw
ig

 e
t a

l. 
[7

4]

Fu
ng

al
 sp

or
es

 n
at

ur
al

ly
 p

re
se

nt
Su

nd
rie

d 
to

m
at

oe
s

su
rfa

ce
 d

ie
le

ct
ric

 b
ar

rie
r d

is
-

ch
ar

ge
 (S

D
B

D
) p

la
sm

a
Po

w
er

: 6
 k

V
Fr

eq
ue

nc
y:

 2
3 

kH
z

Tr
ea

tm
en

t t
im

e:
 5

–3
0 

m
in

Th
e 

co
nt

en
t o

f t
ot

al
 m

es
op

hi
lic

 
ae

ro
bi

c 
ba

ct
er

ia
 a

nd
 fi

la
m

en
to

us
 

fu
ng

i d
ec

re
as

ed
 si

gn
ifi

ca
nt

ly
 

af
te

r p
la

sm
a 

tre
at

m
en

t f
or

 
10

 m
in

 in
 d

rie
d 

to
m

at
oe

s s
to

re
d 

fo
r 0

 a
nd

 2
2 

da
ys

.

M
ol

in
a-

H
er

na
nd

ez
 e

t a
l. 

[7
5]



95Food Engineering Reviews (2023) 15:86–112	

1 3

which can oxidatively denature mycotoxins through OH radi-
cals and active chlorine [99]. Studies have shown that elec-
trolyzed oxidized water has good potential in the degradation 
of deoxynivalenol (DON) and aflatoxin [100].

CP can kill mold and mold spores on food and inhibit 
the formation of mycotoxins, while the active species con-
tained in CP can react with some structures of mycotoxins 
and degrade mycotoxins [24]. Numerous studies have dem-
onstrated the use of CP to reduce mycotoxins on the surface 
of LMFs [101–103], such as aflatoxin in corn [104, 105] and 
ochratoxin A in coffee [106].

Mechanisms of Mycotoxin Degradation by Cold Plasma 
Technology

The degradation pathways and degradation products of 
mycotoxins after plasma treatment have not been extensively 
studied, and the specific mechanisms are still unclear [107]. 
Currently, only AFB1, ZEN, and patulin have been reported 
to explain mycotoxin degradation. The degradation of AFB1 
starts from the C (8)-C (9) bond of the terminal furan ring 
and goes through various degradation pathways to obtain the 
final degradation product [38].

Wang et al. [108] treated AFB1 with low-temperature radio-
frequency plasma and analyzed the quantity and structure of 
degradation products. They observed that five previously 
unreported degradation products were produced. A possible 
degradation pathway was proposed based on the structures 
of these five degradation products. Low-temperature radio-
frequency plasma treatment can induce the addition reaction 
of the C (8)-C (9) bond of AFB1 to form the intermediate m/z 
331(C17H15O7), this compound is also the main degradation 
product of AFB1 after UV and Co60 gamma radiation treat-
ment. Researchers also observed that these five degradation 
products were less toxic than AFB1 due to the loss of the dou-
ble bond on the terminal furan ring.

Shi et al. [104] treated aflatoxin B1 with high-pressure atmos-
pheric cold plasma (HVACP) and used liquid-chromatography  
time-of-flight mass spectrometry to analyze the degradation 
products of AFB1. AFB1 produced six major degradation 
products after HVACP treatment, two of which were ozone 
products of AFB1 and four were new products that had not 
been reported before. Shi et al. [104] also reported that reac-
tive oxygen species are the main species for the degradation of 
AFB1, and the temperature and UV intensity during HVACP 
treatment did not meet the conditions required for AFB1 degra-
dation. Based on the structure of the degradation products, they 
proposed two possible pathways. The first pathway was the 
addition reaction of water molecules, hydrogen molecules, and 
aldehyde groups with AFB1. The second pathway involved an 
epoxidation reaction by HO2

• radicals and oxidation reactions 
through the combined effects of the oxidative species OH•, 
H2O2, and O3. All the six degradation products lost double 

bonds, and the structures of the furan ring, cyclopentenone, 
and methoxy group were changed accordingly. Their toxicity 
was significantly lower than that of AFB1. Wielogorska et al. 
[109] treated six common mycotoxins with CP, degradation 
products were only found in AFB1 and ZEN. They speculated 
that the degradation products of AFB1 were generated by the 
modification of the terminal furan ring and the lactone ring. 
The methoxy group was not changed during the treatment. Xue 
et al. [110] explored the degradation pathways of patulin under 
low-temperature plasma treatment, and they observed that 
the lactone and hemiacetal structures in the patulin molecule 
were disrupted and the toxicity of patulin was significantly 
reduced. Although researchers have put forward many specula-
tions about the pathway of plasma degradation of mycotoxins, 
there is no definite evidence to clarify the specific pathway of 
plasma degradation of mycotoxins. More research should be 
carried out in the future to fill this gap.

Research Progress of Cold Plasma 
Degradation of Mycotoxins

CP processing is a promising mycotoxin decontamination 
method for various types of LMFs (Table 2). Park et al. 
[111] successfully degraded three mycotoxins using CP, 
which opened a new chapter in the application of plasma 
technology. They treated AFB1, DON, and NIV with CP 
generated by a microwave-induced argon plasma system at 
atmospheric pressure. The results showed that these myco-
toxins were completely degraded within 5 s of treatment. 
Since then, many researchers have used CP to degrade myco-
toxins in LMFs.

Aflatoxin

Aflatoxin B1 is a Group 1 carcinogen that induces cancer 
cell formation through an additive reaction with guanine 
[124]. LMFs such as nuts, peanuts, corn, wheat, and rice 
are generally susceptible to aflatoxin contamination. Most 
studies have focused on pistachios and hazelnuts, while 
other types of nuts have been less frequently reported. 
Basaran et al. [71] used low-pressure CP to treat aflatoxin 
on hazelnuts and observed that after 20 min treatment with 
air plasma and sulfur hexafluoride (SF6) plasma, total afla-
toxin (B1, B2, G1, G2) was reduced by 50 and 20%, respec-
tively. A few years later, to explore the optimal degradation 
conditions of aflatoxin in hazelnuts, Siciliano et al. [112] 
optimized the process parameters, i.e. gas composition and 
power, of cold atmospheric pressure plasma. Irrespective of 
the treatment time, the 21% oxygen content was insufficient 
in degrading aflatoxin B1. The higher the processing power, 
the better the degradation of aflatoxin on hazelnuts. Besides, 
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the highest degradation efficiency was obtained when pure 
nitrogen or nitrogen–oxygen mixture (0.1% O2) was used. 
Makari et al. [113] compared the aflatoxin B1 degradation 
on glass slides and pistachios, using dielectric barrier dis-
charge CP and observed that CP treatment for 60, 120, and 
180 s, degraded aflatoxin by 35.41%, 60.97%, and 64.63% 
on the glass slides, and by 32.31%, 44.77%, and 52.42% on 
pistachios, respectively. Because of the complexity of the 
food matrix, the degradation rates of AFB1 on food were 
significantly lower than that on glass slides.

Devi et al. [114] investigated the effects of CP on afla-
toxin production of A. flavus and A. parasiticus inoculated 
on peanuts. They observed that after treatment with 40 W 
for 15 min and 60 W for 12 min, the amount of aflatoxin B1 
was reduced by more than 70% and 90%. Iqdiam et al. [115] 
used an atmospheric pressure plasma jet to treat aflatoxins 
on peanuts in both constant and agitation states. The content 
of AFTs was reduced by 23% after 2 min of constant treat-
ment and by 38% after 5 min of stirring treatment, having no 
significant difference in the degradation rate.

Corn is an important source of feed and is highly suscep-
tible to aflatoxin contamination. Many studies have shown 
the effectiveness of CP technology for degrading aflatoxin 
in corn. Shi et al. [105] evaluated the effects of gas type 
(air and modified atmosphere gas (MA65)) and relative 
humidity on the degradation effect of aflatoxin in corn. 
The results showed that MA65 degraded aflatoxin better 
than air at the same treatment time and relative humid-
ity, which was due to the active substances (ozone and 
NOx) in MA65 at higher concentrations. Researchers also 
observed that humid air (40% and 80%) had a higher rate 
of aflatoxin degradation than dry air (5%), possibly due to 
the higher content of OH radicals produced by humid air. 
In addition, it was also observed that when the treatment 
time was longer than 10 min, the degradation rate increased 
slowly, and the aflatoxin could not be completely degraded. 
Researchers speculated that this may be either due to insuf-
ficient exposure of the corn to the active substances or 
due to the lesser penetration and subsequent interaction 
of ROS with the aflatoxins. Treatment power was equally 
important for aflatoxin degradation. However, they did not 
mention the effect of power on the degradation of AFB1 
on corn in their study. Hojnik et al. [116] treated aflatoxin 
B1 on corn kernels using cold atmospheric pressure plasma 
generated by both low discharge power (0.18 W/cm) and 
high discharge power (0.31 W/cm). The results showed 
that both methods were able to significantly reduce AFB1, 
and the effect was better at high power. After 240 s of cold 
atmospheric pressure plasma treatment, AFB1 was com-
pletely degraded.

The magnitude of the current and the sample-electrode 
distance also affected the degradation of AFB1. Puligundla 
et al. [117] investigated the effect of corona discharge plasma 

on the degradation of aflatoxin in rice and wheat. They 
set different current (1.00, 1.25, and 1.50 A) and sample-
electrode distances (15,25, and 35 mm) groups. The results 
showed that the treatment effect of AFB1 was the best when 
the current was 1.5 A with a sample-electrode distance of 
15 mm.

Ochratoxin (OTA)

Ochratoxin A, originally found in corn, is classified as 
a group 2B carcinogen by the International Agency for 
Research on Cancer and the World Health Organization 
and is cytotoxic and genotoxic, inhibiting protein synthesis, 
interfering with the phenylalanine metabolic system, and 
damaging DNA [125, 126]. Durek et al. [119] observed 
that when barley was treated with CO2 plasma generated 
by diffuse coplanar surface barrier discharge (DCSBD), the 
production of OTA increased from 49 ± 13.8 ng/g (control 
group) to 72.9 ± 45.8 ng/g (3 min). Hoppanova et al. [126] 
observed that OTA production increased significantly in the 
early stages of incubation (4 days) after 60 and 90 s of treat-
ment of OTA with plasma, but was lower than the control 
after seven days of incubation. The final yield of OTA was 
lower in plasma-treated samples compared to untreated sam-
ples. In actual processing, process conditions such as gas 
composition and storage time should be considered. How-
ever, there are also studies showing that plasma treatment 
can reduce the OTA content in food. Patricia Casas-Junco 
et al. [106] used helium plasma to treat ochratoxin A in cof-
fee. They observed that after 30 min plasma treatment, OTA 
was reduced by 50% and toxicity was reduced from “toxic” 
to “slightly toxic.”

Alternaria Toxins

Food and feed are also highly susceptible to contamina-
tion of Alternaria alternate which produces Alternaria 
toxins with different structures such as alternariol (AOH) 
and alternariol monomethyl ether (AME). Hajnal et al. 
[118] used surface dielectric barrier discharge cold atmos-
pheric plasma to treat AOH, AME, and tentoxin (TEN) 
toxins on wheat flour using different treatment times and 
plasma source distances. It was found that CP was able 
to reduce the content of these three mycotoxins. A bet-
ter degradation effect was obtained with a closer distance 
to the plasma source and a longer treatment time. In the 
following year, Wang et al. [127] used dielectric barrier 
discharge CP to degrade solid and liquid AOH and AME 
and reported their 100% degradation after 180 s and 300 s, 
respectively. These two studies indicate that the degrada-
tion of AOH and AME on food substrates may not be as 
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effective as that using pure mycotoxins, which may be due 
to insufficient contact or incomplete entry of the active 
species generated by the CP into the food. The effects of 
processing parameters such as voltage, pH, initial concen-
tration, direct and indirect CP treatment, and catalyst on 
the degradation of AOH and AME were also optimized by 
Wang et al. [127]. The results showed that a higher voltage 
alkaline environment, high substrate concentration, and 
using catalysts such as FeSO4 and H2O2 can promote the 
degradation of AOH and AME.

T‑2 and HT‑2 Toxins

T-2 and HT-2 toxins are natural contaminants present in 
cereals, with the highest levels found in oats and oat-based 
products. Kis et al. [120] treated T-2 toxin and HT-2 toxin 
in oat flour with low-pressure DBD plasma generated by the 
ionization of four gases: oxygen, argon, air, and nitrogen. 
The results showed that the four plasmas had significant 
effects on the degradation of T-2 toxin, with a reduction of 
43.25% after nitrogen treatment for 30 min, and the average 
degradation rate of HT-2 toxin (20.98%) was lower than that 
of T-2 toxin (25.01%). Iqdiam et al. [121] used dielectric 
barrier discharge air atmospheric cold plasma (DBD-ACP) 
to treat T-2 and HT-2 toxins on glass slides and wheat and 
showed that after 10 min of air-ACP treatment, pure T-2 and 
HT-2 toxins were decreased by 63.63% and 51.5%, while T-2 
toxin and HT-2 toxin on wheat kernels were decreased by 
79.8% and 70.4%. The degradation rate of T-2 and HT-2 tox-
ins in wheat was higher, probably due to the limited amount 
of solvent and short vortexing time, which was not sufficient 
to extract all pure toxins.

In addition to the four mycotoxins mentioned above, cold 
plasma has also shown good degradation of other myco-
toxins, such as Citrinin, ZEN, and DON. Vaseghi et al. 
[128] studied the feasibility of degrading Citrinin by cold 
plasma, and the results showed that cold plasma could effec-
tively degrade Citrinin, and the degradation rate was dif-
ferent depending on the source of Citrinin. Feizollahi and 
Roopesh [122] explored substrate properties (canola grain, 
canola meal, and barley grains) on ZEA degradation. They 
observed that the characteristics of the substrate affected 
the degradation effect of CP on ZEN. Feizollahi et al. [123] 
explored the effect of atmospheric cold plasma on DON-
contaminated barley grains. They observed that at different 
treatment times (0–10 min), DON was significantly reduced 
in the first 6 min, and thereafter the reduction rate was not 
significant. Although CP applies to a wide range of low-
moisture foods and is effective in degrading mycotoxins, fur-
ther research is needed on process optimization, the reaction 
between cold plasma and food components, and the safety 
of the process.

Effects of Cold Plasma Treatment on Low‑Moisture 
Food Quality

Microbial inhibition and modification methods commonly 
used for LMFs have certain limitations, including sensory 
changes, ingredient oxidation, and nutrient loss [129]. For 
example, the common household spices such as turmeric 
and red pepper have a loss of 27–53% curcumin and 18–36% 
capsaicin, respectively, after heat treatment [130]. CP has 
attracted interest as an alternative to conventional food 
processing methods in improving the nutritional and func-
tional properties of foods [131]. Studies have investigated 
the efficacy of plasma technology in the modification of 
raw materials to improve the overall product characteristics 
(Table 3, Fig. 5).

Effects on Sensory Quality

The sensory properties of food (color, aroma, taste, etc.) are 
important attributes of food, which will directly affect con-
sumers’ choices. The results of Basaran et al. [71] observed 
that after treating nuts with air and sulfur hexafluoride 
plasma for 20 min, the surface morphology and sensory 
attributes were not significantly different compared to the 
control group. Iqdiam et al. [115] treated peanuts with an 
atmospheric pressure plasma jet and observed that the overall 
appearance, likeability, taste, and texture of peanuts under 
both constant and agitated treatments were not significantly 
different from those in the control group. The peanuts treated 
for constant 2 min had even better quality attributes than the 
control group. Another study by the same group used DBD-
ACP to treat the T-2 and HT-2 toxins in wheat and observed 
that after 5 min and 10 min of wheat treatment, the L*, a*, 
b*, chroma, hue angle, and total color difference were not 
significantly different from the control group [121]. Hojnik 
et al. [116] observed that plasma did not cause surface dam-
age to the corn, while Wielogorska et al. [109] observed that 
after CP treated corn, more than half of the molecular com-
pound composition in maize was affected. In conclusion, the 
effect of CP on the sensory quality of food is negligible.

Effects on Water and Dry Matter Content

Water is an important component of food and is a solvent 
for many substances. Changes in food temperature intro-
duced by CP treatment can affect the moisture content of 
food, thus affecting the shelf life, sensory properties, and 
the content of other components of foods. Selcuk et al. [132] 
investigated the effect of CP treatment on the quality char-
acteristics of grains and legumes and observed no change in 
food quality except for a slight change in moisture content. 
CP treatment can also produce some desirable effects on the 
color of certain foods. Lee et al. [129] evaluated the changes 
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in the quality of brown rice and found that the brightness 
of brown rice increased, and the whiteness index increased 
from 56.9 to 58.3, which may also cause by changes in mois-
ture. The study also pointed out that the amylase activity 
was significantly enhanced when brown rice was plasma 
was treated for 5 min, 10 min, and 20 min, which together 
with the change in water absorption, was considered to be 
the main reason for the change in the hardness of brown 
rice. Wiktor et al. [133] investigated the effect of plasma 
treatment on the physicochemical properties of spices and 
observed that water activity and dry matter changed signifi-
cantly in all spice types, with increments of 2 and 3.5% in 
the dry matter content of juniper berries and black pepper 
seeds, respectively. The change in dry matter content may 
be related to water evaporation due to higher temperatures 
after plasma treatment.

Effects on Lipids

Lipid oxidation, which produces a variety of primary and 
secondary products that negatively affect food quality, is 
one of the main parameters in the analysis of food shelf life. 
Bahrami et al. [134] evaluated the effect of plasma treatment 
on the quality of wheat flour and observed no significant 
differences in the non-polar and glycolipid fractions when 
determining total extractable lipids (non-polar, FFA, gly-
colipids, and phospholipids). But the free fatty acids and 
phospholipid complement in wheat flour were significantly 
affected by CP. Choi et al. [135] used a corona discharge 
plasma jet to treat dried squid shreds and found that the 
oxidation of unsaturated fatty acids in the samples increased 
with increasing treatment time and TBARS values increased 
significantly. Lipid oxidation deteriorates the sensory and 
organoleptic properties of the foods. Lee et al. [136] also 

observed that CP treatment caused adverse oxidation of 
brown and white cooked rice affecting their quality, and the 
2-thiobarbituric acid reactive substance (TBARS) values of 
brown and white cooked rice increased from 0.49 and 0.04 
to 0.59 and 0.25 after 20 min of plasma treatment. The oxi-
dation of lipids by plasma increased with increasing treat-
ment time. The effect of CP on food lipids is not always 
negative either. Foligni et al. [137] evaluated the degree of 
oxidation of pistachio kernels after surface medium blocking 
discharge plasma treatment. They observed that hydroper-
oxides and TBARS in the plasma processed group were not 
significantly different from the control group in either high 
or low ozone concentration environments. The rate of lipid 
oxidation can be delayed by optimizing various plasma pro-
cess parameters such as modified gas mixtures with reduced 
oxygen levels, low input power, reduced treatment tempera-
tures, and shorter processing times [144].

Effects on Proteins

The rising popularity of alternative proteins has propelled 
the exploration of sustainable and environmentally friendly 
methods for protein production. The alternative protein mar-
ket is dominated by plant proteins. CP treatment provides a 
green approach to improving the physical and chemical prop-
erties of plant proteins. The mechanism of the interaction of 
the plasma-generated ROS with proteins is through amino 
acid derivatization. Bombardment of ROS on the protein 
moieties creates active sites and results in an increased addi-
tion of the hydrophilic groups [145]. Moreover, CP treatment 
can modify the primary, secondary, tertiary, and quaternary 
structures of the protein aggregates, thereby resulting in their 
improved functional and nutritional properties [131]. It was 
found that in CP-modified wheat protein, the oxidation of 

Fig. 5   Effect of cold plasma 
treatment on LMFs quality
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amino acids directly affected the functional properties of 
wheat [146]. The total protein level of plasma-treated wheat 
flour did not change significantly. However, the ratio of dif-
ferent protein components and their molecular weight were 
affected, which may further alter the water-binding capacity. 
Misra et al. [138] observed that ACP treatment changed the 
protein secondary structure of wheat flour, which was mainly 
manifested by differences in rheological properties, and an 
improved dough strength by promoting the formation of 
disulfide bonds. The same result was observed by Zare et al. 
[139]. ACP treatment altered the rheological properties of 
quinoa flour, probably due to the polymerization of proteins 
and the formation of disulfide bonds by plasma treatment. 
Bahrami et al. [134] observed that the total protein of wheat 
flour was not affected by the CP treatment, but the protein 
profile shifted to higher molecular weight and the dough 
strength increased. The CP process variables such as input 
voltage, working gas, and treatment time can be optimized 
to improve the solubility, gelation, and foaming properties of 
the plant proteins [145, 147].

Effects on Carbohydrates

Carbohydrates are biological molecules composed of car-
bon, hydrogen, and oxygen atoms. Starch is a very com-
mon type of carbohydrate, which is one of the widely used 
biopolymers in different fields such as the food industry, 
paper industry, textile, and pharmaceutical. The use of cold 
plasma modified starch is an effective alternative to chemi-
cal modification [17]. Several studies have summarized the 
changes in the properties of various types of starch (red 
adzuki bean, potato, rice, and mango seed kernels) after 
plasma treatment [148–151]. Wu et al. [140] investigated 
the effects of CP generated by different powers on the phys-
icochemical properties of corn starch. The results showed 
that plasma of different intensities triggered the depolym-
erization of corn starch, increased the solubility of starch 
and gelatinization degree, and decreased peak viscosity and 
final viscosity significantly. Scanning electron microscope 
images showed that plasma treatment caused slight cracks 
on the surface of starch granules, but the overall morphology 
did not change significantly. Chaple et al. [43] treated wheat 
flour with a dielectric barrier discharge plasma of 80 kV for 
5–20 min and observed an increase in the viscosity, hydra-
tion, and gelatinization properties of wheat flour. The endo-
thermic enthalpy and crystallinity of wheat flour decreased 
due to plasma-induced depolymerization of starch. The L* 
and Whiteness Index values of flour increased with the treat-
ment time, and conversely, the a* and b* values decreased 
with the treatment time. The authors proposed that the func-
tion of food composition can be selectively regulated by 
adjusting the plasma process parameters.

The change of molecular weight by plasma treatment was 
mentioned in the study of Bie et al. [141], the average molec-
ular weight of cornstarch decreased after 10 min dielectric 
barrier discharge (DBD) air plasma treatment (1.934 × 107 
to 0.098 × 107 g/mol). The study also concluded that the 
viscosity of cornstarch decreased gradually with increasing 
treatment time. Changes in its rheological properties tend 
to transition from pseudoplastic (non-Newtonian) fluids to 
Newtonian fluids. Okyere et al. [142] studied the effects 
of carbon dioxide-argon RF CP treatment on the in vitro 
digestion and structural characteristics of granular and 
non-granulated waxy maize, potato, and rice starch, and 
observed that plasma treatment could also change the dam-
aged starch content, making the relative number of short 
chains decrease, resulting in a slight increase in long chains. 
The treated starch is beneficial to slow the release of glucose 
in the blood and affects the in vitro digestibility of starch, 
which certainly improves the quality of starch.

In addition to proteins, lipids, and carbohydrates, plasma 
treatment also affects the content of other nutrients in LMFs. 
Alves Filho et al. [143] studied the effect on the composi-
tion of cashew nuts. The results showed that plasma treat-
ment caused little sensitization, reduced sucrose content, 
increased fatty acid, and glycerol content, and increased 
aromatic acid content. CP has both beneficial and adverse 
effects on food quality, and attention should be paid to the 
selection of parameters during food processing.

Effects of Cold Plasma on Seed Germination

Seed germination is a key link in the plant life cycle and 
is affected by various environmental factors [14], such as 
sunlight, air, moisture, and temperature. In addition, seed 
germination is also affected by internal factors such as seed 
coat hardness, phytohormones, and seed maturity [152]. In 
recent years, the pressure of population growth and climate 
change has led to a rise in the food demand, and it is thus 
of great significance to find new technologies to improve 
seed germination rate, accelerate seedling growth, and sub-
sequently increase the production yield [18]. Researchers 
have explored the feasibility of various physicochemical 
techniques such as scratching, delamination, ultrasound, 
electromagnetic fields, and gamma rays, to improve seed 
germination and seedling growth [153]. Many studies have 
demonstrated the direct or indirect effect of CP in signifi-
cantly improving the germination rate of seeds and the 
growth of seedlings [154–157].

Action Mechanisms of Plasma Promoting Seed Germination

The efficacy of plasma treatment in promoting seed germi-
nation has been discussed in many reports, but the specific 
mechanisms underlying the remain poorly understood and 
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may be related to the physical, chemical, and biochemi-
cal factors derived from plasma treatment [158]. Studies 
have reported an increased association between the seed 
germination rate and the hydrophilicity of the seed surface 
[159, 160]. The bombardment of plasma-generated ions 
and radicals causes etching of the seed coat, thus improv-
ing the hydrophilicity and the water uptake capacity of 
the seed (Fig. 6). Plasma improves the seed surface wet-
tability and enhances the seed germination characteristics 
[161, 162]. The results are in agreement with the finding 
of Bormashenko et al. [163] in 15 s cold air plasma treated 
lentils and beans, where the water contact angles (WCA) 
decreased from 127 ± 2° and 98 ± 2° to 20 ± 1° and 53 ± 1.5°, 
respectively. Changes in the water contact angle may be due 
to chemical changes occurring on the seed coat surface. 
Gomez-Ramierez et al. [164] reported after a dielectric bar-
rier discharge and a radiofrequency plasma treatment, the 
surface oxygen and nitrogen content of quinoa seeds signifi-
cantly increased, while the carbon content decreased signifi-
cantly. The results showed that after plasma treatment the 
outer layer of quinoa seeds was highly oxidized and enriched 
with potassium ions and nitrates which eventually disap-
peared on the surface of the seeds. This was probably due to 
the diffusion of potassium ions and nitrates inside the seeds 
with water vapor, thus eventually promoting seed germi-
nation. Recek et al. [165] reported that after treating com-
mon bean (Phaseolus vulgaris L.) with low-pressure oxygen 
plasma for only 0.5 s, the WCA of the sample decreased 
from the initial 85° to 10°, when treated for 3 s, the WCA 
reduced to unmeasurable. The results of X-ray photoelectron 
spectroscopy showed that the carbon content on the sur-
face of the sample was significantly reduced and the oxygen 

content was significantly increased, while the nitrogen and 
silicon content remained within a reasonable range. Other 
elements such as calcium and magnesium appeared on the 
surface. This indicates that oxygen-containing functional 
groups were introduced on the surface of seeds, resulting in 
the rise of oxygen and the fall of carbon.

Another possible mechanism could be due to the inter-
action and penetration of plasma-generated RONS into the 
seeds, followed by subsequent activation of various bio-
chemical reactions required for seed germination [166]. The 
interaction of plasma with seeds can affect the activities of 
various enzymes, such as dehydrogenase, and superoxide 
dismutase peroxidase, and eventually alter the physiological 
metabolism of seeds [167]. Ji et al. [168] observed that after 
spinach seeds were treated with high voltage pulsed plasma 
for 1 d, the gene expression levels of gibberellic acid and 
amylase increased in the seeds, and they speculated activa-
tion of biochemical reactions in the seeds. Mildaziene et al. 
[169] reported that after the treatment of sunflower seeds 
with radio-frequency CP, the content of gibberellic acid 
in seeds increased, while the content of zeatin decreased. 
The increase of gibberellic acid promotes the synthesis of 
amylase, causes starch hydrolysis, and contributes to seed 
germination. Ussenov et al. [170] investigated the effect of 
SDBD plasma on wheat seed germination parameters and 
α-amylase enzyme activity, and they observed a significant 
increase in α-amylase enzyme activity after 15 s of plasma 
treatment and a significantly higher seed germination rate 
than the group without plasma treatment.

Research Progress of Cold Plasma 
Application on Seed Germination

Seeds is a type of LMFs and it has been proved that CP 
is able to promote the germination of many plant seeds, 
improve seedling survival, and accelerate seedling growth 
[44, 171, 172]. CP is generally considered a safe and inex-
pensive method for seed processing [173].

Seed germination rate is influenced by the nature of chemi-
cally reactive species. Sarinont et al. [174] observed that oxy-
gen and nitrogen active species were closely associated with 
seed germination. Upon using air, O2, NO (10%), and N2 as 
the processing gas, the rate of seed germination was enhanced, 
researchers speculated hydroxyl and oxygen radicals as key 
factors in promoting seed germination. Ji et al. [168] observed 
that the germination rate of spinach seeds treated with air DBD 
plasma was slightly higher compared to N2 plasma treatment, 
and the presence of an appropriate dose of elemental nitrogen 
was important.

An appropriate increase in treatment power can promote 
seed germination, but excessive treatment power is not better. 
[175] treated wheat seeds with cold nitrogen plasma treatment 

Fig. 6   Possible mechanism of cold plasma promoting seed germina-
tion
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of different power and found that 80 W treatment could sig-
nificantly improve seed germination potential (6.0%) and 
germination rate (6.7%), while the 100 W treatment was not 
significantly different compared to the control. Li et al. [176] 
investigated the effect of low vacuum helium plasma treatment 
on oilseeds and found that treatment with a treatment power of 
80 and 100 W significantly improved the germination of rape-
seed. The 100 W treatment showed the highest germination 
rate, germination index, and vigor index, which were 8.71%, 
9.52%, and 21.86% higher than the control group, respectively. 
Li et al. [171] studied the effect of different doses (0–210 W) 
of CP on the germination of centipedegrass seeds and they 
observed that CP treatment at 120 W significantly increased 
the germination rate of seeds, while there was no significant 
difference in the germination rate of CP treatment at 210 W 
compared to that of non-CP treated seeds.

The effect of treatment time on seed germination was 
similar to that of the effect of power. Shashikanthalu et al. 
[172] used dielectric barrier discharge plasma to treat cumin 
seeds. At the same voltage (2 kV), 2 min exposure time 
showed 25.34% of germination and 3 min showed the highest 
germination percentage of 28.67%, but when the treatment 
time was increased to 4 min, the germination percentage 
decreased to 20%. The germination rate of seeds increased 
significantly at all power levels for the appropriate treatment 
duration, but the increasing trend was not consistently main-
tained, and longer treatment durations showed a negative 
effect on the seeds. Mravlje et al. [177] also observed a nega-
tive effect of CP treatment above 60 s on the germination of 
buckwheat seeds. This may be due to the higher density of 
electrons, stronger UV radiation, and more heat generated 
by the prolonged CP processing. Therefore, the duration of 
the plasma treatment can be decreased to increase the seed 
germination rate at high power.

Future Prospects

Although there are a lot of laboratory studies about CP 
application on LMFs, there is a lack of application reports 
in the agricultural field and food processing plants. Apply-
ing plasma technology to the food industry presents many 
challenges. First, enlarging the discharge area for continu-
ous processing without compromising plasma uniformity is 
the main challenge [178]. Devices such as multiple plasma 
sources or microplasma arrays have been shown to perform 
scale-up for large-volume food processing. However, issues 
such as system volume, sample surface interaction, power 
and current supply, and cost-effectiveness have yet to be 
addressed. In addition, precise control of the CP generation 
process is required, which is affected by several variables, 
including processing gas, gas flow rate, current size, and 
process time which alter the outcome of treatment. The most 
likely methods of process control are electrical and optical 

measurements, but studies of electrical and optical signa-
tures of plasma species have been underreported. Another 
consideration during processing is treatment heterogene-
ity, where there may be uneven contact between plasma 
and food, which can lead to different results in the same 
batch of samples. Many studies have reported the use of 
plasma-treated liquids, such as plasma-activated water, in 
contact with food matrices to compensate for these deficien-
cies [179]. However, this method does not apply to LMFs, 
and the introduction of excess moisture may affect the shelf 
life of the products and add additional processing steps. A 
proper vibrating unit for containing LMFs during treatment 
may be an option to solve the heterogeneity issue. In order to 
apply CP in practice, issues such as safety evaluation, regu-
latory policy, and consumer acceptance also need to be con-
sidered. More research on the feasibility of CP is needed in 
the future to pave the way for its application in the industry.

Conclusions

CP can significantly reduce harmful microorganisms on the 
surface of various LMFs such as walnuts, hazelnuts, peppers, 
starch, and spices, by generating active species, ultraviolet 
radiation, and electric fields. This helps to extend the shelf 
life of foods while having minimal impact on food quality. 
At the same time, many studies have shown that CP technol-
ogy can change the functional properties of food. By adjust-
ing the parameters of the cold plasma generation process, 
it is possible to obtain target products that meet people’s 
expectations. CP technology is also an effective approach to 
detoxify mycotoxin-contaminated LMFs by degrading vari-
ous mycotoxins such as AF, ZEN, OTA, T-2, and HT-2. In 
addition, the application of CP in seed germination is prom-
ising and could be of great significance to the global food 
crisis. Even though CP technology has numerous advan-
tages, it is still in the early stages of commercialization, and 
there are still many problems that have not yet been solved. 
For instance, due to the diversity of species contained in CP 
and the complexity of food matrices, the mechanisms by 
which CP inactivates microorganisms, degrades mycotoxins, 
and promotes seed germination are still unclear and future 
studies are still in need for a comprehensive understanding. 
The transition of plasma technology from the laboratory to 
the food industry also has problems such as unstable work 
efficiency, lack of process compatible technology design, 
and imperfect process control technology, and the scientific 
community is connecting plasma technology with other dis-
ciplines to solve these issues.
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