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Abstract
Food quality and safety are the essential hot issues of social concern. In recent years, there has been a growing demand for 
real-time food information, and non-destructive testing is gradually replacing traditional manual sensory testing and chemi-
cal analysis methods with lagging and destructive effects and has strong potential for application in the food supply chain. 
With the maturity and development of computer science and spectroscopic techniques, machine learning and hyperspectral 
imaging (HSI) have been widely demonstrated as efficient detection techniques that can be applied to rapidly evaluate sensory 
characteristics and quality attributes of food products nondestructively and efficiently. This paper first briefly described the 
basic concepts of hyperspectral imaging and machine learning, including the imaging process of HSI, the type of algorithms 
contained in machine learning, and the data processing flow. Secondly, this paper provided an objective and comprehensive 
overview of the current applications of machine learning and HSI in the food supply chain for sorting, packaging, transpor-
tation, storage, and sales, based on the state-of-art literature from 2017 to 2022. Finally, the potential of the technology is 
further discussed to provide optimized ideas for practical application.
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Introduction

The food supply chain is an essential link in the modern 
food industry, defined as a series of stages from production  
to food consumption (Fig. 1). It consists of economic stake-
holders in multiple stages, including production, packag-
ing, transportation, storage, and consumption [1]. According  
to the statistical yearbook of the United Nations Food  
and Agriculture Organization (FAO) 2021, the total food 
production of world food, which is dominated by maize, 
rice, and fresh fruit, is currently more than 1,162, 756, and 
38 million tons, respectively. The large volume and variety 
of food products make detecting and controlling large-scale 
food quality and safety at all stages of the supply chain a 
significant challenge. Therefore, rapid, non-destructive, 
and efficient testing of food products is one of the critical 

research issues in the food industry. In the production seg-
ment of the supply chain, the type of produce and the envi-
ronment in which it is grown directly affect its overall quality 
due to natural and human factors [2–4]. Depending on con-
sumer preferences and food quality, similar products from 
different origins can vary significantly in price. Adulterat-
ing food products by unscrupulous traders for profit has led 
to food fraud which has become one of the threats in the 
domestic and global market. Therefore, food products at 
the supply chain source should be authenticated, and trace-
ability tested to ensure food quality and safety. Apart from 
the production chain, food products throughout the supply 
chain are continuously subjected to external factors such as 
temperature, humidity, and microorganisms, and their qual-
ity is deteriorating. In particular, fresh fruits and vegetables, 
meat and seafood, because they contain high moisture, short 
shelf life, are easy to bump, prone to make microorganisms 
and bacteria reproduction, in the storage and transportation 
process of food surface may appear abnormal lesions and 
pests, the internal will also produce the corresponding toxic 
substances, causing harm to the human body [5]. In conclu-
sion, the food industry needs not only cooling [6, 7], dry-
ing [8–10] and sterilization [11] technologies to improve 
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the storage and transportation conditions of food products, 
but also adequate quality and safety testing technologies to 
monitor and evaluate the indicators in real-time before the 
supply chain reaches the consumer, so that the staff of each 
link can make timely adjustments to ensure food safety and 
reduce economic losses.

Traditional food quality and safety testing methods 
include high-performance liquid chromatography, gas 
chromatographic method, polymerase chain reaction, etc., 
which can be used to extract information related to the com-
position, structure, physical and chemical properties, and 
sensory characteristics of food products by adapting to the 
requirements under laboratory conditions [12]. However, 
most conventional detection techniques are subjective, 
destructive, non-real-time, labor-intensive, not suitable for 
online food analysis, and also make food information in the 
supply chain with some delay. Therefore, developing fast, 
non-destructive, and efficient detection techniques for the 
food supply chain is essential.

Machine learning based on the red, green, and blue 
(RGB) color model was one of the first techniques used 
for non-destructive testing (NDT) of food products, allow-
ing rapid detection of ripeness and mechanical damage by 
extracting sensory features such as color, texture, and mor-
phology of RGB images of food products [13]. However, this 
technique cannot detect the internal compositional changes 
of food products. It cannot confirm the scientific validity 
of non-destructive testing techniques from the perspective 
of chemical composition. With the rapid development of 
computer technology and instrumentation engineering, this 
research gap is complemented by the emerging spectroscopic 
techniques, which can provide information on the interaction 
of electromagnetic radiation with atoms and molecules to 
rapidly and nondestructively determine a wide range of qual-
ity parameters in food products [14], such as near-infrared 
spectroscopy (NIRS), hyperspectral imaging (HSI), Raman 
imaging, fluorescence imaging, laser light backscattering, 
and magnetic resonance imaging, etc. Among the techniques 
above, HSI techniques, as a novel alternative to traditional 
NDT techniques, can acquire spectral and spatial informa-
tion about the inspected objects in specific spectral regions 
[15, 16]. Compared with the machine learning model based 

on RGB images, the combination of the HSI technique and 
machine learning can obtain more diversified food features, 
which can be used to quantitatively and qualitatively analyze 
the physical and chemical properties of food by identifying 
the spectral features of target molecules and the spatial fea-
tures based on sensory qualities and can obtain better detec-
tion results. Therefore, machine learning and HSI techniques 
show strong potential for quality and safety testing in food 
engineering and are now widely used for physical properties, 
chemical composition, microbial content, authenticity, and 
traceability testing of food products [17–21].

Due to technological constraints, a modern information 
technology platform for the food supply chain is not yet in 
place, making it difficult for relevant inspection authorities 
to access reliable food information in real-time. Thanks to 
the efforts of many researchers, machine learning and HSI 
technologies are working to fill this gap. The technology 
has strong potential for application in sorting, packaging, 
transportation, storage, and sales of the food supply chain. 
However, no relevant literature reviews the application of 
machine learning and HSI technology in various segments 
from the perspective of the food supply chain, which may be 
the key to optimizing the food sorting, packaging, transpor-
tation and storage, and sales segments. Therefore, this paper 
aims to (1) Briefly describe the imaging process of HSI tech-
nology and the data processing process of machine learning. 
(2) Focus on the research progress of machine learning and 
HSI technology in the food supply chain from 2017–2022. 
(3) Discuss the application advantages, research gaps, and 
future development trends of this technology in the food 
supply chain.

Hyperspectral Imaging

HSI technology is a technique that can acquire spectral and 
spatial information from the measured sample. The technique 
probes various properties in a substance based on the interac-
tion in the incident light and the measured substance. It can 
acquire the spectral and spatial characteristics of the detected 
object at 300–2600 nm, which was initially equipped on sat-
ellites and airborne platforms as remote sensing applications 

Fig. 1   Basic segments in the food supply chain
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[22]. In recent years, with the improvement and maturation 
of spectroscopic techniques, HSI technology has made excel-
lent research progress in the fields of agriculture [23], water 
resources protection [24], medical diagnosis [25] and food 
quality control [26]. Currently, the spectral range accessi-
ble by HSI devices in the market is usually in the visible 
and near-infrared (VNIR) (400–1000 nm) and near-infrared 
(NIR) (900–1700 nm) bands. The VNIR presents the con-
tent of compounds such as chlorophylls and anthocyanins, 
mainly used for non-destructive detection of sensory char-
acteristics such as color, shape, hardness, and mechanical 
damage [27]. While the NIR band mainly reflects the over-
tones generated by chemical bonds such as O–H, C-H, N–H, 
and combined molecular vibrations, the content of organic 
compounds such as water, fat, and amino acids are presented 
in this range. Most organic compounds can be quantitatively 
and qualitatively analyzed in this band by suitable methods, 
so it is commonly used to identify food types, authenticity, 
and traceability [28, 29].

The imaging process of hyperspectral images is shown 
in Fig. 2 (in the case of kiwi fruit), which is presented as 
a whole as a hypercube containing two-dimensional spa-
tial information and one-dimensional spectral information 

(Fig. 2(b)). In the spectral dimension of the hypercube, 
each dimension is a two-dimensional grayscale image of 
a single wavelength. The spatial information of the hyper-
spectral image is reflected as the pixel intensity of the two-
dimensional grayscale image at a specific wavelength, and 
the spectral information is reflected as the intensity of each 
pixel point in the image at different wavelengths. Due to 
the differences in internal chemical composition or surface 
physical properties in food, the spectral information will 
show different trends, which lays a theoretical foundation 
for nondestructive testing of food.

Since hyperspectral images are susceptible to noise 
brought by the external environment and operators during 
the imaging process, noise not only interferes with the dis-
tribution of spectral features but also blurs or distorts the 
spatial information of the images, techniques such as median 
filtering, Savitzkye—Golay filter, and radiometric correction 
is usually used in research to reduce image noise and une-
venness due to the morphology of food samples and during 
the imaging process spectral shifts caused by illumination 
[30]. In addition, background removal by thresholding or 
region of interest (ROI) selection is usually used in the study 
to remove the irrelevant target regions. Researchers usually 

Fig. 2   a Hyperspectral imaging 
system. b The acquired hyper-
spectral image (with kiwi fruit 
as an example), each waveband 
presents a two-dimensional 
grayscale image, and the green 
part of the figure is the region of 
interest. c The average spectral 
curve of the region of interest
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use Unscrambler, ENVI, etc., to extract pixel points in ROI 
or average spectra of hyperspectral images as pixel-level or 
object-level data for analysis and processing.

Machine Learning and Data Processing 
Processes

Machine learning is an essential branch of artificial intel-
ligence dedicated to exploring computers to simulate or 
implement human learning behaviors, reorganize existing 
knowledge structures and continuously improve their perfor-
mance, and use the performance to predict or classify other 
unknown data. Therefore, machine learning training mod-
els usually have samples randomly divided into three parts: 
training set, validation set, and test set. Among them, the 
training set is used to establish the model, the validation set 
is used to adjust the parameters that control the complexity 
of the model and monitor whether the model appears to be 
overfitted, and the test set verifies the generalization ability 
of the optimal model. Machine learning contains subsets of 
traditional machine learning, chemometrics, artificial neural 
network (ANN), and deep learning [31], and the interrela-
tionships among the subsets are shown in Fig. 3.

Traditional machine learning techniques can be catego-
rized into algorithms based on the learning method, repre-
sented by clustering as unsupervised learning, supervised 
learning with classification and regression as the task, and 
reinforcement learning with environmental feedback as 
the model input. The main traditional machine learning 

algorithms used in food research such as partial least squares 
regression (PLSR), multiple linear regression (MLR), 
K-nearest neighbor (KNN), partial least square discriminant 
analysis (PLS-DA), random forest (RF), soft independence 
modeling of class analogy (SIMCA), and support vector 
machine (SVM), etc. Traditional machine learning algo-
rithms are highly explanatory, have short modeling times, 
can be adapted to data sets of various sizes, and can exhibit 
good model performance, especially in small sample data 
sets. However, such algorithms follow standard procedures 
to solve problems, usually requiring splitting the problem 
into multiple parts. Therefore, this class of algorithms adds 
feature selection and extraction algorithms from chemo-
metrics to the data processing step and selects or extracts 
features before feeding them into a machine learning model 
for training.

Chemometrics is the discipline that explores the connec-
tion between the measured values of chemical systems and 
the state of the system through statistical or mathematical 
methods, mainly using mathematics, statistics, and com-
puter science to select the optimal experimental design and 
measurement methods to maximize the extraction of state 
features that contain helpful information. Chemometrics 
can therefore also be classified as a subset of machine 
learning. Due to the continuity between the spectral data 
of hyperspectral images, too much redundant data can sig-
nificantly degrade the model's performance, i.e., the "curse 
of dimensionality" phenomenon [32]. Therefore, feature 
selection and extraction techniques are commonly used to 
reduce the dimensionality of the data. Among them, the 
core of feature selection is to create a subset of wavelengths 
in the spectral data based on a specific objective function, 
which reduces the data's dimensionality while preserving 
the original wavelengths' spectral characteristics. The com-
monly used algorithms are competitive adaptive reweight-
ing sampling (CARS), iteration retaining information vari-
ables (IRIV), variable iterative space shrinkage approach 
(VISSA), PLS regression coefficients (RCs), and succes-
sive projections algorithm (SPA), etc. The feature extrac-
tion algorithm is a mathematical transformation method 
for information synthesis and enhancement in a spectral 
space or subspace, which mainly maps the main features 
of the original data to a low-dimensional space and com-
bines the features with a specific mathematical model. The 
commonly used feature selection algorithms in research 
are principal component analysis (PCA), multidimensional 
scaling (MDS), isometric mapping (ISOMAP), locally lin-
ear embedding (LLE), and t-distributed stochastic neighbor 
embedding (t-SNE), etc.

ANN and deep learning are at the forefront of machine 
learning technologies. They have achieved many achieve-
ments in areas such as image processing, speech recognition, 

Machine learning

Traditional

Machine Learning
Chemometrics

ANN

Deep Learning

Fig. 3   Types of algorithms included in machine learning and the rela-
tionship between them
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and biometric recognition. Traditional artificial neural  
networks, also known as perceptrons [33], can only be 
used to solve linear classification problems. Therefore,  
Rumelhart et al. [34] proposed a backpropagation algo-
rithm for training data to adjust the weights between neu-
rons by optimizing the iteration error rate, which improved 
the generalization ability of neural networks and laid the 
foundation for the development of deep learning. Deep 
learning is a form of machine learning that uses ANN as 
the underlying architecture with multiple hidden layers. 
At present, the well-developed network structures include 
deep neural networks (DNN), convolutional neural net-
works (CNN), and recurrent neural networks (RNN). As a 
multilayer nonlinear neural network model, deep learning 
has powerful feature learning (automatic feature extrac-
tion), classification, and regression capabilities, so this 
class of algorithms solves problems in a centralized man-
ner without problem splitting and has advantages over tra-
ditional machine learning algorithms and chemometric-
based feature selection and feature extraction algorithms  
in large sample data sets.

All of the above techniques are used to construct pre-
diction or classification models in the food supply chain, 
and the primary data processing flow is shown in Fig. 4. 
The performance of the regression model is evaluated by 
determination coefficient, root mean square error (RMSE), 
standard error of prediction (SEP), bias factor, and residual 
predictive deviation (RPD). Furthermore, the performance 

of the classification model is evaluated by correct classifica-
tion rate (CCR), precision, recall, and specificity. The evalu-
ation criteria of the models are shown in Table 1.

Fig. 4   Basic processing flow of food hyperspectral data

Table 1   Evaluation criteria for regression and classification models

n number of samples, yobs  observed value, ypred predicted value, yobs,mean  
the average observed value of the sample, STD the standard deviation 
(SD) of prediction sets, tp, tn positive and negative samples classified 
correctly, fp  negative samples classified as positive, fn  positive samples 
classified as negative
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Classification
Correct classification rate—CCR​ tp + tn
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Specificity tn
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Applications of Machine Learning and HSI 
in the Food Supply Chain

This paper provides an objective and comprehensive review 
of research advances in machine learning and HSI technolo-
gies in the food supply chain in sorting, packaging, transpor-
tation, storage, and sales.

Food Sorting

Food sorting is a necessary unit operation that directly 
affects the effectiveness of subsequent packaging, trans-
portation, storage, and sales and is necessary to standardize 
the supply chain at the source and meet market surveillance 
needs. During the harvest season, rapidly picking crops 
by hand or using large agricultural machinery can lead to 
variable food quality, especially for fruits and vegetables, 
which have high moisture content, are easily bumped and 
perishable, and pose challenges for transportation and stor-
age. Therefore, food sorting is the first step in food quality 
and safety testing. The application of machine learning and 
HSI technology in food sorting is shown in Table 2, which 
is mainly divided into three tasks based on sensory feature 
classification, quantitative and qualitative analysis of the 
chemical composition, and identification of food adultera-
tion. In addition, when training machine learning models, 
the data types commonly used in research include extract-
ing the food samples' average spectral curve of the ROI as 
object-level data or extracting each pixel of the ROI as pixel-
level data, both of which are shown in the "Sample type" 
column of the Tables 2, 3, 4 and 5 in subsequent sections.

Classification Based on Sensory Characteristics

Sensory characteristics are the most intuitive test indicators 
to describe and judge the quality of food, reflecting the regu-
latory authority's regulations on the characteristic quality 
and edibility of the food and comprehensive response to the 
pursuit of food safety. HSI technology in the sensory classi-
fication of food detection targets is generally color, hardness, 
flavor, and degree of spoilage to measure the maturity of 
food traits and mechanical damage from the outside, inter-
nal bruising, and colony contamination. The linear mapping 
model PLSR in machine learning is commonly used in stud-
ies to distinguish the ripeness of banana, cherry, and peach 
fruits and predict the spatial distribution of ripeness traits 
measured [38–36]. The reduction of redundantinformation 
based on the chemometric wavelength selection algorithm is 
furtherinvestigated in the above study to remove redundant 
information betweenadjacent wavelengths and simplify the 
model with the potential for onlineapplication. Moreover, 

PLS-DA and SVM can also beused in the current study 
to establish spectra with the classification ofripeness of 
easy-to-ripen fruits such as banana, strawberry, and durian, 
andthe classification accuracy of the models established 
based on full-spectrumdata is over 95% [37–46].In addition, 
in the harvesting process of easy-to-bump fruit-based food, 
as thefruit is affected by external factors such as impact, 
extrusion, or abrasion,its surface will be bruised. As the fruit 
matures, the internal bruised tissuewill rapidly oxidize and 
rot, resulting in food loss and waste. In the study,traditional 
machine learning algorithms such as PLSR and SVM com-
bined withwavelength selection algorithms were used to 
detect and visualize themechanical damage of blueberries 
[84], apples [85], and Lingwu long dates [86], respectively, 
all of whichachieved good accuracy. To further study the 
extent of fruit bruising, [42] proposed a deep learning-based 
fully convolutional network (FCN) framework to extract 
bruised tissues inside blueberries, segmenting bruised tis-
sues, healthy tissues, and calyx ends to improve the system 
monitoring accuracy, with an accuracy of 81.2%, which is  
better than SVM overall and can be used to study  
the mechanical damage resistance of fruits and provide guid-
ance for fruit packaging and transportation.

Quantitative and Aualitative Analysis of Chemical 
Composition

The chemical composition of food products meets human 
needs primarily, and the chemical content directly affects 
human health. Therefore, the content of chemical compo-
nents is regarded as an essential indicator for assessing the 
quality and safety of food products [87]. In research, food 
ingredients are usually classified into endogenous and exog-
enous substance components, with endogenous referring to 
the intrinsic ingredients of food and exogenous referring to 
the ingredients ingested during the whole food process from 
processing to ingestion. Traditional techniques for chemi-
cal composition analysis may yield different assessment 
results and conclude with subjectivity and uncertainty due 
to differences in detection tools and operator skills. There-
fore, researchers have introduced machine learning and HSI 
techniques for the quantitative and qualitative analysis of 
chemical food components, which have been widely used 
to determine endogenous components such as soluble sol-
ids content (SSC), chlorophyll, total acidity, and fatty acid 
[56–47, 54]. MLR and PLSR are commonly used in studies 
to establish the relationship between the content and spectra 
of the above compounds. These linear models can predict 
elements with relatively high content in foods, and although 
good prediction accuracy has been achieved, the spatial fea-
tures are still not exploited. In addition, the small sample 
size involved in the study failed to examine the effects of 
external factors such as type and region on the food products' 
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attributes. To fully utilize the hyperspectral image features, 
Yu et al. [51], Shen et al. [52], and Yang et al. [53] used 
stacked autoencoder (SAE) to extract deep features in pears, 
plums, and peaches, respectively. SAE is an unsupervised 
feature extraction technique with deep learning and data 
dimensionality reduction capabilities. The study used this 
technique to extract fused spectral and spatial features, sig-
nificantly improving the model feature representation capa-
bility. However, due to the multiple back-propagation in the 
SAE learning process, the training time is too long compared 
to traditional machine learning algorithms. The correla-
tion between the model output and the deep hyperspectral 
features is ignored. Therefore, Tian et al. [48] proposed a 
stacked weighted auto-encoders (SWAE) algorithm for pre-
dicting SSC in apples, extracting the connection between 
model output prediction and deep spectral features. The 
experimental results show that SWAE improves the overall 
prediction performance of the model compared with SAE, 
and the decision coefficient of the model reaches 0.9436, 
which promotes deep learning as a new development trend 
in food NDT. In addition, to further reduce the training 
time of the model, Su et al. [55] attempted to build a one-
dimensional convolutional neural network (1D-CNN) and 
three-dimensional convolutional neural network (3D-CNN) 
frameworks to process multidimensional information in 
images. The results showed that 1D-CNN could distinguish 
strawberry maturity and predict its SSC content in a small 
number of sample data sets. With the increase of samples, 
deep learning can fully exploit its potential in extensive data 
analysis.

Exogenous food ingredients mainly include food addi-
tives and contaminants, which account for a small percent-
age of the total amount of food but can directly affect food 
safety. Exogenous food ingredients studied by HSI technol-
ogy mainly include pesticide residues, heavy metals, and 
microplastic contamination. Pesticides are like double-edged 
swords. They can prevent pests and diseases in agricultural 
products. However, pesticide residues in agricultural prod-
ucts can pose a significant safety risk to human health if mis-
used. Feature selection algorithms such as CARS, SPA, step-
wise regression, and RCs were used in the study to select the 
wavelengths of food samples. Finally, traditional machine 
learning models such as PLSR, MLR, PLS-DA, and SVM 
were built to predict the concentration of pesticide residues 
based on the selected wavelengths and visualize the pesticide 
residue distribution [57, 58]. However, all the above studies 
detected a single pesticide. Considering the prevalence of 
using multiple pesticides in agriculture, He et al. [59] pro-
posed a deep learning model based on 1D-CNN to identify 
pesticide residues on leek leaves and predicted mixed pes-
ticide residue samples based on this model with reasonable 
accuracy. The impact of heavy metals on food should not be 
underestimated either, and heavy metal pollution in the soil Ta
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is becoming increasingly severe due to the exploitation of 
mineral resources. Crops will absorb heavy metals due to 
atmospheric deposition and rainfall. Excess heavy metals 
will affect crops' physiological and biochemical activities, 
inhibit plant growth, and finally be absorbed by the human 
body and accumulate in the blood to damage the nervous and 
digestive systems. The current research directions in heavy 
metal pollution are divided into predicting the concentration 
of heavy metals in crops and classifying different classes 
of heavy metals for detection. The model developed in the 
above study has achieved good accuracy [88, 60]. However, 
all the above studies established traditional machine learning 
models based on the spectral features of crops. To further 
explore the degree of heavy metal contamination in soil, 
Wang et al. [61] proposed an algorithm combining data aug-
mentation (DA) and a deep learning network to classify the 
degree of chromium contamination in soil. The accuracy 
of DA-DNN reached 96.25%, proving that HSI technology 
combined with deep learning can realize large-scale detec-
tion of soil heavy metal pollution. In addition, microplastics 
are also a new type of pollutant based on modern industrial 
development, referring to plastic fragments and particles less 
than 5 mm in diameter in general. In recent years, differ-
ent microplastic particles have entered the soil environment 
through wastewater irrigation, plastic waste disposal, and 
atmospheric deposition, causing severe terrestrial environ-
mental pollution. Therefore, Ai et al. [62] employed CNN 
to classify various microplastic polymers and their mixtures 
in soil. The experimental results proved that deep learning 
has significant advantages in the classification accuracy of 
microplastics.

Identification of Food Adulteration

Food adulteration refers to intentionally adding non-inherent 
ingredients to food to reduce costs and increase sales prof-
its. In recent years, the ordinary means of food adulteration 
include adulteration, substitution, and forgery, and there is 
no clear distinction between the boundaries. Among them, 
adulteration refers to the illegal adulteration of food with 
substances similar to food in physical form; substitution 
refers to the adulteration of food with non-identical or infe-
rior products of the same kind; forgery refers to the imita-
tion of food with other substances and selling them in the 
market. Adulteration is mainly found in costly commodities 
such as spices, powdered products, and nutritional products, 
which disrupt the food market. The adulterated substances 
in them are likely to cause severe food safety problems. 
Food products adulterated with different concentrations of 
impurities are usually classified in studies, and then regres-
sion models are used to predict the concentration of adul-
teration in food products, such as almond flour [66], tapioca 
flour [68], whole wheat flour [64], cumin powder [70], and 

minced pork [67] for contamination analysis, and traditional 
classifiers can all achieve good classification results. How-
ever, as the concentration of food adulteration increases, the 
penetration ability of spectral imaging is limited, and the 
accuracy of algorithm identification decreases. Therefore, 
ANN with nonlinear mapping was also used in the study for 
classification, such as adulteration classification of choco-
late powder [90], nutmeg [65], red chili powder [69], colla 
corii asini [63], marine fishmeal [71], and cereal [72]. The 
results demonstrate the superiority of the nonlinear map-
ping model. Although there is no significant improvement 
in accuracy compared to traditional classifiers, the model's 
specificity is significantly enhanced, and the training and 
prediction speed is significantly better than that of traditional 
classifiers. The substitution phenomenon is mainly found in 
agricultural products such as meat, tea, and cereals that have 
essential effects on the overall attributes due to factors such 
as variety, grade, and origin, and their prices and popularity 
can vary greatly depending on the characteristics and con-
sumer preferences of the food products [2, 4]. Traditional 
classifiers such as SVM and PLS-DA primarily identify the 
varieties, origins, and grades of agricultural products such 
as tea [74, 73, 76], coffee beans [78], cocoa beans [79], and 
chia seed [83] for adulteration and the accuracy of the mod-
els are above 90%. However, the sample size for establish-
ing the traditional classification model is relatively small. 
Although it is used extensively, the model's generalization 
ability is relatively weak and not stable enough. Therefore, 
deep learning algorithms are introduced in the study for 
adulteration detection of agricultural products. Most pixel-
level data are used in the study of different varieties and 
grades of, for example, tea [77, 75], grains [81, 80], and 
meat [82]. The study results demonstrate that the deep learn-
ing algorithm performs stably compared with the traditional 
model and alleviates the more serious overfitting problem in 
the traditional model. In addition, there is no research related 
to machine learning and HSI technologies for food forgery, 
so it can be one of the future research directions.

In summary, the linear mapping models PLSR and MLR 
are mainly used to differentiate the ripeness of fruits, predict 
the chemical content and visualize their spatial distribution. 
The number of food samples involved in the studies above 
is usually between 100 and 300, with the common problem 
that the training data set is too small, and most of the stud-
ies focus on finding the association between a single factor 
of the food and its spectrum. Nonlinear models such as DT, 
RF, and SVM are usually used for studies when lower lev-
els of chemicals in food products are detected or when no 
clear linear relationship between the measured parameters 
and the spectra appears. Nonlinear models apply to data sets 
of various sizes and are commonly applied in food chemi-
cal content prediction and adulteration identification. In the 
above studies, the original models are usually simplified 
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using wavelength selection and feature extraction algorithms 
to shorten the training time and make the simplified mod-
els have the potential for online applications. Deep learn-
ing models are more suitable for a large order of magnitude 
samples. The models are usually trained using pixel-level 
data in studies involving samples usually above 1000, which 
can be applied to all classification or prediction tasks in food 
sorting. Deep learning models mostly use transfer learning 
to expand the training samples, so the network looks for the 
connection between multiple factors and food spectral fea-
tures. Also, an attempt can be made to build sorting produc-
tion lines to evaluate the potential of deep learning models 
in practical applications.

Food Package

Food packages play an essential part in controlling prod-
uct quality, especially pickled, fermented, fried, and air-
dried foods usually require high-quality sealed packaging 
to meet the need to extend the shelf life of food. Packag-
ing seal integrity and cleanliness are critical to food safety. 
Suppose sealed food in processing, storage, transportation, 
or shelf during the breakage or air leakage, or sealed pack-
aging contains impurities. In that case, it will lead to food 
contamination, moisture, and deterioration, shortening the 
shelf life and directly affecting the food quality in the bag. It 
has been demonstrated that package seal integrity and food 
contamination during processing and packaging are the lead-
ing causes of food waste in the supply chain, with one-third 
of the food in the production line being discarded or wasted 
due to package contamination. Traditional testing methods 
cannot identify sealing problems due to material transpar-
ency and chemical composition. Therefore, HSI technology 
has also been introduced to detect food packaging materials 
with similar absorption spectral properties for control detec-
tion, as shown in Table 3. The packaging segment usually 

involves large data sample sets and production line design, 
so deep learning algorithms are usually used in research 
for food quality detection. Initially, researchers proposed a 
principal component analysis network (PCANet) to detect 
food tray sealing faults, using the network to learn the spec-
tral and spatial characteristics of 11 harmful impurities in 
packaging trays and classify them [91]. PCANet is mainly 
used for spatial and spectral data fusion and output feature 
vectors, KNN and SVM as output classifiers with the accu-
racy of 89% and 90%, respectively, and there is space for 
improvement in both accuracy and detection speed. Benouis 
et al. [92] proposed a deep learning-based fault detection 
method for food tray sealing to improve the model's gener-
alization ability. To reduce the amount of data for training 
the network, two pixel-level fusion algorithms, spatial and 
transform image fusion, were used in the study to process 
the data. The fused data were fed into deep belief networks 
(DBN), extreme learning machine (ELM), SAE, and CNN 
for training, and CNN achieved the best classification per-
formance among all fusion rules. Medina et al. [93] further 
proposed using CNN as a classifier for heat-sealed food 
packages. In their study, they established a system that can 
perform the work of sealing contamination of food trays in 
the production line. The contaminated trays were automati-
cally discarded from the production line. The study results 
show that most harmful impurities can be detected correctly 
(error less than 8%), except for polarized plastics and hair, 
which cannot be captured due to reflective properties and 
imaging equipment limitations. In addition, in addition to 
sealing tray contamination, another critical aspect of the 
packaging operation is quality control, where machine learn-
ing algorithms can automatically detect anomalies and reject 
non-compliant products on the production line. Banus et al. 
[94] proposed a computer vision system based on the CNN 
algorithm to automate package sealing and tight sealing 
inspection to satisfy the production needs. In the study, pizza 

Table 3   Application of machine learning and HSI in food package

Application Aim Food Sample type Number of 
samples
(Training set / 
Validation set / 
Test set)

Spectral range
(nm)

Feature  
extraction/ 
selection

Machine  
learning model

Reference

Package seal 
integrity

Detecting 
food tray 
sealing 
faults

- Pixel - 891.12–1728.45 PCANet SVM KNN [91]
- Pixel 2112 (1775/337/-) 891.1–1728.4 PCA DWT 

SIDWT
DBN ELM SAE 

CNN
[92]

- Pixel 2248 
(1348/338/562)

1000–1600 - CNN [93]

Package 
sealing 
inspection

Pizza Pixel 4558 
(3647/455/456)

850 ANN-SA CNN [94]
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packages were experimented with for closure and sealing 
to ensure food storage conditions. A production chain was 
established to automatically classify packages for acceptance 
or rejection, with a model accuracy of 99.87% and a con-
veyor speed faster than manual twice as fast, demonstrating 
the superiority of machine learning and HSI technologies 
in food packages.

Food Transportation and Storage

Compared to other transportation industries, food transpor-
tation is characterized by the need for a high degree of clean-
liness and hygiene, strict delivery times, and a stable storage 
environment. Conventional food transportation techniques 
lead to the waste of about 20% of the gross food product due 
to spoiled food discarded in China. Especially fresh food 
such as fruits, vegetables, and seafood, most of which cannot 
be kept fresh for a long time and spoil during transportation. 
Therefore, continuous logistics and specific storage condi-
tions must be established during transportation to ensure 
food safety. The most commonly used food storage technolo-
gies are low-temperature refrigeration, dry dehydration, etc. 
The applications of machine learning and HSI technology in 
food transportation and storage are shown in Table 4.

Low Temperature Refrigeration

Low-temperature refrigeration can inhibit the reproduction 
of microorganisms in food, and the slower the microorgan-
isms reproduce, the slower the flavor, color, and nutrient 
content of the food will change. Generally speaking, the 
lower the refrigeration temperature, the longer the shelf life 
of the food, and the freshness will also be reduced. Freshness 
is one of the most critical evaluation criteria for food quality 
and safety. Standard testing tasks include storage time, total 
viable count (TVC), total volatile basic nitrogen (TVB-N), 
etc.

Storage time is the most direct measure of food freshness. 
Since fruit and vegetable foods have high water content and 
rich nutrients and are highly susceptible to fungi, these foods 
are usually placed on ambient shelves or low-temperature 
freezers, where decay is relatively slow under low-temperature 
storage. The increase in storage time affects the sensory char-
acteristics and chemical composition of fruits and vegetables, 
such as hardness, SSC, and pH, which reflect the overall qual-
ity of food during storage. Traditional algorithms are usually 
used in research to establish the connection between spectra 
and storage time, such as nondestructive detection of storage 
time of fresh spinach [43], strawberries [89], tea leaves [96] 
and sausages [95], all of which have obtained good accuracy, 
proving that the HSI technology and machine learning in 
identifying food good performance in storage time. However, 
the general problem of the study is that the data processing 

process is cumbersome and ignores the effect of factors such 
as temperature and humidity on the storage time to assess 
the algorithm's reliability. Chemometric-based feature extrac-
tion and selection algorithms were added in some studies to 
reduce further the model's training parameters, which added 
additional computational effort but significantly improved the 
model's running speed and robustness. In addition, storage of 
grains is an important food safety topic, as unsaturated fatty 
acids and toxic substances (alcohols, aldehydes, ketones, etc.) 
in grains increase with age, and the content of protein, starch, 
and SSC decreases year by year, with subsequent loss of seed 
viability. The traditional algorithms PCA and SIMCA were 
used to identify wheat seeds from 2007 to 2012 and analyze 
the spectral differences due to different storage times [97]. 
The experimental results showed that the traditional model 
was 97.05% accurate for adjacent years and 82.5% accurate 
for mixed classification of 6 years, which proved that the tra-
ditional machine learning combined with HSI technology 
could respond to the differences of seeds in different storage 
times. However, the overall classification accuracy was not 
high and ignored other factors such as origin and species. 
Pang et al. [98] used a deep learning framework to fully use 
spectral and spatial information to identify and predict maize 
seed vigor. 1D-CNN classified the four seed vigor levels with 
99.98% accuracy. Two-dimensional convolutional neural net-
work (2D-CNN) converged faster, and the accuracy reached 
99.96%, proving that deep learning has better recognition 
ability.

Meat and seafood products are rich in protein and suitable 
for propagating many pathogens and spoilage microorgan-
isms, so TVC has also become one of the crucial indicators 
of hygienic quality and food safety of animal foods. In the 
study, SVM, least squares SVM (LS-SVM), and PLSR were 
used to predict the microbial content of pork [101], rainbow  
trout fillets [103] and cooked beef [100], respectively. The 
prediction accuracy of the nonlinear models was all the better  
than the linear model PLSR, indicating that the nonlinear 
models have higher robustness and more vital generaliza-
tion ability. To further explore the relationship between 
TVC and spectral information, Yu et al. [99] proposed a 
deep learning framework based on SAE and fully connected 
neural network (FNN) composition to predict TVC during 
the storage of Pacific white shrimp. The results showed that 
although the accuracy of SAE-FNN was similar to LS-SVM  
in the training set, its correlation coefficient was significantly  
higher than that of PLSR and LS-SVM in the prediction set, 
demonstrating that the deep learning framework has strong 
potential for application in the content prediction of TVC.

TVB-N refers to the alkaline nitrogenous substances 
such as ammonia and amines produced by the decomposi-
tion of proteins in animal food during spoilage. These sub-
stances are volatile, and higher levels indicate more amino 
acid destruction in the food, so their levels can be used to 
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Table 4   Application of machine learning and HSI in food transportation and storage

Application Aim Food Sample type Number of 
samples
(Training set / 
Validation set / 
Test set)

Spectral range 
(nm)

Feature extrac-
tion/selection

Machine 
learning 
model

Reference

Low  
temperature 
refrigeration

Evaluation of 
storage time

Sausage Object 75 (51/24/-) 380–1000 RCs PLSR [95]
Spinach Object 120 (80/-/40)

90 (60/-/30)
380–1030
874–1734

PCA PLS-DA SVM 
ELM

[43]

Strawberry Object 160 (120/-/40) 400–1000 CARS SPA 
UVE CARS-
SPA

PLSR RF 
SVM

[89]

Tea Object 150 (100/-/50) 400–1000 RCs 2-Der 
SPA

SVM [96]

Cereal Object 360 (240/-
/120)

1400–1600 PCA SIMCA [97]

Object 576 (432/-
/144)

440.6–1003.7 PCA SVM ELM 
1D-CNN 
2D-CNN

[98]

Prediction of 
TVC content

Shrimp Object
Pixel

200 (120/-/80)
200,000 

(120,000/-
/80000)

900–1700 - PLSR LS-
SVM

SAE-FNN

[99]

Beef Object 105 (70/-/35) 400–1000 PCA RF CA PLSR LS-
SVM

[100]

Pork Object 50 (38/-/12) 400–1100 - PLSR SVR [101]
Prediction 

of TVB-N 
content

Fish Object 320 (256/-/64) 400–1000 SPA RBFNN [102]
Object 210 (140/-/70) 430–1010 GA PLSR MLR 

LS-SVM 
BPNN

[103]

Object 120 (90/-/30) 400–1100
900–1700

CARS GA 
IRIV

PLSR [104]

Object 210 (140/-/70) 430–1010 SPA PLSR LS-
SVM LDNN

[105]

Oyster Object 100 (67/-33) 400–1100 PCA RCs MLR BPNN [106]
Beef Object 105 (70/35/-) 400–1000 PCA UVE 

SPA DCT
PLSR LS-

SVM
[107]

Pork Object 90 (72/-/18) 841.8–2531.9 RF VIP PLSR [108]
Lamb Object 100 (67/-/33) 400–1000 CARS 

GLGCM 
RFrog

Pearson  
correlation

PLSR RF 
SVM CNN 
IMCNN

[109]

Low  
temperature 
refrigeration

Prediction 
of TVB-N 
content

Lamb Object 300 (225/-/75) 400–1000 PCA iRF 
BiPLS 
VCPA

2D-CS

PLS-DA 
SIMCA DT 
RF

[110]

Drying and 
Dehydration

Evaluation of 
dried sample 
quality 
parameters

Mango Object 90 (45/-/45) 880–1720 - PLSR [111]

Banana Object 184 (122/-/62) 950–1650 - PLSR SVR [112]

Fish Object 112 (84/-/28) 400–1100 RCs PLSR [113]

Object 120 (105/-/15) 308–1105 RCs PLSR [114]

Persimmon Object 140 (98/42/-) 900–2000 - PLSR [115]

Melon Object - 1000–2500 PCA PLSR [116]
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determine the freshness of animal foods. The linear model 
PLSR is commonly used to predict the TVB-N content of 
animal foods such as pork [108], oysters [106], and tilapia 
fillets [104] and to generate chemical images to visualize  
the distribution of the content. In addition, the nonlinear 
models LS-SVM [107] and RF [110] are also commonly used  
for TVB-N content prediction and freshness classification. 
The above models based on spatial and spectral fusion 
datasets have good performance. Moosavi-Nasab et  al. 
[105] used a linear deep neural network (LDNN) coupled 
to predict the TVB-N content of rainbow trout fillets, and 
the study's results showed that the deep learning framework 
achieved 90% classification of fillet freshness. However, the 
performance in predicting TVB-N content was inferior to 
PLSR and LS-SVM. In conclusion, there is no significant 
linear and nonlinear relationship between spatial and spec-
tral fusion data and TVB-N content. In addition, to further 
validate the feasibility of the HSI technique for predict-
ing TVB-N, other techniques were used in some studies to 
build prediction models by fusing with the HSI technique. 
Liu et al. [109] used a combination of electronic nose and 
HSI technique and proposed an input-modified convolution 
neural network (IMCNN) to predict the TVB-N content of 
lamb. The experimental results demonstrate that the fusion 
of e-nose and HSI techniques can achieve a more accurate 
TVB-N prediction of lamb, and IMCNN has good feature 
extraction and modeling capability for one-dimensional vec-
tor e-nose sensing data.

Food Drying

Food drying can reduce the moisture content in food and 
make perishable microorganisms lack the conditions to 
grow and reproduce, thus extending the storage life of 
food and reducing the costs of packaging, transporta-
tion, and storage in the supply chain. Commonly used 
food drying methods include hot air drying, microwave 
drying, and freeze-drying. Food products shrink during  

the drying process due to structural changes, and it has 
been proved that there is a linear relationship between 
shrinkage and moisture content of agricultural products.  
Hence, the moisture content is an essential indicator for 
measuring the drying degree. PLSR is usually established 
in research to predict moisture distribution [115–114], 
compound content [117], and textural properties [113] 
of dried foods, and all of them show good prediction 
ability. To further investigate the mapping relationship 
between drying techniques and food moisture content, 
shrinkage, and spectra, SVM is commonly used in stud-
ies to predict and classify food moisture, texture [112], 
and quality [118]. The results show that the prediction 
accuracy of SVM is better than that of PLSR, which is 
commonly used in studies. In addition, drying tech-
niques can be evaluated by analyzing the moisture dis-
tribution of samples. PLSR is commonly used in stud-
ies to establish the link between samples and spectra to 
evaluate the drying effectiveness of standard techniques 
such as hot air, microwave, and combined (hot air and 
microwave) by predicting the moisture content, rehy-
dration rate [119], and moisture distribution [111]  of 
food products. The study showed that combined drying 
resulted in a more uniform moisture content distribution 
of dehydrated foods, reduced drying time, and improved  
color quality.

Food Sales

The indicator for ensuring food safety in the distribution pro-
cess is the food shelf life, which refers to the period during 
which the food can be guaranteed its sensory, physicochemi-
cal, and microbiological properties under the manufacturer's 
recommended storage conditions. HSI technology usually 
extracts the spectral profiles of food samples to establish 
the association between the spectra and their physicochemi-
cal parameters and microbiological properties such as color 
parameters, pH, TVC and TVB-N, etc. The applications 

Table 4   (continued)

Application Aim Food Sample type Number of 
samples
(Training set / 
Validation set / 
Test set)

Spectral range 
(nm)

Feature extrac-
tion/selection

Machine 
learning 
model

Reference

Carrot Object 1368 
(821/547/-)

400–1010 VIP PLSR [117]

Wolfberry Object 126 (96/-/30) 400–1000 PCA ABC 
GWO

SVM LS-
SVM

[118]

Beef Object 216 (172/-/44) 989–576 PCA RCs PLSR SVR 
SCWR​

[119]
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of machine learning and HSI technology in food sales are 
shown in Table  5. Siripatrawan and  Makino [120] and 
Sricharoonratana et al. [121] used PLSR to predict pack-
aged sausage and cakes' quality attributes and spoilage level, 
respectively achieved good predictions. In the second study, 
PLS-DA was further used to develop a classification model 
to distinguish whether a cake is expired or not, and its accu-
racy reached 91.3%. To investigate the potential of nonlinear 
models in distinguishing food shelf life, Saleem et al. [122] 
developed SVM to classify PCA-treated bakery product 
data. This technique can detect microbial spoilage before 
visual changes occur in food products with an accuracy of 
98.3%. However, for components that are present at low lev-
els in food products, ANN combined with spectral data is 
commonly used in studies for prediction, such as [123] to 
predict the rate of chlorophyll degradation in broccoli, which 
can be further graded based on the shelf life of the product. 
To further validate the feasibility of the HSI technique for 
predicting food products' shelf life, multivariate accelerated 
shelf-life tests (MASLT) combined with spectral informa-
tion have been used in some studies to develop shelf-life 
prediction models. Cruz-Tirado et al. [124] and Chaudhry 
et al. [125] studied chia seeds and rocket leaves, respec-
tively, hypothesizing that spectral changes in food products 
may reflect chemical changes due to temperature alterations 
during temperature storage, and incorporated PCA and PLS 
into MASLT, respectively. Compared to traditional MASLT, 
MASLT built on PCA can capture the most valuable infor-
mation in the model. The PLS-based MASLT has poten-
tial for industrial applications because it is more robust and 
allows the addition of new samples during the calibration 
process.

In summary, the common problem of the models built 
using traditional machine learning algorithms in each ses-
sion is that the training data set samples are too small, and 
most of the studies only focus on the effect of a single factor 
of food on its spectrum, so the models built also do not have 

good generalization ability. In addition, most of the above 
studies use object-level data as experimental samples and 
adopt the average spectral curve of ROI to train the model. 
Therefore, this significantly reduces the training parameters 
of the model and enables the model to learn the spectral 
features of multiple samples. At the same time, the spatial 
features are lost, which may lower the model's accuracy. 
Research in the packaging segment primarily used deep 
learning networks for package sealing and contamination 
detection and usually used pixel-level data to train and test 
the networks. The large amount of data in the network leads 
to a strong dependence of the training model on the hard-
ware platform.

The Potential of Machine Learning and HSI 
in the Supply Chain

Machine learning and HSI techniques for non-destructive food 
inspection have become one of the hot inspection techniques 
in the food industry in recent years. They are mainly used 
for food quality and safety inspection in sorting, packaging, 
transportation, storage, and sales. It has the advantage that 
little or no chemical processing of the sample is required and 
that spectral and spatial features can be extracted by imaging 
the sample alone, thus offering potential applications in the 
online inspection. Secondly, machine learning can take dif-
ferent algorithms for reading and processing according to the 
data characteristics. Each type of algorithm in machine learn-
ing has its advantages, such as linear regression models MLR 
and PLSR, which have the characteristics of easy fitting and 
accessible interpretation, can show good prediction accuracy 
in small data sample sets, and are commonly used for chemi-
cal composition analysis in sorting and transportation storage 
links. Nonlinear models are more suitable for the analytical 
processing of such problems when there is no apparent linear 
relationship between the measured parameters and the spectral 

Table 5   Application of machine learning and HSI in food sales

Application Aim Food Sample type Number of 
samples
(Training set / 
Validation set / 
Test set)

Spectral range 
(nm)

Feature 
extraction/
selection

Machine  
learning model

Reference

Food  
shelf-life

Predicting 
the level 
of  
corruption

Packaged  
sausages

Object 144 (100/-/44) 400–1000 PCA RCs PLSR BPNN [120]

Bakery products Object - 395–1000 PCA K-means SVM [122]
Broccoli Object 170 (110/60/-) 450–960 - ANN [123]
Cake Object 130 (84/-/46) 935–1720 PCA PLSR PLS-DA [121]

Determining 
food shelf 
life

Rocket leaves Object - 400–1000 PCA PLS MASLT [125]
Chia seeds Object 7000 

(4900/2100/-)
928–2524 PCA MASLT [124]
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features in the sample. For example, SVM can balance the 
complexity and generalization ability of the model in a small 
sample data set and is often used for some chemical content 
prediction and adulteration detection of expensive food prod-
ucts. Deep learning can show strong nonlinear approximation 
ability in big data sets and automatically learn hyperspectral 
deep features. Many studies using deep learning for non-
destructive food inspection have not preprocessed the spectra, 
and the models still maintain good performance. Therefore, 
this technique can be used for inspection involving the produc-
tion line's sorting, packaging, and sales stages. In summary, 
the technology can be applied to real-life applications with 
the help of hardware platforms and integrated software, which 
general practitioners can use to test the quality and safety of 
food products at various supply chain stages.

However, some non-negligible limitations of the technique 
make it bottlenecked in developing practical applications. 
First, during the imaging process, the data are subject to 
external influences such as acquisition method, detector type, 
exposure time, operator, etc. External noise interferes with 
the distribution of spectral features and blurs or distorts the 
spatial information of the image. Secondly, a unified standard 
has not yet emerged to evaluate the extracted features during 
data processing. Only the accuracy of the model built based 
on the extracted features can be compared with the original 
data. Therefore, when selecting algorithms to simplify the 
model, researchers must constantly compare and trial and 
error various extraction algorithms. In addition, a common 
problem in the modeling process is the small sample of food 
products. Many works focus on studying only a single attrib-
ute of a food product, ignoring the influence of other factors. 
Especially for deep learning techniques, the performance is 
closely related to the size of the dataset. However, current 
hyperspectral image databases for food inspection are una-
vailable, and researchers cannot access databases from other 
supply chain segments for application extension. Moreover, 
deep learning is also hardware platform-dependent, and its 
model building requires a large number of data operations 
and thus requires sufficient hardware resources for support. 
Finally, in the link involving the production line, the speed of 
the conveyor belt transporting the products also needs further 
consideration. Suppose the transport speed of the product 
changes drastically due to external factors. In that case, the 
sampling frequency of the hyperspectral camera should also 
be changed to avoid distortion of the image morphology. The 
spatial features learned by the network will also change, so 
the network needs to be retrained.

Despite the limitations of the technology, with the rapid 
development of computer technology and related hardware 
and software, it is believed that fast and efficient related 
applications will soon emerge in the food supply chain. 
From the perspective of developing software, the research 
needs to optimize the corresponding algorithm according 

to different imaging environments (such as uneven light 
sources in imaging, environmental scattering, and back-
ground clutter). Industrial inspection standards also have 
higher requirements for model accuracy and running speed, 
so many studies currently focus on reducing training data 
to reduce the running time of the network while ensuring 
higher model accuracy. Regarding the problem of a single 
variable and small amount of data for food research, special-
ized organizations are needed to build hyperspectral datasets 
of various foods for sharing. Ideally, future research efforts 
would be to develop deep learning algorithms based on the 
entire hyperspectral image database to improve the accuracy 
and generalization capabilities of the network. However, a 
balance between model accuracy and runtime must be con-
sidered. Only if the model accuracy is always maintained 
at a high level can the ability to extend the model's func-
tionality using the entire hyperspectral image database be 
achieved. Moreover, future work will be reality-based and 
focus on analyzing the impact of multiple factors on various 
segments of the food supply chain, leading to more general-
ized solutions.

Conclusion

Ensuring the quality and safety of the food supply chain is 
an essential issue for the modern food industry. Machine 
learning and HSI technologies have been widely used in 
food quality and safety inspection in supply chains in recent 
years. Based on relevant literature from 2017 to 2022, this 
paper provides an objective and comprehensive overview of 
the application of machine learning and HSI technologies in 
the supply chain for sorting (sensory characteristics, chemi-
cal composition, food adulteration), packaging, transporta-
tion, and storage (low-temperature refrigeration and food 
drying), and sales, and draws the following conclusions: (1) 
The technology has shown excellent qualitative and quanti-
tative analysis capabilities in the sorting segment. (2) Deep 
learning has initially demonstrated its powerful spectral-
spatial information processing capability in the packaging 
segment. Studies have been conducted to build production 
lines and obtain good automated inspection results. (3) The 
current bottlenecks of the technology in the production line 
and in-line applications are the lack of hyperspectral image 
datasets, setting production line transport speed, measuring 
training time and model accuracy, and other limitations. (4) 
Advancing the technology in terms of hardware platform, 
integration software, algorithms, standardization, and data 
set sharing to promote the application of the technology in 
real life. In recent years, due to the widespread outbreak 
of COVID-19, all segments of the food supply chain have 
been severely affected, with reduced labor and transportation 
changes causing food to stall in storage and transportation, 
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resulting in a significant increase in food losses. Therefore, 
relevant authorities need to make timely adjustments and 
control the affected parts of the supply chain to minimize 
the food waste caused by the outbreak. Machine learning 
and HSI technologies can potentially reduce human involve-
ment and damage to food caused by the external environ-
ment, storage time, mechanical damage, and microorgan-
isms through online quality inspection and control of food 
in production lines and transportation processes.
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