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Abstract
As social robots are projected to become an integral part of human life in the coming decades, their ability to adapt movement
and trajectory when in proximity to people is essential for ensuring social acceptance during human-robot interaction. A key
aspect of this adaptability involves predicting and anticipating human intents during robot navigation. Despite significant
strides in the social navigation of autonomous robots within human environments, opportunities for advancements in related
algorithms persist. This paper presents a novel real-time path trajectory optimization algorithm for socially aware robot
navigation, grounded in the social elastic band concept, incorporating prediction and anticipation of human movements to
adapt its forward velocity. Building upon the elastic band framework introduced in the 1990s for adapting robot trajectories in
dynamic environments, our proposal of social elastic band differentiates between objects and human presence. This distinction
allows for the definition of social interaction spaces and their relationship to the elastic band, facilitating the generation of
socially accepted paths that rapidly adapt to environmental changes without causing a disturbance. Integrated into the SNAPE
social navigation framework, the algorithm has been tested and validated through simulations and real-world experiments in
various environments.

Keywords Social robot navigation · Human-awareness navigation · Elastic-band

1 Introduction

Social robotics has witnessed a surge in investment over the
past decade, and their presence in homes and workplaces
is expected to become commonplace in the coming years.
These social robots are designed with the ability to adapt
their behavior as if they were socially aware and integrated,
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including the capacity to interact with people, move with-
out disturbing them, and anticipate socially unacceptable
situations. Among these capabilities, the ability to navigate
environments with humans has garnered significant attention
in recent years.

A socially aware robot should navigate the world as
a human would, adapting its velocities and trajectories in
response to the locations of people around it while avoid-
ing getting too close, interrupting conversations, or making
sharp turns close to individuals. The scientific community
has devoted considerable attention to the problem of social
navigation,with a particular focus on integrating theories like
proxemics into robot navigation algorithms. Proxemics the-
ory, introduced by anthropologist Edward T. Hall, describes
how humans use and perceive interpersonal distances in their
interactions [1]. Researchers employ this theory to create
socially aware navigation systems that respect personal space
and exhibit socially acceptable behaviors when navigating
around people [2, 3]. By considering different spatial zones,
such as intimate, personal, social, and public spaces, robots
can better understand and adhere to the human perception of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-024-01135-z&domain=pdf
http://orcid.org/0000-0002-3615-8833


International Journal of Social Robotics

comfort and acceptable distances [3]. Several studies have
proposed methods to integrate proxemics into robot naviga-
tion, often using cost functions that weigh the importance of
maintaining specific interpersonal distances while minimiz-
ing other objectives like energy consumption or travel time
[4]. In a previous work [2], we introduced a proposal of a
social map constructed from the interactions between people
and objects and demonstrated howweutilized it for the global
trajectory planning of the robot. In this initial approach, peo-
ple and objects were considered the same type of obstacle
during local navigation, which is not always the most appro-
priate choice, considering that people prefer robots not to
pass close by if there is enough space. Machine learning
techniques, such as deep learning and reinforcement learn-
ing, have also been applied to model human behavior and
predict their preferences, further enhancing the robot’s abil-
ity to maintain appropriate proxemic distances [5].

The challenge in developing a global solution for socially
aware robot navigation lies in integrating and real-time col-
laboration between various subsystems [6]. Each subsystem
has its complexities and potential sources of error,making the
overall collaboration less straightforward: (i) accurate peo-
ple detection is crucial, typically involving sensor data fusion
from cameras, LiDAR, or other sensors. This process must
deal with occlusions, variable lighting conditions, and sensor
noise. Additionally, it must be efficient enough to run in real-
time to ensure the robot’s responsiveness to its environment;
(ii) global path planning must consider static and unmapped
obstacles while adhering to social conventions such as prox-
emics. This task may involve incorporating uncertainty in
human trajectories and predicting future movements to gen-
erate optimal and socially acceptable paths; and (iii) the
robot’s trajectory adaptation is required to react to sudden
environmental changes or unpredictable human behavior.
This real-time adaptation involves continuous assessment
of the situation, adjusting the trajectory while maintaining
safety and social acceptability.

Given the complexities in socially aware navigation out-
lined above, it becomes imperative to develop frameworks
that could integrate many requirements for effective social
navigation. In addressing this necessity, we introduced the
SNAPE framework in our previous work [7], aiming to pro-
vide a comprehensive solution to the challenges encountered
in enabling robots to navigate socially enriched environ-
ments. The pivotal innovation in [7] concerning the previous
one [2] revolved around incorporating human-robot interac-
tion in navigating robots and the high-level strategies of robot
actions based on the existing context.

The SNAPE framework, as already hinted at, outlines a
comprehensive system for socially aware robot navigation
that encompasses, among other aspects, the ability to inter-
act with people, plan socially acceptable paths, and detect
movements of people in the environment. Its functionality

is distributed in five layers, from perception to high-level
behavior planning. Although SNAPE discriminates between
humans and objects (generating higher cost zones for humans
during the global path planning phase), the decisions made
when the robot navigates locally may be insufficient from
a social acceptance point of view. This is because, in the
local planner, the forces exerted by humans and objects on
the trajectory are equal for the same distance. In addition,
the original SNAPE maintains a velocity independent of the
distances to people, which may also lead to a negative per-
ception of the motion. Therefore, the path and motion with
the original SNAPE framework can create dangerous situa-
tions for people in environments where the robot and people
are moving. Figure 1a illustrates an example where a robot
navigates in a dynamic environment, with both an object and
a person equidistant. In such scenarios, it is reasonable to
assume that the robot should prioritize maintaining a greater
distance from the person to minimize disruption (red color).
A similar situation is depicted in Fig. 1b, where multiple
individuals interact simultaneously as the robot navigates its
environment. Throughout its trajectory, the robot must adapt
its movement based on potential changes in people’s posi-
tions, moving away from them and attempting to approach
objects if that path is viable.

Building on the SNAPE framework, this paper proposes
improvements to enhance the autonomous navigation of
socially aware robots. The main goal of our work is to
refine robot navigation by emphasizing respect for social dis-
tances and robot speed control, which are an integral part of
social robot behavior. This approach is implemented through
adjustments to the social perception and navigation layers
of the SNAPE architecture, mainly aimed at predicting the
future positions of people and their proximity to the robot’s
planned trajectory and how this perception influences the
robot’s speed, and recalibrating the robot’s local trajectory
parameters by distinguishing between people and objects.

In particular, we present a new social navigation within
the SNAPE framework, characterized by three fundamen-
tal layers: (i) a new low-level controller that modifies the
robot’s speed based on the estimated proximity to a person,
thus exhibiting a more conservative approach and emulating
cautious human-like behavior in the presence of others. We
consider it as a basic level of anticipation; (ii) the incor-
poration of a social elastic band as a component of the
local planner, allowing the robot’s trajectory to be dynam-
ically adaptive to the movements of people (or objects not
accounted for in the global planner), thereby facilitatingmore
responsive and socially harmonious navigation; and (iii) a
refined global route planning process that incorporates social
norms encapsulated within a social map, constructed based
on the robot’s environmental perceptions.

The concept of the elastic band, originally conceptual-
ized by [8], serves as a dynamic adaptive layer, allowing the
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Fig. 1 Two possible daily
scenes: a and b The path
planned by the robot accounts
for the distinction between
people and objects, with the
robot adjusting its trajectory
accordingly (red color). In blue
color, the path treats people as
dynamic objects

robot’s globally planned trajectory to mold to the obstacles
discerned by proximity sensors. In [2], the foundational algo-
rithm treated all entities in the environment as dynamic, with
no distinct consideration for humans. In contrast, the cur-
rent iteration of our work leverages the SNAPE framework
for more nuanced person detection and tracking, enriched
social mapping, and optimized path planning, introducing,
as a contribution, a social elastic band that distinctly recog-
nizes and responds to humans and objects, thereby achieving
more harmonious navigational outcomes. This architecture
has been assessed in simulated scenarios and validated in
real-world experiments, underscoring its practical applica-
bility and effectiveness in socially aware robotic navigation.

This article is structured as follows: Sect. 2 discusses pre-
vious works on human-aware robot navigation, highlighting
the field’s current state and the challenges researchers face.
Subsequently, Sect. 3 briefly describes the SNAPE frame-
work, outlining its key components and their respective roles
in facilitating socially aware robot navigation. Our paper
focuses on the perception and navigation layers, although
in this section, all layers are introduced to understand the
complete framework. Section4 introduces our novel con-
tributions, the motion anticipation to people’s distance to
robots, and the social elastic band concept and explains its
implementation and integration with the SNAPE framework.
This section delves into the underlying principles of the
social elastic band, its ability to distinguish between objects
and people, and the resulting improvements in the robot’s
social behavior. Experimental results are presented in Sect. 5,
demonstrating the performance of our proposed algorithm
in various simulated and real-world scenarios. We initially
include an evaluation of the parameters that affect the social
elastic band and a series of tests to subsequently compare the
outcomes of our current approach with our previous method,
emphasizing its advantages in terms of socially aware navi-
gation and adaptability to environments with people. Finally,
Sect. 6 summarizes the main conclusions of this work, high-

lighting the significance of the social elastic band concept in
advancing the socially aware robot navigation field.

2 RelatedWorks

Planning a socially acceptable robot’s path during navigation
is a topic of substantial interest to roboticists, as it plays a cru-
cial role in developing intelligent and socially aware robots.
How a robot navigates within natural environments, espe-
cially when interacting with humans, dramatically impacts
our perception of the robot’s intelligence [9]. An explic-
itly human-aware trajectory should consider a combination
of factors, such as minimizing distance traveled, reducing
energy consumption, and adhering to social constraints like
maintaining a comfortable distance from people or avoiding
disturbing ongoing conversations. These insights and con-
clusions stem from a comprehensive analysis of the current
state of the art, including surveys by [3, 4, 10], and more
recent contributions, such as the one presented by [6].

Human-aware navigation frameworks encounter a consid-
erable challenge when attempting to combine deliberative
and reactive behaviors during navigation. A social robot
must be able to react effectively to the dynamic environment,
including moving people, while simultaneously planning a
socially accepted path [11]. Path planning, a classic problem
in autonomous robot navigation, has been extensively stud-
ied in the literature [12, 13]. The objective is to determine a
set of waypoints the robot approaches sequentially, optimiz-
ing its performance based on a global objective function or
cost function, such as the shortest or quickest collision-free
path. Several methods have been proposed in the litera-
ture to address this problem in static scenarios. One such
approach is integrating human spatial models, such as prox-
emics, into the robot’s global planning process to determine
socially appropriate paths [14]. In [15], Sisbot et al. intro-
duced a path-planning algorithm that considers humans’
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comfort zones, adapting the robot’s trajectory to maintain
a comfortable distance from people in the environment.
Similarly, [10] presented a survey on socially aware robot
navigation, emphasizing the importance of respecting human
social norms during path planning. Another critical factor to
consider is the predictability of robot motion. In [16], the
authors proposed a path-planning algorithm that generates
predictable and legible robot trajectories, making it easier
for humans to understand the robot’s intentions. Moreover,
[17] introduced a socially adaptive path-planning approach
that learns from human demonstrations, adapting the robot’s
motion to follow social conventions.

In dynamic contexts, robots adapt their motion plans to
address both global and local path planning, with human-
aware navigation complicating this classic problem by inte-
grating environments filled with people, thus necessitating
advanced approaches for developing both path types. The
inherent challenges of navigating around humans, such as
respecting social norms and modifying trajectories based on
human movements, are mainly addressed by the local path,
given its role in managing dynamically changing elements,
while the global path provides a stable foundational route
based on relatively constant maps [10]. This hierarchical
approach enables the navigation system to maintain effi-
ciency and adaptability by minimizing computational load
and adjusting to spontaneous environmental changes, facil-
itating robust navigation in human-populated environments
even without the precise anticipation of individuals’ future
movements.

Numerous widely-used solutions for these short-term
plans have been developed in the field of robotics, some
of which include the classic Dynamic Window Approach
(DWA) [18], Potential field [19], Elastic bands [8], Recip-
rocal Velocity Obstacles (RVO) [20], and Social forces
models (SFM) [21]. These approaches have been essen-
tial in addressing various aspects of local path planning in
dynamic environments. In a recent study by [22], the authors
offer a comprehensive overview of the latest path-planning
strategies, clearly distinguishing between classical hierarchi-
cal planners, which involve global and local path-planners,
and reinforcement learning-based approaches that leverage
advanced learning techniques. From the analysis of these
works, the authors conclude that no single optimal or subop-
timal strategy applies to all scenarios, highlighting that the
field of path planning still has ample room for improvement
and the development of innovative methods that can effec-
tively tackle the challenges of dynamic environments [22].

In recent years, the field of socially aware robot nav-
igation has seen remarkable developments, evolving pre-
dominantly into two main paradigms: machine learning-
based andmodel-based approaches. Machine learning-based
approaches are used in anticipating human behaviors [23],
[24]. These strategies employ machine learning techniques,

like deep reinforcement learning [25], to predict real-time
human intentions, which helps modify the robot’s trajectory.
For instance, Kobayashi et al. [26] have exploited deep learn-
ing to navigate robots in high-density human environments
and to predict human interaction to prevent collisions and
ensure harmonious navigation. Peltzer et al. [27] empha-
sized integrating human path preferences in robot navigation
amidst obstacles using a stochastic observation model for
humans, ensuring minimal interventions. Although machine
learning-based approaches, exemplified by previous works,
have shown advances in predicting human intentions and
robot navigation in densely populated environments, they
carry significant disadvantages compared to model-based
approaches. Their heavy reliance on large datasets, high com-
putational demands, lack of interpretability, susceptibility to
input variations, and difficulties in generalizing to new sce-
narios highlight the inherent limitations of these strategies.
The model-based approach proposed in our paper addresses
these issues by leveraging theoretical foundations to provide
a more computationally efficient, interpretable, robust, and
generalizable solution.

Despite these advancements in machine learning-based
approaches, model-based approaches, showcased in works
like those by Kitagawa et al. [28], Singamaneni et al. [29],
and Kollmitz et al. [30], are equally prominent and advanced,
offering nuanced solutions for socially aware navigation. For
example, Kitagawa et al. developed human-inspired motion
planning for omnidirectional social robots to achieve more
natural human interactions. Singamaneni et al. addressed the
challenge of invisible humans in social navigation, provid-
ing innovative insights into dealing with unforeseen human
behaviors. At the same time, Kollmitz et al. explored learning
human-aware robot navigation from physical interactions via
inverse reinforcement learning. Theseworks represent recent
strides in model-based approaches to socially aware naviga-
tion. Our paper introduces a novel contribution through a
distinctive methodology, emphasizing a social elastic band
that modifies the trajectory by conforming to interaction
spaces. It anticipates potential scenarios wherein the robot
approaches an individual, utilizing a basic technique mani-
fested as a reduction in speed. In the work presented in [31],
the authors introduce an adaptive, socially aware navigation
system that enables a robot to approach groups of humans in a
socially acceptable manner, dynamically adjusting personal
and group space parameters based on the group arrange-
ment and space constraints. Unlike our work, [31] focuses
solely on the more reactive navigation. Furthermore, other
approaches have also significantly contributed to model-
based approaches in social aware navigation, with works
such as Ferrer and Sanfeliu [32] and Repiso et al. [33] offer-
ing anticipative solutions and adaptive planners for dynamic
real-life environments.
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Specifically, the authors in [32], engage in anticipative
kinodynamic planning to enable effective navigation in urban
and dynamic environments. The more advanced work in [33]
refines the Extended Social Force Model (ESFM) to facili-
tate closer interactionwith people, enhancing the adaptability
of the planner in diverse socially aware navigation contexts
such as solo navigation, accompaniment of one or several
people, approaching, and simultaneous accompaniment and
approaching. These studies are very well-rounded, particu-
larly the work presented in [33], which employs what they
term anAdaptive Social Planner-a fusion of RapidRandomly
Tree (RRT) and ESFM for various formations. Our contri-
bution resembles the utilization of an innovative navigation
framework featuring a global planner that seeks the optimal
route (a capability not intrinsic to RRT) and a local plan-
ner. Instead of modifying the trajectory according to a social
force model, we rely on the Elastic Band method, a tech-
nique proven to efficiently smooth paths and adeptly manage
dynamic elements, those not represented on the map. Our
paper is not predicated on accompaniment but on navigation
within an environment inhabited by humans who should not
be disturbed during the navigation.

Each of the aforementioned studies has proposed a solu-
tion to socially conscious navigation, a challenge also
addressed by the research presented in this paper. This work
introduces an innovative strategy, seamlessly integrated into
the SNAPE framework, that enhances robotic navigation per-
formance within human-inhabited environments. It achieves
this by discerning between moving objects and humans,
refining how such differentiation impacts the local planner,
and modulating robot speeds in real time according to the
prevailing context. Moreover, our approach incorporates a
model-based methodology, resonating with concurrent stud-
ies in this domain. The synergy with the SNAPE framework
propels progress toward a solution where robots can profi-
ciently navigate and engage with humans to accomplish their
objectives.

3 SNAPE: Social Navigation Framework Over
CORTEX

Figure 2 illustrates the original SNAPE navigation frame-
work schematic, outlined in [7], and the main changes
developed in this paper to optimize human-aware robot nav-
igation. The SNAPE framework was structured into five
discernible layers: (1) perception layer; (2) social layer; (3)
navigation layer; (4) HRI interaction layer; and (5) planning
layer. These layers are depicted in the original schematic, to
the left of Fig. 2.Wedisplay the principalmodifications intro-
duced in this articlewithin the samefigure to the right. Firstly,
we alter the perception layer to predict people’s positions in
the robot’s proximity and subsequentlymodify thenavigation

layer. Within this layer, prior estimates of people’s positions
are incorporated to adjust the robot’s velocities based on the
distance of these estimates to the robot’s path within the time
horizon.We also integrate a social elastic band that differenti-
ates objects and humans in the local planner. Amore detailed
description of Fig. 2 is given in the following subsections.

The CORTEX cognitive architecture underlines the con-
struction of SNAPE, as proposed in [34]. Figure 3 illustrates
a conceptual schematic of CORTEX, highlighting the rela-
tionship between its software agents and the layers of
SNAPE. CORTEX is assembled with independent software
agents, each maintaining a sharedWorkingMemory (WM).1

CORTEX defines a software agent as an entity capable of
interacting with the WM, synchronizing the outcomes of
its actions with other agents through this WM. This WM
encompasses all the geometric (e.g., positions of the robot
and people) and symbolic information (e.g., interacting, in,
or connected) representing the robot’s knowledge. The five
independent layers of SNAPE are each orchestrated by one
or multiple software agents within CORTEX, exchanging
information concerning the robot and its environment. For
instance, the perception layer comprises several independent
agents tasked with responsibilities such as people detection,
tracking and object detection.

In formal terms, the WM is a directed graph represented
as a pair G = (V , E, ω), consisting of V , a collection of
vertices; E , a collection of edges; and an incidence func-
tion that maps each edge to an ordered pair of vertices,
ω : E �→ (x, y)|(x, y) ∈ V 2 ∧ x �= y. encompass instances
of concepts recognized by the system. As an illustrative
example, the right section of 3 shows a use case involv-
ing a robot in a nursing home. The representation of this
world within CORTEX is shown as a Working Memory in
the left part of the Fig. 3. These concepts can relate to either
physical or internal entities. When an agent instantiates a
physical concept into the WM, it must maintain the anchor
to its world entity throughout its existence. Agents gener-
ate internal entities, such as missions, intentions, or plans,
and represent them in the graph for other agents to recog-
nize. This graph is a live illustration of the context relevant
to the ongoing mission. Relating the aforementioned terms
to Fig. 3, V is constituted by the nodes that physically repre-
sent the world: people, rooms, objects, and E encompasses
the relations between nodes, which can be either geometric
(e.g., Rotation-translation links) or symbolic (e.g., in, con-
nected, or interacting).

Having illustrated the overarching structure and founda-
tional components of the SNAPE framework and highlighted
the integrative role of CORTEX’s Working Memory in

1 The WM, also referred to as Deep State Representation (DSR), is
capable of accommodating diverse data at multiple levels of abstraction
[35].
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Fig. 2 Overview of the SNAPE framework [7]

Fig. 3 A schematic view of the CORTEX architecture
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enabling effective multi-agent interaction, we will now pro-
ceed to delve into a description of each distinct layer within
SNAPE. This article mainly focuses on the perception and
navigation layers and their vital role in achieving effective
human-aware robot navigation, including basic anticipating
human movements.

3.1 Perception Layer

The perception layer is an essential tool in socially aware
robot navigation systems, furnishing the navigation layer
with information about the robot’s surroundings to inform
socially acceptable decision-making. This layer detects var-
ious environmental elements, such as the position and pose
of people or objects, ensuring the robot can navigate without
collisions. For our current approach it accurately discerns
and tracks people’s poses in real-time, a task that is partic-
ularly challenging in dynamic environments, thereby aiding
the navigation core in anticipating themovements and behav-
iors of people around it.

In the proposed approach, the perception layer consists
of an integrated sensor system that enables the robot to
perceive its environment. It could be composed of various
sensors, including cameras, microphones, or tactile devices,
that allow the robot to gather information about its surround-
ings (Fig. 2). These sensors can be internal to the robot or
external, configuring a physical world to detect people and
objects. A specific software agent tracks the position and ori-
entation of each person, hi = (x, y, θ)i , while the pose of
each object, o j , is described by po j = (x, y, θ) j . The per-
ception layer detects objects and people in the environment,
which are assumed to be detected by the agents in CORTEX.
The sets Hn = {h1, h2...hn} and Om = {o1, o2...om} represent
the detected humans and objects, respectively. To ensure that
all agents in the architecture share the same knowledge about
the robot’s surroundings, this information is updated in the
WM [2, 11].

To detect and track individuals, the agent employs a
method that takes the output from the YOLOv7 Deep Neural
Network (DNN) [36] and feeds it into the ByteTracker [37]
tracking algorithm. The system takes, as input at time τ , a
color image T with dimensions u x v and generates, as output,
the 3D location and orientation of each person in the image
hi , along with their track identifier idi . The YOLOv7 pro-
cesses the image and returns the Regions of Interest (ROIs)
of people Bi = {ai , bi }, where ai and bi represent the top-
left and bottom-right points, respectively. Upon detecting a
person, a track is initiated using the ByteTracker algorithm,
acquiring the idi . The 3D pose from the robot’s point of view
is obtained by analyzing the central pixel value of the ROI
within the stereo image. To clarify, hi represents the centroid
of the person detected, calculated based on the bounding box

coordinates, ai and bi (Eq. 1).

hi =
{
axi + bxi − axi

2
, ayi + byi − ayi

2

}
(1)

Rather than solely relying on the vector Hn , our algo-
rithm estimates the future positions of people, He

n (where
the superindex e denotes estimated), to better anticipate
dynamic environments. To accomplish this, we first calcu-
late the velocity vector for each person near the robot. Let
hτ
i , and hτ+�τ , represent the positions of human i at two

distinct moments in time. The velocity vector is then defined
as:

�vhi = hτ+�τ
i − hτ

i

�τ
(2)

This velocity vector is characterized by both its magni-
tude | �vhi | and direction βvhi

. Utilizing this information, we
can determine the estimated positions of each person, hei , at
a specific time interval t . Instead of relying solely on two
discrete poses, our algorithm employs a temporal window of
prior poses h(τ−k)

i , h(τ−(n−1))
i , ..., h(τ−1)

i , hτ
i to estimate the

velocity vector of each person near the robot with greater
accuracy. This consideration of multiple poses within a time
window allows for a nuanced understanding of each per-
son’s movements, accommodating sudden and unpredictable
changes in direction or velocity, which is essential for real-
world applications where human movements are inherently
dynamic. It is important to clarify that this estimation will
only be used to anticipate the presence ofmoving people near
the robot during navigation, modifying its speed to adapt to
the context socially, where values of t = 2s shall be used.

3.2 Social Layer

The second layer of the proposed architecture focuses on
the robot’s social awareness, which is grounded in generally
accepted social norms. Social robots must adhere to social
norms, such as maintaining suitable social distances, refrain-
ing from interrupting conversations, and seeking permission
before intervening during navigation. At the heart of the
social awareness layer is the notion of a social interaction
space, delineated by individuals in the environment based
on their personal space and proxemics theories, extending
to interaction space with objects [2]. The following is an
overview of these concepts and their use in the context of
this article.

After determining the positions of humans in the envi-
ronment, Hn , and recognizing the static objects in the
environmentOm , this layer constitutes a social representation
of the space. Figure2 illustrates the elements that make up
this layer: on one hand, we initiate with information regard-
ing people and objects in the environment. This information,
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Fig. 4 The figure shows a nursing environment, including the positions
of people and objects. On the right, labelled, are the interaction spaces
of each element, using values of σx = 2 and σy = 4/3. The costs

entered in the grid are equivalent to the values 8, 10 and 100 for public,
social and intimate spaces respectively

via semantic models and social norms, alters the robot’s orig-
inal map. A social map replicates the robot’s free space map,
enriched with social information. Herein, we integrate the
concepts of accessibility and weight associated with each
grid in the original map [2]. The accessibility of a node is a
Boolean variable, with a value of 1 if the space is unoccu-
pied and 0 otherwise. Theweight,wi , represents the traversal
cost of a node, illustrating the effort required for the robot
to reach that node (higher values of wi imply that the robot
should circumvent this route).

In our model, proxemics theory defines zones (intimate,
personal, social, and public) that modify the original grid
map by assigning varying weights and accessibility to each
zone [2]. Initially, a free space map is created to pinpoint
static impediments. This grid map is then modified to incor-
porate social interaction spaces. For an individual, this space
is delineatedby contour lines of an asymmetricGaussian.The
model is grounded in a summation of Gaussians in scenarios
involving interactions between multiple individuals. When
individuals interact with objects, this space is represented by
specific contour lines depending on the object’s shape. Fig-
ure4 depicts various interaction spaces and how they impact
the original grid’sweight. To the left, Fig. 4 displays a nursing
environment where the robot will operate. This environment
contains information about the static objects in the rooms
(i .e., a stretcher and a table for activities). The perception
layer identifies people in the environment. In the social layer,
interaction spaces are introduced for individuals and objects
with which individuals may interact. These spaces directly
influence the weight and accessibility of the grid.

Formally, the robot’s environment is modeled by the grid
�(γ, ε) of γ cells and ε links, evenly distributed in the space.
Each cell γi has two different parameters: accessibility, an ,
and weight, wn . In the beginning, all boxes have the same
weight, 1. Later, � is actualized to a new grid �′(γ, ε)where
we add all the social interaction spaces around people [2].

The region surrounding each individual is modeled as
an asymmetric Gaussian function. The layer also identifies
and maps interactions between individuals, such as conver-
sations, using a spatial density function that the robot should
not traverse. Finally, the framework characterizes the inter-
action space between individuals and objects. The personal
space of each hi is modeled using an asymmetric 2-D Gaus-
sian curve ghi (x, y) as defined in Eq. 3.

ghi (x, y) = e
−

(
(x−xi )

2

2σ2xi
+ (y−yi )

2

2σ2yi
− 2kxy (x−xi )(y−yi )

2σxi σyi

)

(3)

where σxi and σyi are the standard deviations along the x and
y axes, respectively, and kxy is a coefficient that controls the
correlation between the two axes. These values depend on
the orientation θi of the person and are used to emphasize
the region in front of the person, as defined by the theory of
proxemics [2].

The algorithm then clusters people in the environment
based on their distances using a Gaussian Mixture [2]. The
personal space functions of each individual are summed to
obtain a global interaction space G(h), as shown in Eq.4.

G(h) =
n∑

i=1

ghi (x, y)

=
n∑

i=1

e
−

(
(x−xi )

2

2σ2xi
+ (y−yi )

2

2σ2yi
− 2kxy (x−xi )(y−yi )

2σxi σyi

)

, (4)

being n is the number of people. To incorporate the space
affordances of objects in the environment, we store the inter-
action space iok of each object o j ∈ OM as an attribute. The
interaction space iok captures the space required to interact
with the object and varies for different objects in the environ-
ment [2]. For example, in objects such as posters or screens,
the interaction space follows the format of a trapezoid, while
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other objects such as tables and beds maintain the same for-
mat as the original object, circular or rectangular.

The aggregation of regions outlines zones in which nav-
igation should be curtailed or limited, and the final step
involves updating the free space graph � values. These
restricted areas’ boundaries consist of k polygonal chains,
or polylines, represented as Lk = l1, ..., lk , where k indi-
cates the total number of interaction regions. Each curve, li , is
formulated using the expression li = a1, ..., am , with the ver-
tices ai = (x, y)i of the curve positioned along the region’s
periphery. Our method incorporates distances determined by
proxemics-intimate, personal, social, and public-established
relative to a person’s center.

Within the area formed by Lintimate
k , the accessibility ai

of all nodes Ni ∈ � is designated as occupied, or ai =
occupied. This restriction effectively prevents the robot from
invading this space, averting disturbance to the individual.
For personal and social spaces, the graph nodes’ accessibility
remains unchanged; however, the associated weights will be
modified. The weights wi of all nodes γi ∈ �, enclosed by
the spaces formed by L personal

k and Lsocial
k , are adjusted,

resulting in higher costs in the personal area compared to the
social area. Lastly, the remaining graph represents the public
space with unaltered weights.

To illustrate our social mapping definition, we present two
figures. In Fig. 4, a nursing environment is depicted, show-
casing the positions of individuals and objects. To the right,
interaction spaces for each element are labeled. Different col-
ors within the figure represent varying weights in the grid.
Besides, a 3D perspective of the simulated scenarios is pre-

sented in Fig. 5a. Figure 5b depicts the outcome of applying
our social mapping technique to these scenarios, with social
interaction spaces represented in various colors. In Fig. 5b,
it is evident that individuals h1 and h2 engage in interaction
at the bottom, as their personal spaces overlap. Furthermore,
objects within the environment are incorporated into social
mapping by including their respective interaction spaces.

3.3 Navigation Layer

The subsequent stage involves planning a socially acceptable
path and navigating towards the target. This step is charac-
terized as a three-level hierarchy within the framework. As
depicted in Fig. 6, these levels encompass:

• Path planning algorithm: The path planning algorithm
utilizes the social map �′ to generate global trajectories
towards specific targets. This algorithm can be linked to
the Dijkstra algorithm’s methodology. It creates a graph
in which each point in the environment is a node, and
the edges are links between nodes. The distance between
the two points determines the weight wi of each node
γi . At this juncture, the global planner takes the informa-
tion from the social map and computes a trajectory for
the robot between two distant points, potentially sepa-
rated by several rooms. If the robot knows the positions
of people and objects, this trajectory can choose those
spaces to navigate where the robot is less disruptive. We
want to emphasize that incorporating human interactions

Fig. 5 a Simulated environment with people and object; b social mapping of the environment, showing social interaction spaces
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and their locations, especially utilizing external sensors,
in the global planning phase is fundamental to enabling
the robot to proactively adapt its path, ensuring socially-
aware navigation from the onset and mitigating potential
disruptions in diverse and dynamic environments.

• Social elastic bands: To accommodate local changes
detected by range sensors (i .e., people moving around
the robot), the planned path is deformed in real-time.
At this point, the algorithm modifies the points of the
original path using the information derived from the
curves Lintimate

k , L personal
k , and Lsocial

k of the individ-
uals who are near the robot’s trajectory. A deformable,
collision-free path called an elastic band algorithm was
first introduced in Quinlan’s work in 1993 [8]. The algo-
rithm is based on imaginary forces acting on the points
along the path. These forces are divided into the internal
contraction force ( fc) and the external repulsion force
( fr ). The contraction force removes slack from the path,
while the repulsion force guides the robot around obsta-
cles. In this work, we present a novel repulsion force
( fs) that considers the social interaction spaces of people
around the robot, predicting the position and anticipat-
ing the robot’s movements. To understand the concept of
social elastic bands, imagine a robot moving along a path
with three successive points (pi−1, pi , and pi+1). These
points determine the contraction force, while the range
sensors provide readings that determine the repulsive
force. When the framework predicts that a person k will
enter the robot’s path, their interaction spaces (Lintimate

k ,

L personal
k , and Lsocial

k ) dictate the social force acting on
the elastic band. For this purpose, the sensor reading
(i.e., laser) is modified at those points correspondingwith
points of the polygons Li (x, y). These three forces, fc,
fr , and fs , work together to influence the final position
of the path point pt+1

i (see Fig. 7). The social elastic band
algorithm proposed in this work extends the original elas-
tic band algorithm to handle better complex real-world
environments that involve human-robot interactions. This
algorithm is described in the next section.

• Control: The elastic band algorithm smooths the robot’s
path and serves as a basis for the feedback control
law that guides the robot. The control law adjusts the
robot’s velocity based on its anticipation behavior. In
other words, the robot’s velocity is modified according
to the distance to individuals in the future. The robot ini-
tially aligns itself with the next point on the trajectory and
then adjusts its forward speed. This forward velocity v f

is multiplied by a gain κv f defined by a sigmoid between
0 and 1:

κv f = 2/

(
1 + e

(dth−d
pt+�τ
i

)·λ) − 1 (5)

Fig. 6 The navigation module features a tri-level hierarchy, delineating
the arrangement and coordination of the distinct elements that contribute
to the robot’s navigation procedures

where dth is the distance to the nearest individual hei ,
dpt+�τ

i
is the distance to the point in the robot’s trajec-

tory at instant time t + �τ , and the gain λ is associated
with the slope of the sigmoid. The parameter λ influences
the slope of the sigmoid; a higher value of λ makes the
transition of the sigmoid function more abrupt, whereas
a lower value makes it smoother. For the purpose of our
experiments and the context of our model, λ is assigned
a fixed value of 0.001, ensuring a balanced transition in
the sigmoid function. This equation controls the robot’s
velocity along the elastic band, ensuring it follows the
planned pathwhile avoiding collisionswith obstacles and
anticipating human movements. Therefore, the control
law complements the social elastic band algorithm, mak-
ing it possible to handle social aspects in path planning
for mobile robots.

3.4 Human–Robot Interaction Layer

The development of socially-aware robots capable of navi-
gating complex human-populated environments necessitates
the ability to engage inmeaningful interactions with humans.
The SNAPE framework addresses this requirement by intro-
ducing the interaction layer. This layer is designed to facili-
tate specific interactions (e.g., Automatic speech recognition,
Text to Speech algorithm, dialoguemanagement, among oth-
ers) that may arise during the navigation process, enhancing
the robot’s social awareness and fostering a more intuitive
human–robot collaboration [7]. However, it’s important to
clarify that this paper does not delve into a detailed exposi-
tion of this interaction layer as it falls outside the scope of
our current work.
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Fig. 7 The basic elastic band algorithm utilizes imaginary forces of
contraction and repulsion, represented by fc and fr , respectively, to
adjust the band until it reaches equilibrium. In this work, we enhance the
original algorithm by incorporating the social force fs that considers the
individual’s personal interaction spaces. The magnitude of each force
is calculated based on the distance between the points along the robot’s
trajectory. In the figure, we can observe the global path in red and the
trajectory ultimately followed by the robot in blue

3.5 Planning Layer

The final layer of our proposed architecture addresses the
robot’s need to plan specific actions to navigate toward
its target successfully. The action planning process within
the context of human-robot interaction for navigation tasks
involves identifying key elements in the planning problem:
an initial worldmodel, amission, and a set of actions (i .e., the
planning domain). In the SNAPE framework, the planning
process relies on the symbolic information contained within
the WM, which utilizes representation nodes as symbols and
graph edges as predicates [7]. To illustrate, a symbol in this
context might represent a specific entity or state in the envi-
ronment, such as a person, an object, or a location. On the
other hand, a predicate could represent relationships or prop-
erties between these symbols, perhaps denoting the distance
between two objects or whether a particular state is achiev-
able from the current configuration. For example, if a node
symbolizes a location ’room’, and another node symbolizes
our robot ’robot’, a predicate connecting these nodes could
represent the relation "robot is in the room", illustrating the
presence of the ’robot’ in the location ’room’. Figure 8 repre-
sents the original and final states after performing the actions.
In the final state, the robotmust change rooms. To accomplish
the task of changing rooms, the robot is required to execute
a sequence of actions, each one meticulously defined within
the planning domain, where this planning domain serves as a
repository of feasible actions available to the robot, structured

around the system’s rules and the environment’s constraints.
Similarly to the preceding layer, it is necessary to make clear
that this layer does not contain any novel contributions in the
current article.

4 Path Optimization Algorithm for
Human-Aware Robot Navigation

This section proposes a navigation strategy wherein the
robot’s trajectory is represented as a sequence of 2D points,
denoted as bubbles (x, y), forming an elastic band. This elas-
tic band is subjected to artificial forces, which deforms in
real time to a short and smooth path that maintains clearance
from the obstacles [8]. The trajectory is defined as an ordered
collection of points, P = pi : p ∈ R

2xN, i ∈ 0..N , encom-
passing two real coordinates representing the robot’s global
position and an integer signifying the bubble’s radius. The
radius is determined by the minimum distance to surround-
ing obstacles, as detected by sensors such as lidar, sonar, or
vision-based systems and by the distance to individuals in the
robot’s path. The radius calculation function,ρ(p), is defined
asR2 ×R

2 → {
R

+ ∪ 0
}
and is implemented through explo-

ration over the laser array and the set of visible points, and
also considering the distance to people. Further elaboration
on the forces and processes impacting the path is provided
below.

• The path planning algorithm requires the robot’s loca-
tion, the goal position, and a time-dependent social map.
As outlined earlier, our approach to global path planning
leverages the established Dijkstra algorithm, which gen-
erates the robot’s path, focusing on dealing with static
obstacles and interaction spaces in the social map.

• Upon establishing an initial path, the number of points in
P undergoes continuous modification through the addi-
tion and removal of elements. The objective is to preserve
a uniform distribution of points along the band, irre-
spective of expansion or contraction. A new point is
incorporated if the distance between two consecutive
points surpasses half the robot’s length. In contrast, two
points are amalgamated into one if their separation is
less than half the robot’s length. This dynamic adjust-
ment guarantees a smooth path for the robot, adapting to
environmental changes as needed. Let di,i+1 denote the
distance between two consecutive points pi and pi+1,
and let Lr represent half the robot’s length. Then, we
can express the conditions for inserting a new point or
merging two points as follows:

{
Insert new point between pi and pi+1 if di,i+1>Lr

Merge pi and pi+1 if di,i+1<Lr

(6)
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Fig. 8 Original and final states post-execution of the defined actions. In the resultant state, the robot is depicted in the process of transitioning
between rooms. This transition mandates the execution of a series of meticulously delineated actions, each residing within the confines of the
planning domain

• The following procedure applies an internal force,
denoted as fc, to the elements of the elastic band, coun-
teracting local curvature. This action aims to straighten
the elastic band, minimizing the robot’s traversal time
and energy consumption. The contraction force, fc, is
computed from the neighboring points as follows:

fc = kc

(
pi−1 − pi

‖pi−1 − pi‖ + pi+1 − pi
‖pi+1 − pi‖

)
(7)

In the above equation, pi denotes the location of the i th

pass along the route, and kc represents a constant that
characterizes the stiffness of the elastic band. When the
three points are collinear, this force becomes null. Fig-
ure 9 illustrates the internal forces over the point pi .

• The subsequent stage involves applying a repulsion force,
fr , to the elastic band, effectively pushing the robot’s
trajectory away from unmapped obstacles, such as mov-
ing objects or people. The magnitude of fr depends on
D(x, y), the shortest distance between point pi on the
path and any obstacles, as determined by the robot’s
sensors. To compute the maximum variation of D(x, y)
concerning point coordinates (x, y), a discrete Jacobian
is employed for each point along the path:

∂D

∂ p
= 1

2δ
[D(p(x) − δx) − D(p + δx) D(p − δy)

−D(p + δy)]T (8)

In this expression, D signifies the nearest distance func-
tionmentioned earlier, p(x, y) represents the route point,
δx and δy are discrete variations in the point’s position.
The Jacobian is subsequently multiplied by the differ-
ence between the highest distance threshold, D0, and the
current value of D(x, y):

fr =
{
kr (D0 − D) ∂D

∂ p p < D0

0 p ≥ D0

}
, (9)

being kr the global repulsion gain [8]. Figure 9 illustrates
the repulsive force. By implementing this repulsion force,

Fig. 9 Initially, the path planner generates a trajectory, illustrated in red,
with various forces exhibited by arrows over the point in the trajectory
pi : attraction, repulsive, and social forces. The social route (after the
equilibrium of the elastic band) is represented as a continuous blue line,
denoted by a triangular symbol

the algorithm ensures the robot’s trajectory adapts to
avoid unmapped obstacles, promoting safe and efficient
navigation through complex environments. However,
these objects do not equally impact the robot’s naviga-
tion, particularly when humans are in the environment.
To address this, we require a new component considering
human activity in the robot’s immediate surroundings.

• The final stage of the process considers the individuals
within the environment and applies a social force to the
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elastic band, which is contingent upon the distance to
social interaction spaces. The algorithm verifies whether
the points of the planned trajectory pi are within any
of the social interaction spaces L defined in the social
layer of the SNAPE framework, and if so, a social force
is created from the affected person or people to alter
and smooth the robot’s route. Denoted as fs , this force
effectively guides the robot’s path away from nearby
individuals. The intensity of the social force, f is , is deter-
mined by Li (x, y), defined as the minimum distance
from point pi to the interaction space of person i , L

space
i

(i .e., Lintimate
i if the trajectory is in the intimate area,

Lsocial
i if the trajectory is in the social interaction space).

For each point pi , the direction of maximum variation
Li (x, y) concerning the coordinates of the point on the
curve Lspace

i is computed utilizing the discrete Jacobian:

∂Li

∂ p
= 1

2δ
[Li (p − δx) − Li (p + δx) Li (p − δy)

−Li (p + δy)]T (10)

Subsequently, the difference between the largest distance
threshold L0 and the current value of Li (x, y) is calcu-
lated, and the outcome is multiplied by the Jacobian:

f is =
{
ks(L0 − Li )

∂Li
∂ p p < L0

0 p ≥ L0

}
(11)

In this expression, ks denotes a general social gain and
signifies the maximum distance to which the social force
is computed. Ultimately, fs constitutes the sum of all f is
associated with individuals in the robot’s vicinity. The
social force fs is shown in Fig. 9.

The force fr adjusts the initial path in response to the cur-
rent environment, rectifying potential planning errors from
imprecise world modeling, loss of robot localization, or
unexpected obstacle intersections during path calculation. In
contrast, the force fs swiftly adapts the robot’s trajectory to
the presence of individuals, considering their social interac-
tion spaces. The forces exerted on each point of the elastic
band are proportional to the distance between the robot and
the person. The elastic band algorithm employed amends the
path to ensure it remains unobstructed by obstacles and peo-
ple, augmenting the distances to each obstacle and supplying
the reactive component necessary for real-time navigation
control. Decoupling these two forces facilitatesmore socially
aware robot navigation, with proximity to people determined
by the selected values for kr and ks .

Ultimately, each point pi is influenced by a combination
of the repulsion force ( fr ), the social forces ( f is ), and the

attraction force ( fc).

pt+1
i = pti + fr + fc + fs (12)

After a brief duration, the entire path attains an equilibrium
point at which all forces are balanced [8]. In Fig. 9, the elastic
band is observed in blue, with the subsequent points in the
trajectory represented as triangles. The original path is repre-
sented in red. In this context, it is important to remark that the
forces within the social elastic bands are indeed not in con-
ventional force units but are rather vector quantities that act
tomodify or adapt the trajectory points, thereby smoothening
the path. This process doesn’t follow the physical definition
of force but adopts a conceptual approach to represent the
influence on the trajectory.

5 Experimental Results

This section presents the experimental results of implement-
ing the social elastic band with prediction and anticipation
method in both simulated and real scenarios, utilizing the
SNAPE framework. We begin by elucidating the compu-
tation of optimal force gains. Subsequently, we assess the
performance of the proposed method within simulated envi-
ronments. Lastly, we apply the method to real-world settings
and discuss the results.

5.1 Computation of Optimal Force Gains

To achieve optimal performance in real-time, the elastic band
agent, which serves to amalgamate global path planning with
local path tracking, requires fine-tuning of three free param-
eters. The optimization of these parameters is essential, as
they correspond to the gains that multiply each force acting
on the band:

• kc: This gain corresponds to the global attraction, which
scales the attraction force following Eq. 7.

• k f : As the global repulsion gain, it multiplies the repul-
sion force as delineated in Eq. 9.

• ks : The social gain scales the social force as described by
Eq. 11.

The setting of the gains, specifically (kc, k f , and ks), is
critical to ensure the efficient operation of the social elastic
band in dynamic environments. Suppose these gain values
are not set accurately. In that case, the band may have diffi-
culty adapting quickly to emerging obstacles or individuals,
which can lead to stability problems, especially in scenarios
where objects are located nearby. Similarly, inappropriate
values negatively influence navigation efficiency and how
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they affect times and distances traveled (i .e., energy con-
sumed). In the context of our SNAPE framework, we have
explored the influence and implications of these parameter
values. First, an examination of the overall attraction gain kc
reveals its fundamental role in guiding the robot to its goal,
and its tuning directly influences the robot’s adherence to the
optimal trajectory, especially in contexts interspersed with
obstacles, without considering the people in it. As for the
global repulsion gain k f , its main function is safeguarding
the robot from possible collisions with objects, ensuring its
respectful distance from obstacles. Very high values move
the robot too far away from the path, extending the time to
arrive and reducing the efficiencyof the navigation algorithm.
Conversely, if the values are too small and inadequate, the
protection of the robot would be in question. The use of the
social force gain ks , included in our paper, can be likened in
terms of effects on navigation to the repulsive force gain k f ,
insofar as it moves the robot away from its optimal route in
exchange for not disturbing people during navigation.

To determine appropriate gain values, we define a function
operating over the robot’s path that yields low values when
the path is executed optimally. This function, situated in the
trajectory space T , consists of four penalty functions, each
multiplied by distinct constants:

G = κ1CHC(ti ) + κ2dt (ti ) + κ3τ(ti ) + κ4dh(ti ) (13)

In this representation, we used a set of well-established
metrics in the scientific community. These included the
cumulative heading changes (CHC), the distance traveled
(dt ), the navigation time (τ ), and the average minimum dis-
tance to a human during navigation (dh). These metrics have
been previously reported in the literature [38, 39] and are
widely accepted as standard measures for assessing social
navigation algorithms.

Formally, CHC is the sum of the robot’s orientation
changes θ through the trajectory,

CHC =
∫ T

0
dθdt (14)

dt signifies the total distance the robot traverses as it navi-
gates through its environment, accounting for all movements
and adjustments made along its route to the destination.

dt =
∫ T

0

√
(
dx

dt
) + (

dy

dt
)dt (15)

τ represents the overall time duration taken by the robot to
complete its journey along the specified path, whereas dh
denotes the average distance maintained between the robot
and the nearest individual encountered throughout its navi-

gation.

dh = 1

T

T∑
i=0

d∗(pi , H), wi th d∗
i = mink(d(pi , h

i
k))

(16)

where {H} are the people visible to the robot from position
pi

In Eq. 13, the coefficients κ1, κ2, κ3, and κ4 indicate each
separate function’s contributions to the overall final function.
These coefficients determine the weighting and relative sig-
nificance of the different components within the equation.
The gains ks, kr , and kc are intrinsic parameters within each
of the functions that constitute G, affecting the behavior and
responsiveness of each. They modify how each component
of G reacts to the environment and influences the overall
trajectory, while the κi coefficients determine the relative sig-
nificance of these reactions within the aggregate operation of
the elastic band. Each term of Eq. 13 is normalized to a value
between [0, 1]. The weights, κ1, κ2, κ3, and κ4, are constant
throughout all the experiments to maintain a consistent eval-
uation framework. In descending order of importance, they
are configured to emphasize the significance of the metrics
dh, τ,CHC, and dt . This configuration was chosen to prior-
itize avoiding immediate hazards and optimizing trajectory
while considering human comfort and path length, ensuring
a balanced and socially-aware navigation strategy in varying
contexts.

To achieve the minimum value of G over a selection of
trajectories, we apply a blend of direct search and stochastic
gradient approaches. First, we set the values of two gains,
leaving one to be adjusted by sampling within a predeter-
mined range. The robot performs 20 distinct routes for each
gain value, and we document the resulting path. For each
case ti , we calculate the various functions CHC , dt , τ , and
dh , which are then incorporated into Gi . We determine the
trajectory t∗ that minimizes G and use this to determine the
third gain. In the next iteration, we set the values of these
gains to correspond to the minimum, sample another gain,
and perform a new set of paths. This process is repeated until
no further improvements are observed in the previous results.
We apply this method to two simulated scenarios, the first of
which is shown in Fig. 10 (top), where the robot navigates
a simple room with a single individual. The planned robot’s
path, social map, and trajectories for two cases (ks = 0 and
ks = 27) are displayed. We have chosen these values to
illustrate two representative cases. With ks equal to zero, we
depict what occurs without our newmethod.With ks equal to
27,we compel the robot, thanks to the social force, to distance
itself from people during navigation, even from the onset of
its movement. We present similar results in Fig. 10 (bottom),
where the scenario remains the same, but two individuals
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Fig. 10 The figure shown displays the following from left to right: a
simulated scenario, the social map, and the planned path. The path opti-
mization is demonstrated using the classic elastic band approach with

ks = 0 and the social elastic band approach with ks = 27. For ks = 27,
the path comes dangerously close to the wall, which is also not socially
acceptable. The optimization results are reflected in the Table 1

Table 1 Principal values and optimized gains utilized in the experi-
ments

Parameter Value Description

kc 10 Global attraction gain

k f 2 Global repulsion gain

ks 10 Social force gain

v fmax 800mm/s Maximum forward robot’s velocity

D0 1000mm Highest distance threshold (to object)

L0 2000mm Highest distance threshold (to humans)

interact with one another- Additional results for different val-
ues of ks can be observed in the accompanying videos.2

In order to provide a clear and quick reference to the prin-
cipal values and gains utilized within our experiments, we
present Table 1 below. This table encapsulates not only the
optimized gains, kc, k f , and ks , derived from the iterative
optimization procedure detailed earlier, but also other values
and parameters crucial to the functioning and outcomes of
our experiments. Each value and parameter have been tuned
and chosen to ensure the robustness and relevance of our
experimental findings.

2 Link to the sample of the tests: https://cloudiepcc.unex.es/index.php/
s/jYxtmxfwDBbyPcR.

5.2 Simulated Scenarios

To validate the real-time path optimization algorithm, we
conducted experiments in simulated environments where
people may be standing or moving in close proximity. This
allowed us to evaluate different scenarios and identify poten-
tial problems that may arise during real-world testing. The
experiments were conducted on a personal computer with an
Intel Core i7 processor, 8GB of DDR3 RAM, and Ubuntu
GNU/Linux 20.10 operating system.

To evaluate the effectiveness of the proposed approach,we
used the same set of social metrics described in 5.1. Besides,
we add the personal space intrusions (�) and the minimal
distance to people d1 and d2. These new metrics have also
been previously reported in [38, 39].

In this scenario, a 65-square-meter apartment with a liv-
ing room, open kitchen, and corridor is simulated using
the Vrep simulator. The simulated environment includes
multiple RGBD cameras and a social robot with an omnidi-
rectional base equippedwith anRGBDcamera. All scenarios
include individuals in the vicinity of the robot. These indi-
viduals are in fixed positions to evaluate the effect of the
combination of forces on the robot’s path adaptation. The
static objects that include social interaction spaces with peo-
ple are the table and the refrigerator, as can be seen in
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Table 2 Navigation results for the experiment shown in Fig. 11

Parameter Simulated environment

Test 1 Test 2 Test 3

Social elastic band Elastic band (EB) Social EB EB Social EB EB

dt (mm) 1757.13 1428.02 1253.30 1199.52 1529.17 1651.62

τ (s) 9.07 10.05 13.21 13.52 10.76 9.92

CHC 4.68 3.77 6.22 5.63 4.18 5.22

d1 (mm) 1416.77 1355.2 1016.65 1009.63 1416.78 985.21

d2 (mm) 1690.81 671.08 871.56 734.75 1690.81 1949.39

� (Intimate) (%) 0 0 0.00 0.00 0.00 0.00

� (Personal) (%) 0 5.45 0.00 3.15 0.00 0.44

� (Social) (%) 0 0 0.00 0.00 0.00 0.00

� (Public) (%) 100 94.55 100.00 96.85 100.00 99.56

the social map. In all the experiments, two people are in
the robot’s surroundings. The Cortex architecture is utilized
for people detection and tracking, estimating future poses,
and the classical version of the SNAPE framework, which
employs the Elastic Band algorithm, is employed for navi-
gation.

5.2.1 Scenario with Static People

Two tests were performed for scenarios with static people.
The results of the two tests conducted, as indicated in Table 2,
suggest that the proposed social optimization approach (ks
= 10) outperforms the classical Elastic Band algorithm (ks
= 0) in terms of human comfort and safety. Figure11 pro-

Fig. 11 Three different simulated scenarios. From left to right: initial set-up, path optimized by the classical elastic band algorithm, and, finally,
the trajectory optimization with the social elastic band

123



International Journal of Social Robotics

Fig. 12 Navigation with a person in motion. From up to down: initial
set-up, path optimized due to social force when the person approaches
the path, and, finally, the trajectory returns to the initial shape when the

person disappears. From left to right: initial set-up, path optimized by
the social elastic band algorithm proposed in this paper, and the social
map at this instant

vides a visual representation of the scenario, depicting the
initial setup, the optimized path using the classical Elastic
Band algorithm, and the optimized trajectory using the social
Elastic Band. The non-social optimization resulted in shorter
distances traveled by the robot in a similar period; however, it
resulted in longer invasions of personal spaces, as indicated
by the high value of �(Personal). In contrast, the social
optimization approach resulted in minimal distances d1 or
d2, avoiding personal space invasions and ensuring a higher
degree of human comfort.

Furthermore, the cumulative heading changes (CHC) and
the navigation time (τ ) indicate that the social optimization
approach prioritizes human comfort and safety and achieves
efficient navigation. The experiment results demonstrate the
proposed approach’s effectiveness in improving the perfor-
mance of social navigation algorithms, making them safer
and more efficient for robot navigation in environments with
people. From the previous results, it is evident how com-
bining a global planner and the social elastic band allows
the robot to maintain prudent distances from people with-
out invading their personal spaces, considering these people
independent of the scene’s objects. In the first test, the robot,
using the proposed navigation framework, moves away from
the person and closer to the furniture. If this social force is

not considered, the approach to the person would be greater,
provoking fewer social situations. The same occurs in the
rest of the experiments. The video of the scenario provides a
visual representation of the results and further supports these
conclusions.3

5.2.2 Scenario with People in Motion

Two experiments have been performed inwhich peoplemove
around the robot. In the first experiment, shown in Fig. 12, a
person walks from one end of the living room to the kitchen.
In the second experiment, shown in Fig. 14, in addition to this
person, a person is walking in the hallway. In these exper-
iments, we aim to validate the anticipation proposed in our
paper by estimating the person’s position at a future point
in time (t = 2s) and reducing the speed if there is a risk
of collision. To observe the behavior of the robot in environ-
ments withmoving people, the speed assigned to the robot by
the controller, together with the minimum distance to people
dmin in the surrounding area, have been analyzed in addition

3 link to the video https://cloudiepcc.unex.es/index.php/s/
jYxtmxfwDBbyPcR.
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Fig. 13 Results of Experiment 1. Evolution of the robot’s speed
throughout the experiment (in red). The graph also depicts the distance
between the robot and the person in blue

to the � values:

dmin = min
p∈H ‖r0 − p‖ (17)

where r0 is the robot pose.
Figures 13 and 15 show the experiment’s results. The evo-

lution of the robot’s speed is analyzed, depicted in red in the
graph, to understand the dynamic adjustments made by the
robot during the experiment. Additionally, the graph displays
the distance between the robot and the estimated position of
the person in blue, allowing for a comprehensive view of
the relationship between speed adjustments and proximity
to humans. A comparative analysis was conducted between
the Classic Elastic Band (EB) algorithm and the new Social
EB algorithm proposed in this paper. Figure 13a shows that
the robot keeps the speed constant during most of the experi-
ment. It is possible to observe how this decrease in velocity is
caused by the robot colliding briefly with the human by look-
ing at the attached video. Conversely, Fig. 13b shows how
the velocity adjusts accordingly as the distance to the nearest
person decreases, in the scenario shown in Fig. 12. Thus, the

velocity value decreases to approximately 200mm/s, allow-
ing the person to navigate safely.

In terms of personal space intrusion, it is possible to
observe in the Table 3 that the use of the Social EB together
with the speed setting is more respectful since the invasion
of the social space � (Social) is only 2.22% of the time. On
the other hand, it is observed that when only EB is used,
the social space is invaded for 5.05% of the time, and even
the personal space ψ (Personal) is invaded for 0.87% of the
navigation time.

A similar behaviour to that obtained in Experiment 1,
shown in Fig. 12, can be observed in the second experiment,
shown in Fig. 14. Similarly, when using only the EB, the
robot’s speed is only reduced when it collides with a person.
Regarding the case of using Social EB, it can be observed that
the speed is slightly reduced without compromising the per-
son’s safety by not predicting a critical position for the first
person. In the case of the second person, predicting his trajec-
tory allows the robot to significantly reduce speed, allowing
the person to navigate without compromising safety.

With regard to the invasion of personal spaces, it is
observed that, as in the previous experiment, the combination
of SEB with the modification of the speed using prediction
reduces the intrusion of the robot into the personal spaces
of the people. Specifically, in the case of the SEB, the value
of the percentage of � (Personal) along the path is 3.94%,
while in the case of the EB, it is 6.33%.

5.3 Real Scenarios

To evaluate the effectiveness of our approach in real-
world scenarios, we conducted experiments using the semi-
humanoid robot Viriato. With the ability to move in all
directions, Viriato stands at approximately 1.7ms tall and
is equipped with various cameras to facilitate navigation
(SLAM) and interaction with objects and people. In addition,
a laser sensor provides continuous environmental feedback.

The experiment was conducted in a 65m2 flat with two
rooms, with the kitchen-living room configuration used for
this test. The other room remained empty and had no impact
on our experimental design. In both the experiments con-
ducted in simulated environments and real-world tests, the
objects inserted into the social layer of the SNAPE frame-
work consist of a table and a refrigerator. Three RGBD
cameras were installed in the experiment room, connected
to the NVIDIA Jetson Nano development kit, to enhance the
detection and tracking of the positions of different individuals
in the environment. In this instance, we have considered two
scenarios where individuals are in static positions, carrying
out tasks typical of an elderly care center.

The CORTEX structure employed in these experiments
consists of various agents presented in our article, distributed
across multiple computers running the Linux Ubuntu 20.04
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Table 3 Person spaces
intrusions for the experiments
shown from Figs. 13, 14 and 15

Parameter Simulated Environment with people in motion

Test 1 Test 2

Social EB EB Social EB EB

� (Intimate) (%) 0,00 0,00 0,00 0,00

� (Personal) (%) 0,00 0.874636 3.94238 6.32506

� (Social) (%) 2.21654 5.05345 5.38287 5.76461

� (Public) (%) 97.7835 94.0719 90.6748 87.9103

Fig. 14 Navigation with two people inmotion. From up to down: initial
set-up, path optimized due to social forcewhen the person(s) approaches
the path, and, finally, the trajectory returns to the initial shapewhen peo-

ple disappear. From left to right: initial set-up, path optimized by the
social elastic band algorithm proposed in this paper, and the social map
at this instant

distribution. The RoboComp framework [40] must also be
installed for the system to function properly. RoboComp is
an open-source framework designed to develop and integrate
various robotic components seamlessly. In our proposal,
RoboComp is integral, providing the necessary tools and
environment for the development, deployment, and execu-
tion of the various robotic components andmodules, enabling
efficient communication and interaction between them. The
environment used to perform the tests is shown in Fig. 16.

During the robot’s navigation through the environment,
it must be mindful of human presence to avoid causing
disturbances. To evaluate the effectiveness of our proposed
algorithm, we compared it to the elastic band optimization
approach. The results are depicted in Fig. 16, where we

observe that our algorithm causes the robot to move fur-
ther away from people, promoting more socially acceptable
behavior.

Table 4 presents the metrics for assessing the algo-
rithm’s performance. The results showed that our algorithm
promotes more socially acceptable behavior in the robot
according to the metrics used in our comparative study.
Specifically, we observed that the robot moved further away
from people and avoided personal space violations. More-
over, our algorithm demonstrated an ability to navigate in a
way that was both efficient and socially aware despite travel-
ing greater distances and taking slightly longer to complete
the task. Our experimental results indicate that our proposed
algorithm could effectively solve social navigation tasks.
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Fig. 15 Experiment 2 results. Evolution of the robot’s speed throughout
the experiment (in red). The graph also depicts the distance between the
robot and the person in blue

5.4 Algorithm Performance Analysis

Pursuing a socially-aware navigation strategy necessitates
functional robustness and computational efficiency, espe-
cially in real-time applications where system resources
are often at a premium. Our SNAPE framework mediates
socially adept navigation without imposing untenable com-
putational demands. The subsequent data elucidates our
algorithm’s computational and memory usage and its con-
stituentmodules.We present a summation of relevantmetrics
extracted during our algorithm’s operation in Table 5. These
metrics encompass CPU and RAMusage both when the soft-
ware components are idle, as well as during robot navigation;
and update frequencies, depicting each software agent’s com-
putational comportment and overall system demands. The
results do not show a significant increase between the two
operating states. Only those responsible for mission plan-
ning and development are slightly affected.

The hardware described in Sect. 5.2 is the hardware used
to obtain the values in Table 5. The refresh rates of the agents
involved are closely related to the data acquisition rate of the
sensors implemented on the robot and in the scene, and to the
size of the grid. Changing the hardware does not necessarily
cause the refresh rate to decrease, unless the computational
characteristics of the hardware cause a bottleneck. The agents
with the highest computational load are those involved in per-
forming operations on the grid and thereforemost susceptible
to refresh rate drops, such as the Human Social Spaces and
Social Mapping agents, which are responsible for the gener-
ation of social spaces and the dynamic updating of the grid.

During the development process, we have prioritised opti-
mising the data acquisition and processing procedures to

Fig. 16 Two real scenarios for the experiments From left to right: initial set-up, path optimized by the classical elastic band algorithm, and, finally,
the trajectory optimization with the social elastic band
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Table 4 Navigation results for
the experiment shown in Fig. 16

Real environment

Test 1 Test 2

Parameter Social Elastic Band Elastic Band (EB) Social EB EB

dt (mm) 1689.50 1393.38 1983.15 1774.25

τ (s) 7.16 5.70 8.50 8.95

CHC 2.22 2.73 3.69 3.05

d1 (mm) 1070.47 852.28 1655.50 1469.45

d2 (mm) 1965.80 2058.88 1622.13 1400.83

� (Intimate) (%) 0.00 0.00 0.00 0.00

� (Personal) (%) 0.00 13.95 0.00 2.90

� (Social) (%) 0.00 0.00 0.00 6.05

� (Public) (%) 100.00 86.05 100.00 91.05

Table 5 Computational and memory usage of algorithm modules

Software agents
(CORTEX
architecture)

CPU idle (%) RAM idle (MB) CPU work (%) RAM work (MB) Update frequency (Hz)

Human social spaces 103 187.8 106 187.8 16

Viriato DSR (robot
data obtaining and
people detection
and tracking)

36.00 147.71 44 158.61 20

Global path planner 50 113.61 74 118.55 20

Social elastic band 32 91.85 38 101.83 17

Controller 24 87.44 34 90.43 10

Social mapping 108 106.98 106.25 130.04 16

minimise associated latency. To ensure the most up-to-date
information possible, we have aimed to keep the agents
responsible for robot control working at a rate of 10Hz,while
the remaining agentswork at higher rates. In the experiments,
a grid cell size of 100mm was used and a minimum time of
62 ms was achieved for the grid updates, compared to the
100 ms period of the robot control.

6 Conclusions and FutureWorks

This paper presents a novel real-time path trajectory opti-
mization algorithm for socially aware robot navigation,
incorporating prediction and anticipation for reasoning in
robot navigation. The algorithm is based on the social elas-
tic band concept, which distinguishes between static objects
and human presence, allowing for the definition of per-
sonal spaces and their relationship to the elastic band. The
algorithm rapidly adapts to environmental changes without
causing disturbance, generating socially accepted paths and
adapting speed to ensure social acceptance during human-
robot interaction.

The proposed algorithm has been integrated into a social
navigation framework and tested and validated through simu-
lations and real-world experiments in various environments.
The experimental results demonstrate that the algorithm
effectively couldmaintain socially acceptable behaviorwhile
adapting its motion to people’s poses. The algorithm’s abil-
ity to anticipate and predict changes ensures efficient and
socially aware navigation, paving the way for the seamless
integration of social robots into human environments.

One of the most prominent challenges arises when the
robot navigates through densely populated areas, where the
wide variety of social interactions and the unpredictable
nature of human movements can impose significant com-
putational demands on the algorithm, potentially hindering
real-time responsiveness and navigation path optimization.
In addition, the approach may encounter difficulties in sit-
uations where human behaviors diverge from predicted
patterns, requiring new advances in anticipatory algorithms
and predictive models to improve the robustness and reliabil-
ity of the social rubber band in dynamically evolving social
contexts.
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Building upon these points, the mobility and perception
capabilities disparities among various robotic forms further
magnify the challenge. While the social elastic band mecha-
nism has shown practical applicability in certain contexts, its
universal application across different robotic systems, from
differential to omnidirectional mobility types, invites further
explorative research and algorithm refinement. Notably, a
robot’s physical and perceptual attributes, whether related to
its size, sensor positioning, or mobility mechanism, are not
merely technical details but crucial facets that determine its
interactive and navigational capability within social environ-
ments.As such, a robot’s specific characteristicsmaydemand
bespoke modifications to the algorithm to preserve socially
respectful and contextually aware navigational behaviors.
The development and validation of the proposed approach in
these contexts could hence foster a more universally appli-
cable and robust socially aware navigation strategy, enabling
robots to navigate with social adeptness across a broader
array of scenarios and robotic platforms.

The proposed algorithm can be further improved by
incorporating more advanced prediction and anticipation
techniques, such asmachine learning and deep reinforcement
learning. Additionally, the algorithm’s performance can be
tested in more complex environments, such as those with
crowds. Furthermore, we anticipate conducting comprehen-
sive user studies to validate our method’s social acceptance
and perceived sociability against various other approaches,
aiming to substantiate our claim with evidence from human
participants. Finally, the proposed algorithm can be tested
on different types of robots to evaluate its effectiveness and
generalizability.
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