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Abstract
This work proposes an innovative people-aware navigation for telepresence robots in a populated environment based on
the estimated inclination of people to interact and the context information. The main novelty of the proposed people-aware
shared intelligence is the ability to fuse the remote operator’s commands with the probability of person-robot interaction—
from both the operator driving the robot and the people around it—and translate it into semi-autonomous approaching and
avoiding behaviors that are not coded a priori but rather dynamically emerge according to the current context-awareness.
Experiments involved 45 healthy participants who evaluated the proposed approach on a real robot. Three conditions have
been tested: (a) the new people-aware shared intelligence; (b) a shared intelligence system integrated with the standard ROS
social navigation layers and; (c) a direct teleoperation (i.e., no robot’s intelligence). Results from our people-aware shared
intelligence system have shown that the robot’s social behaviors were in line with the expectations of the participants in terms
of comfort, naturalness, and sociability and coherent with the findings from previous studies. Furthermore, the proposed
system has facilitated the social interaction between the remote operator and the surrounding people, making the robot more
proactive and without affecting navigation performance.

Keywords People-aware navigation · People approaching · Human–robot interaction · Social signaling understanding ·
Context awareness

1 Introduction

During the COVID-19 pandemic, telepresence robots have
regained importance as a tool to assist humans remotely and
provide alternative communication channels to keep them in
contact. On the one side, telepresence robots are expected to
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implement the commands deliveredby the remote user, on the
other, they should behave in a social manner with the people
around. However, traditional navigation algorithms appear
not appropriate to be used in uncontrolled environments
populated by people. Indeed, such algorithms just optimize
the robot’s movements toward a target position by treating
humans as mere dynamic obstacles. As a consequence, the
social rules respected by people during the interaction are
not considered with the possible risk of invading the personal
spaces [1].

To tackle the aforementioned problems, in recent years,
the concept of people-aware or social navigation has been
introduced to allow the robot to navigate safely and socially
behave with humans. According to [2], three are the main
goals of social navigation: (i) the comfort as the absence
of annoyance for humans in interaction with robots, (ii) the
naturalness as the similarity between human and robot low-
level behavior and (iii) the sociability as the compliance to
explicit high-level social conventions. Nevertheless, most of
the previous literature on social navigation put effort into
the appropriate human–robot distances during the interaction
by using as reference the metrics from the previous anthro-
pological studies such as proxemics [1], and F-formations
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[3]. Indeed, the state-of-the-art social navigation algorithms
have mainly focused on people-avoidance and respecting
social spaces, but have neglected the interaction aspects—
such as the people’s interest in starting the interaction before
approaching—that are fundamental for telepresence applica-
tions.

For instance, imagine using telepresence robots for mon-
itoring person/people at home (e.g., older people), nursing
homes, health facilities, and hospitals, that need social inter-
action and company during the day [4–7]. In such scenarios,
it has been already demonstrated that caregivers and families
can support and reduce social isolation even if remotely (i.e.,
through the robot) thanks to a more interactive communica-
tion channel with respect to phones. The caregiver or family
members act as the operator, while the person alone or in a
group is the user in the same environment as the robot. In
these contexts, different situations can happen: (a) the robot
should avoid a person who does not wish to interact; (b)
human–robot interaction with a person who would like to
start a conversation with the remote operator; (c) the remote
operator would like to start a conversation with a target per-
son/group of people who are not interacting with the robot in
the first instance (e.g., the operator would like to monitor the
actions of a person) and teleoperate the robot in his/her/their
proximity through directional commands. In these situations,
given possible delays in communication due to the internet
connection and a limited view of the surrounding environ-
ment, it is also important to facilitate the teleoperation for
the operator by reliving on the robot’s ability to contextu-
alize the situation and manage the operator inputs, hence to
semi-autonomously behave properly for both interacting or
avoiding people according to the specific situations.

In this work, to the best of our knowledge, we propose
the first people-aware system in teleoperation that man-
ages person-robot interaction from both the operator and
the other people based on their will to interact and trans-
lates them into semi-autonomous approaching and avoiding
behaviors that are not coded a priori. Exploiting the social
signaling contextualization through the shared intelligence
paradigm [8], the robot is able to provide proactive social
behaviors that support the operator during the interaction
with other humans, as pointed out by our experiments.
Moreover, the proposed framework is designed to be oper-
ated with a very simple interface (i.e., based on sending
left/right directional commands) that enables people with-
out previous knowledge to easily use such a system in
telepresence applications. Globally, the people-aware shared
intelligence framework takes into account human intentions
and promotes social-compliant behaviors without affecting
the standard navigation capabilities and facilitating the bi-
directional interaction (i.e., from the operator towards the
other people and vice versa).

1.1 RelatedWork

Over the years, several approaches for achieving social nav-
igation have been proposed. Some approaches try to extend
the traditional reactive navigation algorithms by introduc-
ing other constraints for managing social interactions. For
instance, the most explored techniques are based on the Arti-
ficial Potential Field, like in [9] and Social Force Model, as
in [10]. Both rely on the idea that several forces are exerted
on the robot—the attractive force generated by the targets
and the repulsive derived by the obstacles—and from the
resulting sum the robot’s speed is computed as happens for
instance in the studies [11–13]. Although these methods are
simple to implement and efficiently computed in real-time,
they suffer from the presence of oscillatory behaviors in the
robot’s trajectories due to local minima. Moreover, previ-
ous studies based on Artificial Potential Fields have already
demonstrated the robot might move too close to people [14].
Other approaches have focused on estimating in advance the
next people’s positions rather than adopting pure reactive
navigation such as [15, 16] to choose the robot’s motion.
The main drawback of these methods is associated with the
way of predicting each person’s trajectory—independently
of the others—that can cause frequent robot’s stops related
to the people-people interaction [17]. More recent stud-
ies have overcome this limitation, including [18–20], but
many computation resources are needed and the performance
can be affected by the predictions bias. Similarly, specific
training hardware is required when using data-driven strate-
gies that typically find the best policy to simulate human
behaviors using features from human trajectories gathered
in simulation and/or in the real world. Supervised learning
approaches need to collect and label several samples (e.g.,
time consuming), while deep reinforcement learning strate-
gies make the agent learn to navigate sociably according to
a rewarded function properly created to penalize the unde-
sirable robot’s motion [21, 22]. In between, a recent solution
that does not require any additional overhead for the user is
proposed by Bacchin et al. [23] namely a simple and light
learning approach based on a genetic algorithm optimized
to find the best configuration of the parameters behind the
standard ROS navigation stack while the robot is disturbed
by people and trained to implement social person avoidance.
Nevertheless, such approaches often depend on an intensive
training process and suffer from a lack of interpretability
in the results. Furthermore, in the case of pre-trained algo-
rithms using simulators, there is the additional challenge of
accurately simulating and modeling human behaviors. Cer-
tainly, formalising people and robot behaviors according to
pre-defined and strict rules allow the robot to take explainable
decisions. For instance, Singamaneni et al. in [24] have pro-
posed a deliberative planner tuned according to the specific
human–robot scenario, in [25] Gaussian Mixture Models
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Fig. 1 An illustrative scheme of the main components behind the pro-
posed people-aware shared intelligence. The set of policies creates
probabilistic representations of the robot’s context awareness based on
the robot’s perception, the estimated people will to interact and the
operator’s commands. Fusing these information, a navigation subgoal
is computed and provided in input to the standardROS navigation stack.
The dynamical update of the subgoal allows achieving people-aware
behaviors (e.g., safe navigation, people avoidance, approaching peo-
ple). (Color figure online)

(GMM) are exploited to classify different people behaviors
and select a trajectory with a high social score. However,
modeling suitable people’s behaviors can be very hard and
inadequate to generalise in multiple scenarios.

Our system is designed to keep the proactive and real-time
component with the additional introduction of information
about the people’s motion prediction to prevent robot’s oscil-
lations and take into account the next human actions. Indeed,
with respect to the previous approaches, given our innovative
purpose of fusing the estimated will to interact of the people
with the robot’s perception and the operator’s commands, it
is necessary to combine the current context awareness with
the estimation of the situation in the near future to avoid
abrupt robot’s motions and involuntary stop. Consequently,
the robot dynamically interprets the social signals from the
surrounding people and the operator’s commands without
relying on models provided in input or learned from data,
which are in addition difficult to create.

1.2 Overview & Contribution

By combining both the remote user’s commands and sensor
output, our system aims to interpret the situation in order to
(a) deviate from people who avoid the robot; (b) approach
them when they would like to interact. This scenario adds
further complexity. First, modeling the appropriate robot’s
behaviors is more challenging since they are both dependent
on the operator’s commands and themotions of the surround-
ing humans. Second, we face the further challenge of socially
approaching people when they are inclined to interact with

the robot and vice versa. Only a few studies in the literature
have formulated theories related to the suitable approach-
ing poses for the robot. For instance, Truong and Ngo [26]
have presented the complex model called Dynamic Social
Zone (DSZ) according to the people’s position, orientation,
motion, robot’s field of view and group relationships, even
if they have not considered the real inclination of people to
interact. Moreover, previous works of [27, 28] have studied
how the robot just estimates the most suitable approaching
pose without considering the real people’s will to interact.
Third, the topic is difficult to study since the tests can be
done properly only with real human subjects in both roles
(people in the environment vs. remote user), but most previ-
ous works are validated only in a simulated environment.

To achieve our objective, we broaden the modular frame-
work proposed in [8] that aims to create an innovative
interaction strategy, called shared intelligence, derived from
the equal contribution of the human’s commands and the
robot’s perception in the decision process. The previouswork
has shown that treating different sources of information that
influence the choice of a navigation subgoal (e.g., temporal
destination for the robot) by policies can lead to the robot’s
ability to modify or ignore the operator’s commands and pre-
vent collisions during a traditional navigation task. In this
study, we further expand on this idea by considering the pres-
ence of people in the same environment and their intention
to interact during a socially compliant task. Therefore, the
main novelty of this work is the ability to fuse the remote
user’s commands with the estimation of the will to interact
of the people surrounding the robot to: (a) support the robot’s
navigation respecting the social conventions; (b) approach
people who would like to interact; (c) avoid humans when
they are not inclined to the interaction. Hence, we introduce
new techniques in the previous system to take advantage of:
(a) the estimation of the future positions of all the people
around the robot as in the predictive algorithms and (b) a
formulation of the expected social behaviors (e.g., avoid not
target person, approach a target person, safe navigation with-
out collisions) using policies to provide an initial guess to the
robot about the expected motion. A schematic representation
of the system is shown in Fig. 1. Intuitively, the robot percep-
tion, the estimated people will to interact and the operator’s
commands aremanaged by a set of policies that returns prob-
abilistic maps around the robot’s position. The fusion of the
probabilistic maps is used to compute the robot’s navigation
subgoal. By dynamically updating the probabilistic maps
according to the context and hence the subgoal, socially com-
pliant behaviors are generated (e.g., safe navigation, people
avoidance, approaching people). For clarity, it is fundamental
to specify that the robot equipped with the proposed system
lacks inherent knowledge of any global goal. The global goal
solely resides in the user’s cognition. If necessary, the user
can alter the semi-autonomous robot’s behaviors by sending
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high-level inputs that guide the robot toward the intended
destinations.

In summary, our contributions can be summarized as fol-
low:

• we introduce people-avoidance capabilities in a shared
intelligence system to support the remote user in navigat-
ing in populated environments;

• we propose a solution to approaching people when they
are willing to start an interaction or vice-versa when the
remote user is interested in the interaction, without the
need to trigger the interaction with explicit commands;

• we propose a system that continuously fuses both user’s
commands, robot perception, and estimated people inten-
tions;

• we validate our system with a real robot, involving more
than 40 people in the experiments.

The rest of the paper is organized as follows. Section 2
explains the details of the proposed people-aware shared
intelligence approach by focusing on the new social policies.
Section 3 describes the robotic platform, the experimental
setup and the examined modalities exploited to test the pro-
posed system. Section 4 is dedicated to present the results in
terms of quantitative metrics and answers to a questionnaire
about the experience in real-world experiments. The results
are discussed with respect to other state-of-the-art studies in
Sect. 5 and, finally, Sect. 6 concludes the paper.

2 Shared People-Aware Navigation System

In our system, the generation of people-aware navigation
system is achieved by the fusion of policies related to the
operator’s commands and the robot’s perception to deter-
mine a temporary position, called subgoal, that the robot has
to reach. In line with [8], each policy handles a specific kind
of information influencing the choice of the subgoal such
as the direction provided by the operator, the proximity to
possible targets, the distance from the obstacles, etc. For a
better understanding, a policy is modeled as a decision func-
tion that receives a specific input and returns a probabilistic
grid defined in the area around the robot under the vector
x = (x, y). By fusing all of them in output by the policies,
a new probabilistic grid is achieved that contains the joint
probability of the multiple events influencing the choice of
the subgoal. Indeed, the subgoal is simply computed as the
position with the highest probability in the fusion probabilis-
tic grid. Since the system presented in [8] is designed only
for a safe navigation, it includes the following policies:

• Obstacle-avoidance that generates probabilistic grids
where the probability to set the subgoal in one position is
proportional to the closest distance of the obstacles. The

probability is forced to zero if the position is occupied by
an obstacle.;

• Distance that assigns higher probability to the positions
inside the preferred range of subgoal distances given in
input;

• Direction that favors the positions around the current
robot direction to avoid abrupt directional changes.

• User input that attributes higher probability to the zones
in the direction chosenby the operator via a discrete input.

Herein, instead, we have proposed new policies for mak-
ing the robot exhibit social behaviors that are oriented both
to the interaction with people (e.g., the robot autonomously
stops in front of the target people for the interaction); and the
people-avoidance in accordance to the social norms (e.g.,
respecting the social spaces while navigating). Given the
aim of including social behaviors in the previous system,
we have also proposed a different version of the User Input
policy, managing the user’s commands, to allow a continu-
ous interaction with the robot (e.g., both in the time and in
the space). Indeed, we hypothesized that a finer control of the
robot is more appropriate than the original discrete modality
of interaction proposed in [8]when dealingwith dynamic tar-
gets in unstructured environments. Finally, we havemodified
the strategy for computing the subgoal in order to allow the
autonomous stop of the robot when interacting with target
people.

Illustrative examples of the application of the policies
behind the system to situations of interest are shown in Fig. 2.
In the middle, the resulting probabilistic grids by each policy
are represented, and on the right the fusion of them as well.
The red areas are the most probable to set the subgoal. The
white arrow on the fusion indicates the subgoal chosen for
the robot in each situation.

A detailed formulation of the new policies and the compu-
tation of the subgoalwill be described in the next subsections.

2.1 The Social Policies

To cope with the challenges related to the social navigation
depicted in [2], we have introduced three new social poli-
cies: the Motion Prediction, the Person Social Interaction
and User Social Interaction.

2.1.1 The Motion Prediction Policy

The Motion Prediction Policy estimates the people’s posi-
tions with respect to the robot in the near future. The
aim of this policy is to filter those positions out from the
choice of the subgoal to make the robot implement people-
avoidance functionalities respecting the social spaces. We
have designed theMotion Prediction policy in order to intro-
duce some socially-compliant behaviors such as preventing
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Fig. 2 The picture shows the
application of the proposed
framework in the following
situations: people-avoidance in
a corridor, user’s command to
turn at a crossroad, the
human–robot interaction
triggered by the surrounding
people via the gaze and by the
operator at a couple of talking
people (e.g., when the respect of
group social behavior is
required). On the left, the robot
camera’s view (e.g., the
feedback for the operator) is
reported. In the middle, all the
probability grids from policies
are shown. Stylized 3D models
are used to show the detected
people (in white). Finally, on the
right, the resulting distribution
by fusing the policies is
represented. The white arrow
represents the current subgoal

the robot to cut the street off. Inspired by the work of [12],
we have considered the estimated people’s speed in the
computation of the resulting probability distribution. Given
�MP = {(pi , γi , vi ), i ∈ [1, N ]}where pi = (xi , yi ) indi-
cates the position, γi the orientation and vi = (ẋi , ẏi ) the
velocity of the person i (all are provided by a people tracker,

see Appendix A.2), theMotion Prediction policy is modeled
as follows:

PMP (x,�MP ) =
N∏

i=1

fmotion(x, pi , vi ) · fturn(x, pi , γi )

(1)
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Each person i ∈ [1, N ] contributes to a local minimum in the
probability distribution PMP . fmotion(x, pi , vi ), a bivariate
Gaussian distribution which models the future position of
the person i and the related uncertainty. To predict the future
position, we used the following stochastic process

pi (t + dt) = pi (t) + vi (t) · dt + εt (2)

where εt ∼ N (0, Rt ) is the noise mode and dt = 1 s is the
fixed forward time tomake the prediction. Thus, the expected
future position isμi = pi +vi ·dt and the covariance matrix
is �i = � pi + �vi where � pi and �vi are respectively
the co-variance matrices representing the confidence on the
pose and velocity estimations of each person returned from
the detector. Finally, we get

fmotion(x, pi , vi ) = N (μi , �i ; x) (3)

where x indicates the variable or the Gaussian distribution.
fturn(x, pi , γi ) instead is modeling the fact that a person

can turn and change direction, which is not considered in
the linear model in Eq. 2. We hypothesize that the person
likely maintains his/her current position in the nearest future,
while she/he may decide to change direction afterward. The
distribution is still based on a Gaussian distribution

fturn(x, pi , γi ) = N (γi , σ
2
tr ; θ) (4)

but in this case, the probability decreases with the angular
distance θ = atan2(y− yi , x − xi ) from the current motion
direction γi .

2.1.2 Social Interaction Policies

This subsection aims to illustrate the two Social Interaction
policies included in our system: thePerson Social Interaction
and theUser Social Interaction. The first aims to estimate the
will of interacting from surrounding people with the remote
user, through the robot, based on non-verbal cues. The latter
infers the remote user’s intention of interacting with specific
people predicted by the system. In both policies, we focus
on gaze as a social cue triggering the interaction, since it has
been successfully applied in different human–robot interac-
tion works [29]. Indeed, as demonstrated in other studies,
humans commonly catch the attention of a person by look-
ing at him/her. For instance, in [30], the authors have shown
that the direct gaze captures the attention of people, and in
[31], have demonstrated that gaze is themost important cue to
gather people’s attention, independently of other non-verbal
signals. Based on these premises, we have assumed that a
person interested in interacting with the robot at least looks
toward it in the Person Social Interaction, while the user lets

the robot point toward the target person in the User Social
Interaction if desires to engage in interaction (see Sect. 4.5).

Since we assume that the interaction occurs similarly in
both cases, we used the same distribution to model both the
policies:

PSI (x,�SI ) = 1 −
N∏

i=1

(1 − PSI
i (x,�SI

i )) (5)

For each person i ∈ [1, N ] detected in the scene, we can
define:

PSI
i (x,�SI

i ) = wSI
i (pi , t) · fspace(x, pi ) ·

fgaze(x, pi , αi )
(6)

where �SI
i = (pi , αi , t) and �SI = {�SI

i , ∀i ∈ [1, N ]}.
The first component fspace(x, pi ) models the interaction
space as a ring according to Hall’s theory of proxemics [1].
Formally, it is achieved as a difference between Gaussians:

fspace(x, pi ) = N (pi , �dM ; x) − N (pi , �dm; x) (7)

with �dM = I2(σ 2
dM

) and �dm = I2(σ 2
dm

). The width of

the ring is controlled by the variances σ 2
dM

and σ 2
dm
. Since in

formal circumstances people usually keep distances between
1 and 1.5 m during a voice conversation as stated by [32],
we set σ 2

dm
= 0.75 and σ 2

dM
= 1.0 to ensure that the prob-

ability to interact in the interval [1.0, 1.5] m is ≥ 0.9. The
result is normalized afterward to obtain a proper probability
distribution.

The second component fgaze(x, pi , αi ) selects the portion
of the aforementioned interaction spacewhere the interaction
is expected to take place according to the gaze estimation (see
Appendix A.2). Specifically, it is shaped as:

fgaze(x, pi , αi ) = 1 − N (αi , σ
2
ang ; θ) (8)

where similarly to Eq. 4, θ = atan2(y − yi , x − xi ) while
αi has a different meaning in the two policies. In the Per-
son Social Interaction policy, it measures the current gazing
direction of the person i , which is estimated by a gaze detec-
tor. Hence, the larger the angular distance from the gazing
direction is, the lower the probability is. In the User Social
Interaction policy, αi indicates the direction connecting the
segment between the robot and the position of the person i . In
accordance with [33] which investigates how people arrange
in space while interacting, we assume that the area of inter-
est for human–robot interaction is placed between −90◦ and
90◦ with respect to the person orientation. Therefore, we set
σang = 45◦ to ensure the probability of interacting in that
area is greater than 95%.

Finally,wSI
i (pi , t) is a weighting function that differently

behaves in the two policies. In the Person Social Interaction
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policy, it represents the growing interest of a person to inter-
act while he/she is looking towards the target, the robot in
this case. For this reason, it is just a time-dependent expo-
nential weight, as modeled in Eq. A1 (see Appendix A), that
grows when the person p is looking towards the robot and
decreases otherwise.Thanks to the transient phase introduced
by the exponential rise/decay, we can filter quick glances out
towards different directions. Rise/fall time is empirically set
to 3.0 s. In the User Social Interaction policy, wSI

i (pi , t)
takes into account several cues related to proxemics, the esti-
mation of the “robot gaze” and a time factor based on the
persistence of the robot’s heading towards a person. Specifi-
cally, wSI

i (pi , t) is achieved as the product of the following
three factors, which vary between 0 and 1:

• a distance factorwd(pi )whichmodels the fact that closer
persons are more likely interaction targets.

• a direction factor wdir (x) representing the “robot gaze"
(abbreviated with rg) i.e., the area where the remote user
aims at, that we represented with a Gaussian:

wdir (x) = 1 − N (γr , σ
2
rg ; θ) (9)

where θ = atan2(y , x) and γr is the current robot ori-
entation. To tune σrg , we took inspiration from the human
vision model. A recent research of [34] defined the effec-
tive visual field as the region where the discrimination of
a simple figure can still be accomplished in a short period.
According to this study, the effective visual field extends
within 15◦ of eccentricity, sowe set σrg = 18◦ to bemore
robust against possible oscillations in the robot motion.

• a time-dependent exponentialweightwT (t) (seeAppendix
A) used to filter those situations where the robot quickly
glances at somebody, or conversely when the robot tries
interacting but its heading oscillates due to its motion.
The rise_t ime of wT (t) is proportional to the distance
between the person i and the robot.We suppose the closer
the robot is to the person, the more probable interaction
will happen, and coherently the peak of the exponential
in wd will grow. Instead, when the person i is not spot-
ted by the robot gaze or it is outside the Hall’s Social
Space (i.e., d ≥ 3.6 m), wT (t) falls in f all_time s. The
f all_t ime is set to 3 s to give time to the driver to adjust
eventual unexpected oscillations.

2.2 The User Input Policy

TheUser Input policy handles inputs delivered by the human
to correct the current robot’s behavior. In our system, such
inputs correspond to continuous and sustained streams of
directional commands in the left and right directions. It is also
possible that the user does not deliver commands. Start and
stop commands are also supported by the proposed system

simply to activate/deactivate the semi-autonomous naviga-
tion based on the fusion of the policies.

If the user is satisfied with the current robot’s trajectory,
s/he is not required to intervene. The user can modify the
robot’s trajectory using the input interface to trigger theUser
Input policy via directional inputs only when necessary.

The new version of theUser Input policy creates an expo-
nential distribution:

PU I (x,�U I ) = wU I (t) · e− d2U I (x,AP )

2σU I (10)

where �U I = (AP , t) and dU I (x, AP ) is the Euclidean dis-
tance measured from an application point AP = (xAP , yAP ).
While such an application point was fixed in the previous
version of the system, herein, it can move inside a semi-
circumference with radius R = 1 m centered in the robot’s
position (i.e.,−90◦ and 90◦ from the robot’s position accord-
ing to the user’s inputs), and it is computed as:

(
xAP
yAP

)
= R

(
cos θ(t, dir)
sin θ(t, dir)

)
(11)

where θ(t, dir) depends on the input stream as follows:

θ(t + 	t, dir) = θ(t) + dir · ω0	t · α0	t2 (12)

where 	t is the time interval measured between the two last
consecutive commands of the same type in the input stream,
ω0 = 0.05 rad/s and α0 = 0.05 rad/s2 are respectively
the initial angular velocity and acceleration, dir ∈ {−1, 0, 1}
indicates the current directional command that can be respec-
tively right, no command and left. Time is reset when a
discontinuity in the input stream (e.g., a change in the class
of the user’s input) is detected.

It is worth mentioning that, when no commands are deliv-
ered, the application point remains steady, but the intensity
of the peak starts decreasing according to a time-dependent
exponential weight wCU I (t) (see Appendix A), that we
added in the newest version. wCU I (t) can also filter spu-
rious commands out through the introduction of a transitory
phase. If the distribution is completely suppressed—i.e.,
pU I < ε ∀ (x, y) -, θ(t, dir) is set to zero, so the posi-
tion of the application point is re-initialized in front of the
robot.

2.3 Fusion and Subgoal Update

The fusion strategy is a fundamental step to create a repre-
sentation of the environment that is consistent with all the
policies.

As introduced in Sect. 2, policies are essentially proba-
bilistic grids. In particular, each location x = (x, y) indicates
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the probability that the position x is suitable to place a nav-
igation subgoal, according to a specific policy P . In other
words, P(x1) � 1 means that x1 is a good navigation sub-
goal, P(x2) � 0.5 means that P(x2) is neither a good nor
bad location since placing or not placing a subgoal in x2
are equally probable events. Finally, P(x3) � 0 means that,
surely, P(x3) is not a suitable position for a subgoal, e.g. high
probability of collision. For instance, theObstacle Avoidance
policy assigns low probability to the locations where obsta-
cles are detected—these are like forbidden areas -, while high
probability (i.e., close to 1) is assigned to locations far from
an obstacle since they are suitable for placing the subgoal;
an area in the middle between a circumscribed obstacle and
the free spaces just nearby has a probability around 0.5 as
neither good nor forbidden. Another example is the Social
policies. High probability is given to locations where is likely
to start an interaction, while the rest is set to 0.5. Note that
there are no forbidden areas with low probability in this case
since Social policies do not deliver such information.

In our system, we hypothesize that the fusion should
assign the same weight to the policies related to the user’s
input and the robot’s perception. In this way, we can handle
both the situation where the robot’s perception must over-
come the user (e.g., a wrong input towards an obstacle) or,
on the contrary, when the user must overcome the robot (e.g.,
wrong behavior), without authority switching. Considering
this aspect and in line with the previous version of the sys-
tem from [8], the fusion is the joint probability of all the
simultaneous events modeled by the policies and it is easily
computed as the element-wise product of them. However, in
the future, such weights can be optimised (e.g., via a learn-
ing process) and/or tuned in practical settings in order to
customize the robot’s behaviors and favor the contributions
of specific policies on the other ones.

Once we have obtained the fusion of all the policies, we
can extract the subgoal. The subgoal is computed as the
position with the highest probability in the fusion (i.e., the
maximum). In the case of multiple maxima, we take one at
random.

To make the system reactive to the dynamic motion of
the surrounding people and changes in the environment, the
subgoal St is updated with a fixed frequency (e.g., in our
case set to 5 Hz in accordance with the system proposed by
[35]) rather than at the occurrence of specific events as in [8].
Then, St is forwarded to the navigation module when it is far
enough from the previous one, i.e. when ‖St − St−1‖ < dth
. This strategy allows the robot to autonomously stop in front
of the target people (e.g., the position of the subgoal is not
modified), and re-start moving when its context-awareness
is significantly changed (e.g., thanks to the arrival of the
user’s commands or the people’s disappearance). Therefore,
the operator is not required to explicitly stop the robot to
interact with a person, the proposed system can understand

when and where to stop interpreting the context information
encoded in the fusion of the policies.

3 Materials andMethods of the Feasibility
Study

3.1 Participants

This study involved 45 participants (S1–S45, 26.2±8.3 years
old, 23 female), 3 of them repeated the experiment with dif-
ferent roles (12 of them were asked to teleoperate the robot).
Eight people have already experience with real robots, 24
among them have at least some theoretical knowledge in
robotics, but none of them has previously used amobile robot
as required in this study. All participants voluntarily accepted
to take part in the experiments and signed a written informed
consent in accordance with the principles of the Declaration
of Helsinki.

3.2 Robotic Platform

We used TIAGO++1 from PAL Robotics (see Fig. 1) as
a robotic platform for this study. It is composed of a dif-
ferential drive base (diameter 0.54 m) and a humanoid
upper body. It is equipped with a 2D laser range sensor
on the front for obstacles detections. The robot’s head inte-
grates an Orbbec Astra RGB-D camera which outputs a
640×480@30 fps video stream for people detection. Due
to the lag observed in the video stream provided by the robot
camera, we mounted on its head an Xtion Pro camera char-
acterized by 1280×1024@30 fps as resolution, to provide
visual feedback about the current situation to the operator.
The onboard PC is equipped with an Intel Core i7 (Haswell)
CPU, 16 GB of RAM. We also used some external PCs: a
desktop PC (Intel Core i7-7700 CPU, 16 GB of RAM) con-
nected through Wi-Fi and a laptop (Intel Core i9-8950HK,
16 GB of RAM, NVIDIA GTX 1650 GPU) connected via
Ethernet to the robot to run perception nodes (e.g., people
detector).

3.3 Experimental Setup

To evaluate the proposed system, participants were required
to teleoperate a mobile robot in a shared fashion (i.e., semi-
autonomously), meaning that the robot trajectory depends
both on the human input and the processing of the contextual
information by the policies presented in Sect. 2.

The navigation task tested during the experiment was
designed to assess the multiple features of our shared

1 https://pal-robotics.com/robots/tiago/.
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intelligence system: the traditional obstacle-avoidance capa-
bilities, the people-avoidance, and the social functionalities
including the estimation of the person’s intention to interact
with the robot and the robot’s interaction with a group of
people.

We involved four people per experiment with different
roles: (i) the operator that drives the robot, (ii) one walking
person in a corridor, (iii) two static peoplewho, firstly, look in
different directions (one gazing at the robot, the other ignor-
ing it), and thenmove to another positionwhere they talk each
other without watching the robot. In detail, the social naviga-
tion task is performed in the area illustrated in Fig. 3, where
we set three fixed target positions and two Interaction Sta-
tions thatweremarkedon thefloor. In the beginning, the robot
is placed in the S position. Then, the operator should drive
the robot along the corridor where a person P1 is walking
towards it (along a straight line), subsequently to the targets
T 1 and T 2. At this point, the robot should approach the first
Interaction Station where only person P3 is gazing at it to
communicate her/his desire to interact, while the person P2
is looking in a different direction (see Fig. 3). If the social
navigation task is executed correctly, the robot stops in front
of P3 and the operator is instructed not to send directional
commands for around 30s to simulate a dialogue. After that,
people startmoving as a natural consequence of the end of the
interaction, as illustrated in Fig. 3. The operator is required to
send the appropriate left and right commands to reach target
T 3 and then the second Interaction Station, simultaneously
people P1 and P3 move there and talk together without gaz-
ing at the robot. The latter is expected to approach people P1
and P3 per effect of the human’s commands. The robot stops
for a few seconds for interacting with people, and finally, the
operator has to drive the robot back to the target T 1. During
all the social navigation tasks,2 the operator does not look
directly at the robot, but he/she receives only the robot’s
camera streaming and position in the environment map as
feedback. Although the stop command is supported by our
system, in our experiment, we explicitly instructed partici-
pants not to use it, since we wanted to test our social policies
and the capability of the system to autonomously take deci-
sions (e.g., stop near to an interaction target) based on the
environmental cues.

Participantswere instructed on the task in a familiarization
phase inwhich the experimenter explained the dynamic of the
interaction as reported above and they acquired confidence
in the system. However, subjects were not asked to follow
specific trajectories. The operator was free to send high-level
direction commands (i.e., turn left/turn right) or not to the
robot at will. The experimenter has only indicated to the

2 Illustrative video: https://cloud.dei.unipd.it/index.php/s/
3YB6YPbiHwCzQHp.

Fig. 3 The experimental setup. The operator is required to teleoperate
the robot relying only on the robot’s camera steaming from the starting
position S. A possible robot’s trajectory is represented in red. The social
navigation task involves three other people P1–P3 per run. First, P1
walks towards the robot in the corridor to evaluate the person-avoidance
ability. Then, we set three target positions T 1–T 3 (marked with blue
circles) to test the traditional navigation functionalities and two Inter-
action stations for validating the ability of the system to infer the will
to interact respectively from the surrounding people and the operator.
The task ends when the robot comes back to target T 1. (Color figure
online)

surrounding people when starting to move without providing
any information on how to do it.

3.4 ExaminedModalities

In this study,we evaluate the performance of our shared intel-
ligence system considering the following three modalities,
which we named:

• SocShIn: the human teleoperates the robot via a 2-class
keyboard (turn left vs. turn right). The robot is endowed
with the whole shared intelligence system described in
Sect. 2 to achieve semi-autonomous teleoperation.

• ShIn+SocLa: this condition aims to assess the perfor-
mance of the proposed system vs. an approach available
in the literature for social navigation. With this purpose,
we focused on social_navigation_layers3, the current
standard in ROS for social navigation, proposed by [36].
However, to make the two systems comparable, we have
kept the basic policies related to obstacle avoidance and
user’s input using a basic version of the shared intelli-
gence system deprived of the new Social policies (see
Sect. 2A). Hence, in this modality, the Social policies are
replaced by the social_navigation_layers, that were
integrated into the ROS navigation stack to achieve social

3 http://wiki.ros.org/social_navigation_layers.
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navigation. In this modality, the human controls the robot
through the same 2-class keyboard.

• Joy: the human directly (i.e., manually) teleoperates the
robot namely the operator commands are implemented
by the robot without considering the context information
and any kind of robot’s assistance. In this modality, no
shared intelligence system is exploited. This condition is
used as a reference.

Participants were required to perform two repetitions (i.e.,
runs) of the social navigation task described in Sect. 3.3 per
modality. The testing order of the condition was random to
avoid possible biases due to learning/fatigue effects. Overall,
the experiment lasted about 1.5 h per participant.

After a total of 12 experiments, we collected 72 runs. We
had to discard 12 runs because of failures of the robot’s local-
ization (out of the scope of thiswork), ending upwith 60 runs,
20 for each modality.

3.5 EvaluationMethodologies

In this work, we consider the following metrics:

• navigation_accuracy: percentage of reached targets. We
consider a target reached with a confidence interval of
0.54 m (i.e., the robot footprint diameter).

• mean_accs: it measures the average acceleration over the
trajectory. The smaller acceleration is, the smoother the
trajectory is.

• concentration_time_ratio: it is defined as the ratio
between the time spent by the operator in delivering input
commands to the robot and the total duration of the task.

• fréchet_dist: it measures the Fréchet distance [37]
between the robot and the person’s trajectory during the
people-avoidance in the corridor, as

F(P, Q) = inf
γ

max
t∈[0,1]{d( P(γ (t)) , Q(γ (t)) )} (13)

where γ (t) is a parametrization of the curves P and Q
and d is the Euclidean distance.

• interaction_accuracy: percentage of succeeded interac-
tions. We consider an interaction successful when the
robot stops at a maximum of 2m away from the person
in accordance with [38] and stays steady for at least 10 s.

• interaction_social_dist: it measures the Euclidean dis-
tance between the robot andpeople during the interaction,
i.e., when the robot automatically stops near the target
person.

• discomfort_freq: it measures, in percentage, the number
of times the robot violates the Intimate Space, i.e. 0.45
m, when approaching a person.

The first three metrics are associated with navigation perfor-
mance. We want to evaluate the robot’s capacity of reaching
some targets, contextualizing the human’s commands, and
performing smooth trajectories. Then, we focus on the two
main functionalities of the proposed system: (i) avoiding
people while moving, (ii) approaching people for interac-
tion purposes. The people-avoidance capability is measured
using the fréchet_dist: the larger the distance from the person
is, themore comfortable and acceptable the trajectory results.
The remaining metrics assess the robot’s ability to accom-
plish social interaction tasks like autonomously approaching
the desired person.

Moreover, we administered a questionnaire to participants
about their experience and the perception of the human–robot
interaction, at the end of each modality. With this purpose,
the surveys were different according to the role of the partic-
ipant in the experiment (e.g., the operator, the one walking
in the corridor, and the static interacting people). The set of
questions, listed in Table 1, were taken from previous studies
in the field of people-aware navigation and teleoperation [8,
39] and adapted to our setup. The respondent was asked to
choose where her/his position lies on a 5-point Likert-type
(1 = Strongly Disagree, to 5 = Strongly Agree with a given
sentence4). Finally, once completed the whole experiment,
we asked participants which modality they preferred.

Acquired data have been statistically analyzed.
A Kolmogorov–Smirnov test was performed to test the
normality of each distribution. Given the results of the afore-
mentioned on the data related to the performances of the
systems, a One-way ANOVA (p < 0.05) was performed tai-
lored by post hoc t-tests with Bonferroni for considering the
multiple comparisons (i.e., p < 0.05/3) [40].

For the data analysis of the Likert-scale questions based
on human evaluation, the Kruskall–Wallis tests were applied
(Kolmogorov–Smirnov test p > 0.05) tailored by Dunn
post hoc tests with Bonferroni correction given the multi-
ple hypotheses tested (i.e., p < 0.05/number of questions).

4 Results

4.1 Navigation Performance

Although this work aims to introduce socially compliant
behaviors, it is important the system maintains the tradi-
tional navigation performance (e.g., avoid static obstacles,
considering the operator’s inputs). From this point of view,
the experiments were successfully completed by all the par-

4 We used different anchor labels for Q2 in social interaction ques-
tionnaire (i.e. 1 = Too close, 3 = Adequate, 5 = Too far) to have a
global vision of people’s perception about robot positioning during the
interaction.
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Table 1 Questionnaires
administrated per participant’s
role (↑= higher score is better, ↓
= lower score is better)

(a) Operator (teleoperation)

Q1 It was easy to control the robot. (↑)
Q2 The robot’s behavior seemed natural. (↑)
Q3 The robot’s behavior was in line with your intentions. (↑)
Q4 The robot was responsive to commands. (↑)
Q5 You were afraid that the robot would collide with people. (↓)
Q6 The robot made interacting with people easier. (↑)
Q7 You would use the robot in a real context. (↑)
(b) Person walking in the corridor (person-avoidance)

Q1 Did you feel comfortable moving close to the robot. (↑)
Q2 You felt scared of the robot. (↓)
Q3 You were afraid that the robot would collide with you. (↓)
Q4 The robot has bothered you. (↓)
Q5 You would use this robot in a real context. (↑)
(c) Static person interacting with the robot (social interaction)

Q1 You felt comfortable interacting with the robot. (↑)
Q2 Rate the distance kept by the robot during the interaction. (See Footnote 4)

Q3 You were afraid that the robot would collide with you. (↓)
Q4 The robot’s behavior was in line with your expectations. (↑)
Q5 You felt scared of the robot. (↓)
Q6 You would accept the presence of the robot in a real context. (↑)

ticipants and no collisions happened in the three examined
modalities. Figure 4 shows the heat maps of the trajectories
performed by the robot. The results are in linewith our expec-
tations. In the case of SocShIn and ShIn+SocLa, there ismore
variability in the trajectories than the Joy due to the attitude
of the participants (more in control vs. more robot’s auton-
omy), especially in the less constrained areas (e.g., around
the targets T 2 and T 3). However, a greater number of out-
liers appear in the ShIn+SocLa than in SocShIn (e.g., in the
area around the Interaction stations).

Most of the navigation targets were correctly reached
over the runs. We achieved a navigation_accuracy equal to
92.86±11.57%, 79.35±16.23% and 75.0±19.37% respec-
tively in Joy, SocShIn and ShIn+SocLa. Coherently with the
trajectories, missing targets mainly occurred at T 2 and T 3.

Nevertheless, the trajectories in SocShIn and ShIn+SocLa
result smoother than Joy by analysing the average accel-
eration reported in Fig. 5. This aspect is fundamental for
people’s comfort and for easing the predictions of the next
robot’s motion. We found statistical differences among the
three distributions (One-wayANOVA, pA = 1.1×10−13), in
particular, the acceleration in both SocShIn and ShIn+SocLa
were significantly lower and more constant than Joy (i.e.,
respectively pt = 6.07 × 10−9 and pt = 2.56 × 10−8

achieved via post hoc tests).

Finally, sincewe are focusing on navigation during teleop-
eration, it is worth mentioning the concentration_time_ratio
to evaluate the time dedicated by the operator to deliver com-
mands and the level of the robot’s autonomy guaranteed by
the system. Surely, the concentration_time_ratio is 100% in
Joy because the operator directly teleoperates the robot. The
other two conditions reported a score respectively of 26.70%
for SocShIn and 28.49% for ShIn+SocLa, with a slightly
reduction in the proposed system.

4.2 People Avoidance Performance

This section assesses the people avoidance capabilities of the
system by focusing on the fréchet_dist. Figure 6 highlights
the distributions resulting from the interaction between the
walking person and the teleoperated robot in the corridor
(see Fig. 3), compared to Hall’s intervals. It is worth notic-
ing that both SocShIn and ShIn+SocLa significantly perform
better than Joy as qualitatively emerged from the trajecto-
ries (see Fig. 4 there is a more marked deviation in the
two conditions than Joy). The One-way ANOVA returned
a p-value pA = 3.6626 × 10−9, while the post hoc t-
test pt = 2.2387 × 10−10 between Joy and SocShIn and
pt = 2.1699×10−7 between Joy and ShIn+SocLa. Although
most values belong to the Personal Space, the results are
consistent considering the narrow area around the corridor
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Fig. 4 Heat maps of the trajectories completed by the robot in the three
tested modalities. Maps resolution is 15cm. The color palette ranges
from blue (less frequent) to yellow (more frequent). The dashed line
represents the average trajectory. (Color figure online)

(i.e., corridor width = 2.20 m, robot diameter = 0.54 m).
No significant difference has been found between SocShIn
and ShIn+SocLa (pt = 9.6331 × 10−1). This result sug-
gests that the system provides comparable people-avoidance
functionalities with the current ROS standard. However, it is
worth highlighting that, the robot never crossed the Intimate
Space in SocShIn as happened with ShIn+SocLa. Further-
more, by focusing on the distributions, the variance resulting
from the proposed system is less than the one in ShIn+SocLa,
implying more stability. Summing up, we can state that the
performance of SocShIn and ShIn+SocLa are comparable in
terms of people avoidance, with a slight advantage for the
first one. However, it is worth highlighting that SocShIn has
the advantage to interact with the other policies in the fusion
and directly contribute to the merge of the different informa-
tion behind the choice of the subgoal.

Fig. 5 Distribution of the mean_accs per modality. On each box, the
red line indicates the median, and the bottom and top edges of each
box represent the 25th and 75th percentiles, respectively. Statistically
significant differences are reportedwithOne-wayANOVA tailored by t-
test post hoc tests with Bonferroni correction, ***p <<< 0.01. (Color
figure online)

Fig. 6 Distribution of the fréchet_dist per modality. On each box, the
red line indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. Statistically
significant differences are reported with One-way ANOVA tailored by
t-test post hoc tests with Bonferroni correction, ***p <<< 0.01. The
colors highlight the Hall spaces [1]. (Color figure online)

4.3 Interaction Performance

It is worth reminding that the most novelty contribution
of this work is associated with the robot’s capability of
autonomously triggering the interaction and inferring the
target people. By considering both those aspects in verify-
ing the number of times the robot correctly stopped towards
the target people at Interaction stations, we achieved a
interaction_accuracy of 63.04% in SocShIn vs. 26.19% in
ShIn+SocLa. Surely, as expected, the interaction_accuracy
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Fig. 7 Distribution of the interaction_social_dist permodality.On each
box, the red line indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. The colors
highlight the Hall spaces [1]. (Color figure online)

in Joy was 100% because, in this case, the robot stops
only per effect of the user’s decision (e.g., no assistance
from the robot). By analysing the proxemics through the
interaction_social_dist in the successful interactions that we
represent in Fig. 7 with respect to Hall intervals introduced
in [1], no significant difference emerged from the One-way
ANOVA test (pA = 7.3369 × 10−1). This outcome sug-
gests the proposed system (i.e., SocShIn) is able to keep the
expected distance from the target people as it would happen
when the operator chooses to stop (i.e., Joy). The compar-
isons with ShIn+SocLa might not be relevant for the limited
number of correct interactions (i.e., 26.19%). Nevertheless,
considering the successful interactions, the discomfort_freq
achieved inShIn+SocLa appears higher than inSocShIn. This
might suggest that ShIn+SocLa violates the Intimate Space
of peoplemore often than the proposed system. Furthermore,
coherently with the results shown in Fig. 4, the trajectories
tend to be more widespread in ShIn+SocLa than in SocShIn,
suggesting the operator’s difficulty in stopping at Interaction
Stations as also arisen from the interaction_accuracy. More-
over, in ShIn+SocLa, the robot did not respect the group
behavior passing in the middle between the people P1 and
P3 twice vs. no violations in the other two conditions.

4.4 Human Evaluation

Herein, we analyse the results from the three kinds of ques-
tionnaires administered to collect subjective feedback about
the teleoperation, the people-avoidance, and the social inter-
action (see Table 1) in the three modalities. Figure 8 reports
the results per typology of participants: the operators (i.e., 12
answers), the people walking in the corridor (e.g., 12 answers
from P1 see Fig. 3) and the static people at the Interaction
stations (e.g., 36 answers from P1–P3 see Fig. 3). The left
vertical axis refers to the number of answers, while the right

one to the questionnaire score (1 = Strongly Disagree, to 5 =
Strongly Agree). The average of the questionnaire scores is
markedwith a grey circle. Furthermore,we evaluate the ques-
tionnaire scores with respect to the distribution of answers.
To simplify the visualization, we gathered the questionnaire
scores into three options (1–2 = Disagree, 3 = Neutral, 4–5
= Agree), that we represent with different intensities in the
colors associated with the modalities.

4.4.1 Teleoperation Questionnaire

The operators were asked to evaluate their experience focus-
ing on the teleoperation and the assistance provided by the
robot in the social navigation task, the responsiveness of the
systems, and the consistency with the operator’s intentions.
The results are shown in Fig. 8a.

We found statistical differences in the ease of controlling
the robot (Q1, Kruskal-Wallis test pK = 0.015), consis-
tency of the robot behaviorwith the operator’s intentions (Q3,
Kruskal-Wallis test pK = 0.021), responsiveness to opera-
tor’s commands (Q4, Kruskal-Wallis test pK = 0.018), and
the ability of system to facilitate the interaction with people
among themodalities (Q6, Kruskal-Wallis test pK = 0.026).
However, examining the Dunn post hoc tests, no significant
differenceswere observed between Joy and SocShIn (Q1-Q7,
Dunn post hoc test, pD > 0.05). This result suggests that the
semi-autonomous robot’s behaviors in SocShIn reflected the
operator’s intentions and the expected reactivity much like
when they were under direct human control.

The robot endowed with ShIn+SocLa seemed more diffi-
cult to control (Q1, Dunn post hoc test, pD = 0.025), less
coherent with the operator’s expectations (Q3, Dunn post hoc
test, pD = 0.017), and less responsive (Q4, Dunn post hoc
test, pD = 0.015) than in the Joy modality, but such differ-
ences were not statistically significant anyway considering
the Bonferroni correction.

Analyzing question Q5 about the perception of collid-
ing with people, the scores related to both SocShIn and
ShIn+SocLa are slightly lower than the ones in Joy, suggest-
ing that drivers trusted the autonomous people-avoidance
capabilities of the systems. However, the answers to ques-
tion Q6 confirmed that it was easier to interact with people
by the operator in the SocShIn than ShIn+SocLa (Q6, Dunn
post hoc test, pD = 0.045), even if the difference was not
statistically significant by applying the Bonferroni correc-
tion. Finally, Q7 shows that the participants would prefer
teleoperating the robot in a real-world scenario via SocShIn
than ShIn+SocLa and, almost as much as in Joy. Further-
more, 66.5% of them have chosen SocShIn as their favorite
system. Overall, SocShIn achieved greater consensus than
ShIn+SocLa from the operator side.
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Fig. 8 Results from the three
questionnaires related to
teleoperation, the
people-avoidance and the social
interaction. The left vertical axis
reports the distribution of the
answers, while the right one
refers to the questionnaire score
(1 = Strongly Disagree, to 5 =
Strongly Agree). The average
and the standard deviation of the
questionnaire scores are shown
(through a grey circle). The
different color intensities in the
bars represent the correlation
between the distribution of the
answers and the questionnaire
scores in the three modalities.
For this purpose, we converted
the questionnaire scores into
three options (1–2 = Disagree, 3
= Neutral, 4–5 = Agree) for
simplifying the visualization.
Statistically significant
differences are reported:
*p < 0.05, **p < 0.01,
***p <<< 0.01. (Color figure
online)
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4.4.2 Person-Avoidance Questionnaire

People who walked in the corridor close to the robot were
required to assess the robot’s motion and respect the social
distance. It is worth highlighting that the results fromQ1–Q2
in Fig. 8b show the proposed system is perceived as slightly
more comfortable than the other modalities and reduces
the people’s fear of the robot than Joy. Consistently, from
answers to question Q3, SocShIn is considered the safest sys-
tem since people had the least perception of crashing with
the robot. The remaining questions show homogenous scores
between SocShIn and ShIn+SocLa in accordance with the
results from the objective metrics.

We did not find significant differences (Q1-Q5, pK >

0.05 Kruskall–Wallis tests) among the modalities in the
answers to the person-avoidance questionnaire, suggesting
that the three systems were comparable according to the peo-
ple who walked in the corridor.

4.4.3 Social Interaction Questionnaire

Static people interacting with the robot were requested to
judge the robot’s stop and the observation of the proxemics
rules during the interaction. The results in Fig. 8c report very
similar scores in terms of comfort (i.e., Q1) and the level
of fear towards the robot among the modalities (i.e., Q5).
Considering answers to question Q2 about the distance kept
from the robot during the interaction, SocShIn is slightly
more appropriate than the other two systems. Coherently,
responses to question Q3 confirm that in SocShIn the robot’s
behaviors were perceived as the least intimidating (less per-
ception of collision) than the other modalities. Significant
differences were found in the scores related to question Q4
about the consistency of the robot’s behaviors with the peo-
ple’s intentions (Q4,Kruskal-Wallis test pK = 3.184×10−4)
and question Q6 about the acceptance of using the system in
a real context (Q6, Kruskal-Wallis test pK = 0.043). The
Dunn post hoc test revealed that ShIn+SocLa significantly
differed from Joy in terms of coherence of the robot’s behav-
iors with the surrounded people’s intentions (Q4, Dunn post
hoc test, pD = 1.82×10−4). In addition, the robot endowed
with ShIn+SocLa seemed less accepted outside the labo-
ratory (Q6, Dunn post hoc test, pD = 0.037) than in Joy
modality, but the difference was not statistically significant
by applying the Bonferroni correction. The scores related to
SocShInwere comparable to the ones associated with Joy for
both the questions (Q4, Q6 Dunn post hoc test, pD > 0.05).
Therefore, a higher level of agreement was observed again
in favor of SocShIn compared to ShIn+SocLa among people
interacting with the robot.

Fig. 9 Experiments showing the functioning of the system in three
edge cases: a an obstacle is in front of a target person who wishes to
interact with the robot; b a person stops to the left of the robot and
continues looking at it. The areas to the left and right of the robot have
similar environment configurations; c the operator does not wish to
interact with the target person identified by the system in b and sends
directional commands to avoid the interaction. The fusion of the policies
is shown on the left, with the User Social Interaction policy overlayed
in transparency, and the subgoal is represented via a white arrow. On
the right, the robot’s camera image is shown per each situation

4.5 Experiments on Select Edge Cases

The main experiment reported above was designed to test
the overall capabilities of the system and in particular the new
social policies. We have verified the performance in typical
situations that can happen with telepresence robots for mon-
itoring people and we focused on the evaluation according
to the different roles of the people involved. However, it was
not possible to experiment many edge cases due to time con-
straints. As stated in Sect. 3.4, each experiment took 1.5h on
average which is already demanding for volunteers.

Herein, we present supplementary qualitative results
achieved from experiments on select edge cases that we
performed later to verify the fusion of the policies and the
subgoal resulted in the following edge cases: (a) an obstacle
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is placed in front of a target person who wishes to interact
with the robot; (b) the robot is in themiddle of two areas com-
parable in terms of environment configuration (e.g., similar
positions of obstacles). Then, a person stops to the left of the
robot and continues looking at it; (c) in the previous situation,
the operator, teleoperating the robot, does not like to interact
with the target person identified by the system (such a per-
son continues gazing the robot), and hence, sends directional
commands to avoid the interaction. Figure 9 shows the fusion
of the policies in these situations by highlighting the activa-
tion of the Social Interaction policies and the corresponding
subgoal represented via a white arrow.

In the first edge case in Fig. 9a, the subgoal is placed
in front of the target person and before the obstacle. It is
worth noticing that the Obstacle-avoidance policy prevents
any collision, while the final interaction region is shifted to a
suitable location considering both the presence of the person
and the obstacle.

As regards the second scenario in Fig. 9b, as expected,
the surrounding person that continues looking at the robot
over time makes the Person Social Interaction activate (e.g.,
the related peak in the probability distribution can be seen in
Fig. 9b). The operator leaves the robot heading towards the
same person, and hence, the User Social Interaction policy
infers the operatorwould like to interactwith the person.Both
Social Interaction policies are consistent and the subgoal is
placed close to the target person for starting the interaction.
Differently, in the last situation in Fig. 9c, if the operator
does not wish to interact with the target person and sends
directional commands (i.e., right in the illustrated example),
the User input policy is activated (e.g., a new peak appears
on the right), the robot points towards a different direction as
a consequence. Therefore, theUser Social Interaction policy
infers the operator would not like to interact with the person.
The fusion is modified accordingly and, the subgoal is set on
the right, which differs from the previous scenario.

The qualitative results achieved in these experiments on
select edge confirm the expected functioning of the proposed
system in such edge cases.

5 Discussion

In this paper, we propose a system for achieving social nav-
igation behaviors during teleoperation. The main novelty of
this work is to show for the first time the robot’s capac-
ity to infer the will to interact from the operator and the
surrounding people and then behave consequently. Further-
more, the presented system is also able to manage people
avoidance behaviors respecting social distances and group
formation. One relevant aspect with respect to other previ-
ous approaches consists of the way to choose the robots’
behaviors. In our system, both traditional navigation and

social behaviors are not coded and activated at the occur-
rence of specific events, on the contrary, they result from the
fusion of the probabilities distribution provided by policies,
making the system modular and appealing. From our tests
involving 45 participants, the system shows socially compli-
ant behaviors coherently with the situations (e.g., avoidance
and interaction) and the social norms without affecting the
traditional navigation capabilities. In addition, by evaluating
the examined modalities, overall, SocShIn performs better
than ShIn+SocLa considering the quantitative metrics and
the questionnaire. The robot’s trajectories are simpler and
easily predictable by the surrounding people who feel more
comfortable.

Results comparisons with other social navigation studies
may be complex and inappropriate due to different testing
conditions and experimental setups. However, it is worth
highlighting that our results are consistent in terms of prox-
emics social ruleswith thefindings fromprevious studies. For
instance, the recent work by Teja et al. [24] presents a tun-
able human-aware navigation planner with different modes
to manage a variety of contexts populated by people. In their
experiments, the robot keeps an average minimum distance
of 1.29 m from the person in open spaces and 0.66 m and
0.89 m respectively in narrow and pillar corridors, which
are in line with the distances in the range [0.61 m,1.53 m]
(1.28 m on average) achieved in our tests (see Fig. 6). Sim-
ilarly, our results satisfy the constraints found in the study
proposed in [41], where different passing distances between
the person and the robot in a corridor have been evaluated
in terms of acceptability in a setup similar to ours. Specif-
ically, the authors found that people prefer robots to stay
out of their intimate space (≤ 0.45 cm) when they pass
each other in a 2.5 m wide corridor, which always occurs
in the SocShin modality in our experiments. Furthermore,
the minimum robot-distance in SocShin is also in line with
the real-time results in [14] (i.e., 0.61 m in our vs. 0.56 in
[14] respectively), that already demonstrated to be safer with
respect to other state-of-the-art approaches based on social
forces (e.g., APF, FTG-SC, SPF-SC).

Several studies in the literature have focused on person-
avoidance that could be mentioned, however, since the
novelty part of this work is based on the robot’s prediction to
interact in a social manner, herein it is worth discussing the
interaction performance. For this purpose, for instance, we
notice that our results have been consistent with the findings
fromRepiso et al. [35] that have proposed a method based on
the Social Force Model to enhance the side-by-side naviga-
tion. Such a system is designed to accompany and approach
walking people, as well as predict the best meeting point
considering the group formation and the future target per-
son’s position. Although the scenario and the application are
different than the oneproposed in this paper,most of the inter-
action_social_dist in our experiments belong to the social
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Fig. 10 Qualitative comparison of robot’s approaching to social group
formation. a The dynamic social zone (DSZ)model from [26, 42] show-
ing the approaching pose for the robot with respect to person P1 and
person P2. b The output fusion from the proposed SocShIn when the

robot is approaching two people. c The DSZ model in a and the result-
ing fusion in b are overlapped. Black arrow and white arrow represent
the robot’s approaching poses computed respectively with DSZ and
SocShIn

space (average dour = 1.279± 0.3748m), and precisely to the
interval [1.25–2m] estimated as good performance by [35]
according to their validation both in simulation and on the
real robot. Similarly, the works from [26, 42] have proposed
the concept of the dynamic social zone (DSZ) to represent
the space around humans and predict the best approach-
ing robot’s pose to people. Among the set of metrics, we
have estimated the SDI index from [26] used to evaluate the
approach direction of the robot to the humans. On average,
we have obtained a value of 0.66 on our data which is coher-
ent with the ones reported by authors in the most similar
conditions (i.e., 0.72 when the robot is approaching only one
person close to an obstacle, 0.62 in the case of two people),
suggesting that in our system, the robot approached humans
in the proper position and direction. Another relevant aspect
modeled in DSZ is group relationships. Authors in [26, 42]
explicitly detect group formations to embed the information
in the model managing the social navigation. In our system,
althoughwe do not insert any a priori knowledge about group
formations, some group relationships arise from the fusion of
the policies. Figure 10 represents the qualitative comparison
between the two systems restricted to the case of two people,
showing again small differences.

Finally, it is worth noticing that differently from other
studies, in our system, the robot is simultaneously teleop-
erated by the operator whose commands might lead to less
safe human-person distances as observed in Joy modality
(see Sect. 4.2), but this fact is mediated thanks to the robot’s
intelligence in the SocShin. Moreover, considering the opera-
tor’s intervention based on the concentration_time_ratio, our
results are again consistent with other previous experiments
based on shared control and shared autonomy algorithms.
For instance, in [43], participants were required to con-
trol a robotic avatar in the lab remotely from their homes
through an app. In this context affected by possible net-

work delays, participants let the simulated robot implement
social navigation in autonomy without interacting for more
than 50% of the entire time. Similarly, in [44], participants
have provided high-level goals via a brain-machine inter-
face, less reactive and accurate than the keyboard, to be
reached in autonomy by a telepresence robot, and achieved
a concentration_time_ratio equal to 28% vs. 26.70% (in our
SocShin). These findings might open future perspectives of
our method to augment the human–robot social interaction
in these applications where the robot’s intelligence is funda-
mental to handle the situations when the user cannot interact
[8, 45].

6 Conclusion

In this work, we have proposed a shared intelligence
approach for telepresence robot navigating in environments
populated by people. In our system, the robot exhibits the
capabilities of: (a) avoiding people, (b) autonomously infer-
ring the intention from the operator and the surrounding
people to interact with each other, and in case, (c) approach-
ing people properly for starting the interaction (e.g., a
dialogue). To the best of our knowledge, this paper has the
following contributions. First, people are not treated as sim-
ple obstacles/goals according to the driver’s commands as
traditionally happens, but both the inclination of the driver
and the other people around are factors that equally determine
the next robot’s behaviors. The former is associated with the
driver’s commands, the latter is estimated from the people’s
gaze—in both cases they are not set a priori.

Second, it is the first attempt that such social and teleop-
erated behaviors result from the fusion of multiple policies,
representing heterogeneous information combined with the
same influence and then, validated in a feasibility study with
more than 40 participants.
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The tests with the real robots have revealed the presence
of satisfactory social-compliant behaviors that are coherent
with the expected comfort, naturalness, and sociability prin-
ciples as reflected in the quantitative metrics and the answers
of the participants to the questionnaires.Moreover, the results
are also in line with related state-of-the-art studies. The com-
parison of the proposed system with teleoperation points out
a higher smoothness in the robot’s trajectories and a safer
and more acceptable people-avoidance. The introduction of
Social Interaction policies in the shared intelligence system
provides better sociability compared with the shared intelli-
gence system endowed with ROS social_navigation_layers,
thanks to the robot’s capability of better approaching people.

However, both approaches have some limitations mainly
related to the perception and the localization modules (out-
of-the-scope of this work). Indeed, it has been assumed to
exploit robust people and robot tracking and gaze detec-
tion modules to ensure the expected functioning of both
systems. For instance, in our lab-setting experiments, we
had to discard some runs due to the robot’s delocalization,
while the perception outputs were consistent. Probably, in
more crowded scenarios, the robot’s perception based on the
onboard sensors should be strengthenedwith the introduction
of additional environment sensors that allow better detecting
and tracking both the artificial and the human agents from
different perspectives (e.g., top view) and hence to establish
coherent socially-compliant behaviours.

In the future, we will further investigate the rising of
other high-level social behaviors achieved from the fusion
of policies in more challenging out-of-the-lab environments
where the policies can interact in more complex fashions.
For instance, during this experimentation, we also observed
a sort of person-following behavior emerging from our sys-
tem which requires further evaluations. Moreover, it is worth
highlighting that the modularity of the system allows to eas-
ily extend the current robot’s functionalities by adding new
policies. Another interesting investigation may include the
application of learning-based methods, especially for the
fusion of the policies, using the data already recorded in our
experiments.

Supplementary Information

This article is accompanying by the supplementary video
available at https://cloud.dei.unipd.it/index.php/s/3YB6YPb
iHwCzQHp showing the experimental setup.

Appendix A: Implementation Details

A.1: Time-DependentWeights

In our system, to avoid abrupt changes, we have modulated
the amplitude of the distributions behind the policies by a
time-dependent exponential weight that is defined as:

wt (t + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wt (t)
1
ε

1
f ·TR if rising ∧ ε < wt (t) < 1

wt (t) ε
1

f ·TF if falling ∧ ε < wt (t) < 1

0 ifwt (t) ≤ ε

1 ifwt (t) ≥ 1

(A1)

where f is the update rate of the system, TR and TF are
the desired rising and falling periods respectively and ε is a
threshold under that we consider finished the transient.

A.2: Software Frameworks

The system is integrated intoRobotOperatingSystem (ROS).
The navigation system relies on ROS navigation stack5, with
a TEB local planner and the default parameters. For people
detection and tracking, we exploit the SPENCER Multi-
Modal People Detection and Tracking Framework from [46]
in combination with a PCL detector designed by [47]. Gaze
estimation is performed through RT-GENE [48]. Finally, the
outputs of policies are efficiently stored using Grid Map
library from [49].
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