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Abstract
Robots in multi-user environments require adaptation to produce personalized interactions. In these scenarios, the user’s
feedback leads the robots to learn from experiences and use this knowledge to generate adapted activities to the user’s
preferences. However, preferences are user-specific and may suffer variations, so learning is required to personalize the
robot’s actions to each user. Robots can obtain feedback in Human–Robot Interaction by asking users their opinion about
the activity (explicit feedback) or estimating it from the interaction (implicit feedback). This paper presents a Reinforcement
Learning framework for social robots to personalize activity selection using the preferences and feedback obtained from
the users. This paper also studies the role of user feedback in learning, and it asks whether combining explicit and implicit
user feedback produces better robot adaptive behavior than considering them separately. We evaluated the system with 24
participants in a long-term experiment where they were divided into three conditions: (i) adapting the activity selection
using the explicit feedback that was obtained from asking the user how much they liked the activities; (ii) using the implicit
feedback obtained from interaction metrics of each activity generated from the user’s actions; and (iii) combining explicit
and implicit feedback. As we hypothesized, the results show that combining both feedback produces better adaptive values
when correlating initial and final activity scores, overcoming the use of individual explicit and implicit feedback. We also
found that the kind of user feedback does not affect the user’s engagement or the number of activities carried out during the
experiment.
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1 Introduction

Human–Robot Interaction (HRI) explores how to facilitate
the communication between humans and robots, improve
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their use, and personalize their behavior to each user [9].
Personalized robot behavior drives these machines to estab-
lish bonds with their users based on acceptance and trust
[6]. In this context, Reinforcement Learning (RL) has gained
attention in the last few years because it allows robots to
learn from user feedback and explore the environment, thus
producing adaptive and personalized behavior. RL methods
have opened many new opportunities in social robotics, a
field where HRI typically undergoes unforeseen changes and
requires adaptation [2]. Nonetheless, HRI still faces many
challenges, especially when the robot needs to interpret the
user’s feedback, preferences, and intentions [32]. Thereby, it
is fundamental that the user feedback influences the robot’s
actions to correctly learn and succeed in the interaction [22].

This paper presents a RL framework for social robots
to produce autonomous decision-making and drive enter-
tainment or cognitive stimulation sessions using the user’s
preferences. The model, shown in Fig. 1, considers implicit
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Fig. 1 The Reinforcement Learning system for preference learning
is used to personalize activity selection from the user’s implicit and
explicit feedback. The Decision-making system selects and controls the
activities executed by the robot. During HRI, the robot obtains implicit
feedback from how the user interacts and explicit feedback from the
activity ratings. The model in the Decision-making system receives
feedback to know the preferred activities and play them more often

and explicit user feedback to evaluate the system’s perfor-
mance and role in long-term HRI. The system can be applied
to generate autonomous and personalized decision-making
in any robot, dynamically generating adapted sessions.

In previous works [16, 18, 19], we developed decision-
making architectures for autonomous social robots in cog-
nitive stimulation and entertainment that make decisions by
simulating an artificial biological state that drives motivated
behavior. Nonetheless, these architectures barely consider
the user’s preferences in the decision-making process. More
recently, we presented methods based on prediction [17] and
conceptual models [20], but they needed to include the adap-
tive behavior and experiments included in this paper. The
social robotics community agrees that social robots must be
user-oriented to engage users and facilitate their use [12].
Consequently, this work concentrates on developing robot
learningmethods to personalize online activity selection dur-
ing entertainment sessions by autonomously selecting the
user’s favorite activities more often.

The user’s features are often unknown by the robot at
the beginning of the interaction, so it does not have any
information about how to personalize behavior. In these situ-
ations, user preferencesmust be obtained from the interaction
experienceswhile adapting the robot’s behavior step-by-step.
Social robots have twoways to gain this experience fromuser
feedback. On the one hand, they can ask the user to rate how
much they liked the activity after executing it (explicit feed-
back). On the other hand, it can estimate the rating from the
interaction metrics (implicit feedback).

The literature has previously employed explicit and
implicit user feedback to improve HRI [4, 8, 13, 27, 35,
39]. However, we have failed to find a previous work that
explores the impact of the user’s feedback when learning the
user’s preferences to personalize the robot’s behavior, and
whether explicit and implicit feedback should be combinedor

used separately. Consequently, this work explores the impact
of dynamically learning to personalize robot behavior from
online user feedback, the implications of feedback on user
engagement, and the influence on the number of activities
during the sessions.

We evaluated the system through a long-term study with
24 participants (6 women and 18 men). Initially, the partic-
ipants indicated their preferences from 0 to 5 points toward
15 multimedia activities using an online survey. Each partic-
ipant performed at least 5 sessions of 20 min each (minimum
interaction time of 100 min). The participants were equally
divided into three conditions. These conditions investigated
which feedback method produces the best robot adaptive
behavior and whether the feedback method influences user
engagement and the number of activities executed per ses-
sion. The three conditions are:

• Condition 1: Explicit feedback (C1). The user prefer-
ences were updated using only explicit feedback. After
executing an activity, the robot asked the user how much
they liked it to obtain a rating on a 0 to 5-point scale.

• Condition 2: Implicit feedback (C2). The user prefer-
ences were updated using implicit feedback. The robot
considered three interaction metrics to estimate a value
from 0 to 5 points to indicate how much the user likes a
particular activity.

• Condition 3: Combined feedback (C3). The user pref-
erences were updated by combining explicit and implicit
user feedback.

The definition of the experiment conducted to assess the
role of user feedback led us to hypothesize:

(H1) C3 should be the best alternative in terms of pref-
erence adaptation, producing lower error, improving
user engagement, and balancing activity exploration.

(H2) Combining the user’s ratings (explicit feedback) with
interactionmetrics (implicit feedback) should lead the
learned preferences to be more similar to the initial
ratings of the users

(H3) Adapting the user’s preferences using explicit feed-
back (C1) should produce accurate learning.However,
asking the users for their responses after each activity
will reduce the number of activities tested.

Thismanuscript is organized as follows. Section 2 reviews
the current state of social robots, focusing on learning pref-
erences from user feedback to state the gap that this paper
addresses. Section 3 formalizes the RL problem focusing on
Multi-armedBandits applied to constant learning conditions.
Section 4 describes the experiment to test the performance
of the learning system. Section 5 presents the experiment
results, comparing the learning systemoutcomes for the three
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conditions. Section 6 discusses the outcomes of thiswork and
states its limitations. Finally, Sect. 7 provides the main con-
clusions.

2 RelatedWork

In the last few years, RL has been successfully applied to
dynamic environments to provide social robots with adaptive
behavior in applications such as social navigation [8, 15],
education [7], and assistance [28]. Nonetheless, the litera-
ture contains only a few contributions that address adaptation
from explicit and implicit user feedback in social robotics to
personalize HRI sessions.

In this line of research, Baraka and Veloso [4] designed
one of the first studies to generate personalized entertain-
ment sessions. In particular, the authors studied the role of
explicit and implicit user feedback in learning preferences. In
their study, which is very close to the work presented in this
manuscript, they classify users into different profiles (i.e.,
conservative, erratic, and consistent but fatigable) and study
how to learn user preferences in simulation. However, their
work was not tested with human users, and their definition
of user feedback needs to be practically proposed. Similarly,
Whitney et al. [39] presented a robot that reduces its errors
in an object-fetching task by using explicit and implicit feed-
back from the user. In this case, the robot only asks the user
for information when necessary, which avoids fatigue and
increases the fluency of the interaction. The difference in this
work was testing the systemwith just a few robot actions and
short-term interactions without learning.

Hemminahaus and Kopp [14] investigated how a social
robot can adapt its social behavior while interacting with
humans to attain specific goals in unpredictable situations.
The adaptive process uses RL and implicit user feedback
during a memory game assistive task to improve the robot’s
decision-making. In a similarwork,Moro et al. [21] proposed
an RL-supported system that learns personalized behavior in
daily assistive activities by considering the user’s implicit
feedback. Meanwhile, Ritschel and André [25] used RL to
dynamically adapt their robot behavior to the human’s per-
sonality profile to make the interaction more engaging. This
setting employs implicit feedback because the robot does not
explicitly ask the user about their preferences but instead uses
social signals to estimate their level of introversion or extro-
version. The primary difference between these works and
ours is that the robot uses predefined short-term scenarios
and only considers implicit feedback.

Later, Ritschel et al. [27] presented a robot that can adapt
its communicative acts while performing activities such as
information retrieval, reminders, communication, and enter-
tainment and giving health-related recommendations. The
adaptive process gathers explicit user feedback obtained dur-

ing the interaction and uses an Upper Confidence Bound
action selection method supported by RL to improve the pro-
cess.

In the last few years, social robots have been used to drive
HRI sessions with older adults and children. Wang et al.
[38] studied the impact of service robots in interactions with
older people by focusing on their interface preferences in
multi-modal communication procedures. In education envi-
ronments, RL has also been used in HRI by Park et al. [24]
to help children improve their language skills. In this case,
the robot gathers verbal and non-verbal feedback from the
children to modulate their engagement and maximize their
learning gain. Che et al. [8] presented a mobile robot that
can produce efficient social navigation by combining explicit
and implicit user feedback. This setting resembles our work
because it conceptually uses explicit and implicit feedback to
produce appropriate behaviors. However, the differences in
our approach reside in applying preference learning inmobile
instead of social robotics and the lack of real experiments to
validate the impact of feedback on the robot’s performance.
In a similar scenario, Shi et al. [33] have shown the great
potential of adaptive social assistive robots during long-term
interventions for children with autism spectrum. However,
user feedback plays a shallow role in this work because most
session parameters are predefined, and only facial gestures
are considered.

Focused on personalizing HRI, Tsiakas et al. [35] pro-
posed an Interactive Reinforcement Learning framework
combining explicit feedback from task performance and
implicit feedback from user engagement. Their results show
that combining explicit and implicit feedback drives real-
timeHRI personalization. The 69 participants interactedwith
the robot in a single session to evaluate if factors like exer-
cise level or engagement were appropriately personalized.
Olatunji et al. [23] studied the design of effective feedback
strategies in person-following robots with older adults. Their
results show how users preferred voice feedback over tone
at a continuous rate to receive information about the robot’s
actions constantly. Akalin et al. [1] explored how different
robot feedback (negative, positive, and flattering) influences
the users’ perception in cognitive training tasks. The results
show how flattering and positive feedback was preferred.
However, the study does not describe implicit or explicit
feedback from the user. Besides, the evaluation was carried
out in a single session. The main differences found in the
previous works are in not evaluating the system in long-term
experiments and analyzing the role of user feedback on the
task.

Boggess et al. [5] developed a system to generate person-
alized explanations for path planning from user preferences.
The robot answers the users’ question using HRI and, using
RL, define the best strategy for each situation. The main
difference of this work is not using implicit feedback and
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evaluating the method using an online survey instead of real
interactions. Recently, Asprino et al. [3] presented a software
architecture considering adaptive behavior from user pref-
erences. In this task, the architecture obtains explicit user
feedback before interacting to store the user’s favorite activ-
ities, which are later autonomously presented to the user.
However, this paper does not provide an evaluation, and nei-
ther online adaptation nor user feedback are considered.

As Wirth et al. [40] have recently reviewed, numerous
works have employed RL to produce a set of preferences
toward a group of actions/activities. For this application, the
authors present Multi-armed Bandits as an effective alterna-
tive to organize activities as a ranking based on the values of a
model-free tabular RL algorithm. Many authors have deeply
explored these methods [26, 30, 37] in the last years to per-
sonalize the interaction of social robots. These contributions
agree in ordering a set of labels (in most cases, activities) to
select those preferred by the usermore often. Considering the
positive results of these studies in HRI, we opted for using a
Multi-armed Bandit action-based method in a non-stationary
scenario with a constant learning rate.

Adaptive systems in HRI have a great potential to improve
the interaction significantly. The analysis of the previous lit-
erature review provided in Table 1 highlights the lack of
adaptive robots for long-lasting interactions that consider and
analyze the role of explicit and implicit user feedback. The
review shows some works [4, 8, 17, 35, 39] that personal-
ize HRI from explicit and implicit user feedback. Besides,
some works [5, 17, 21, 24, 26] include RL to improve further
interactions from past experiences. However, none of these
studies investigate the role of explicit and implicit feedback
on learning preferences andwhether user feedback influences
the personalization and learning process in long-term experi-
ments with onsite participants. Acknowledging this gap, this
paper presents a framework that (i) generates online adaptive
behavior during long-term sessions from RL, (ii) considers
implicit feedback obtained from the user’s actions during
the interaction, (iii) considers explicit feedback by asking
the users their preferences, and (iv) explores the influence of
feedback in user engagement and activity execution.

3 Methods

This section formalizes the RL methods based on non-
stationary Multi-armed Bandits [34, p. 32]. Action refers to
the robot selecting and executing an activity.

3.1 Formalization

RL is a learning method that allows an agent to learn how to
map situations to actions tomaximize a numerical reward sig-
nal representing a goal [34, p. 1]. Initially, the agent does not

know their action effects but can explore them by continuous
interaction (i.e., trial and error) with the environment. When
an action finishes, its effects are “perceived” by the agent and
then converted to a numerical reward value that measures the
action’s quality in the agent’s situation. Considering the pre-
vious idea, it is possible to infer that the reward function has
to be predefined by the designer because it is specific to the
learning scenario and dependent on the goal that the agent
seeks to attain (see Sutton and Barto [34] for a review of
reward function shaping).

Formally, RL problems are generally Markov Decision
Processes (MDP) [36] that consider features of the agent’s
situation to develop a probabilistic model that is based on
transition probabilities from one state (situation) to another.
The transition occurs when the agent executes an action
selected from a list of possibilities. Among RL methods,
Monte Carlo, Temporal Difference, or Dynamic Program-
ming algorithms consider a variant agent state learning in
which action better suits each situation.Meanwhile, methods
such as Multi-armed Bandits consider a constant agent state
but focus on learning actionvalues (i.e., optimal action execu-
tion) using environmental feedback. Although both streams
have remarkable differences, TD and action-value methods
have similarities in updating the values assigned to each
state-action pair in MDPs or action-value methods. Both
approaches consider the error between a target estimated
value in opposition to previous agent estimations. Thus, an
error appears when the current estimate differs from the
previous knowledge, which drives its correction. The error
correction is performed by moving a step toward the target.
Equation (1) expresses this idea,

Value ← Oldvalue + StepSize

⎡
⎣Target − Oldvalue︸ ︷︷ ︸

error

⎤
⎦ (1)

where the StepSize indicates the amplitude of the error cor-
rection towards the Target value using the old value and the
new value.

This learning scenario requires the robot to learn a behav-
ior policy (i.e., a sequence of actions) whose goal is to fulfill
the goal defined by the reward function by maximizing the
reward obtained after each action in a fixed agent state. Fol-
lowing Sutton and Barto’s [34, p. 33] ideas, we opted for
using Multi-armed Bandits since they are a simple and effi-
cient solution to learn how well a specific action is executed
in a static agent state. This method allows us to compare the
most suitable action from a group of possibilities in pref-
erence selection. Equation 2 shows the original formulation
for Multi-armed Bandits considering non-stationary rewards
and variable step size.
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Q(a) ← Q(a) + 1

N (a)
[r − Q(a)] (2)

In this equation, Q(a) is a float value that represents how
good it is to execute the action a, and the step size α is a
function of the number of updates N (a) expressed as 1

N (a)
.

This change allows convergence because the error decreases
with the action’s number of updates N (a).

3.2 Proposed Learning System

This paper’s proposed learning system employsMulti-armed
Bandits [34, p. 25] considering a constant learning rate. These
methods can be applied to our problem due to two main
properties:

• The learning process is continuous since the learning rate
does not change, and learning occurs during the whole
lifespan of the robot.

• In this set-up, the robot learns activity preferences instead
of state transition suitability, as presented inEq. (2). Thus,
Eq. (2) deals with learning the best actions in a non-
stationary scenario with a fixed agent state.

We opted for using Eq. (3) in our learning model. This equa-
tion is based on Eq. (2), setting a constant learning rate α.

Q(a) ← Q(a) + α [r − Q(a)] (3)

In RL, the learning rate α often depends on the number
of updates of the Q-value associated with the action N (a).
The original algorithm proposed in [34] and presented in the
previous section considers this setting to converge to an opti-
mal solution. However, converging on an optimal solution is
not necessary in our application, where the user’s preferences
may vary in the long term. Instead, we propose that the learn-
ing system continuously adapts to the user’s preferences. To
find the best α value, we conducted a preliminary evaluation
to choose between four empirically selected alternatives: 0.1,
0.25, 0.5, and 1. The preliminary evaluation consisted of sim-
ulating the learning system’s dynamics using the four rates
to update a single action during 20 iterations with different
rewards. The results of this evaluation reported that α = 0.5
was the best alternative because the learning rates of 0.1 and
0.25 produced prolonged adaptation, and the learning rate of
1 unit could not fit well to the initial user rating of the activity.

The Q-values representing the user preferences Q(a)

range from 0 to 5 points. Meanwhile, 0 indicates that the user
does not like the activity, whereas 5 indicates that the user
loves the activity. All action values Q(a) start in 5 points to
allow activity exploration at the beginning of the experiment
and select preferred activities more often as the experiment
progresses. The reward value can only be between 0 and 5

points to keep the values in the range. Recall that the user’s
feedback can be obtained from the activity ratings (explicit
feedback) and interaction metrics (implicit feedback).

4 Experiment

This section describes the experimental setup of this work.
It introduces the Mini social robot used to test the system’s
performance. Then, it describes the experimental setup and
the session dynamics. Finally, we describe the robot’s actions
in the learning scenario.

4.1 Mini Social Robot

Mini [29] is a social desktop robot that assists older adults in
cognitive stimulation therapies and entertainment sessions.
Mini communicates with the users using a HRI manager
[11] that manages the verbal and non-verbal interaction and
obtains the user’s feedback using perception to adapt its
behavior to the situation it is experiencing. The user exe-
cutes the robot’s activities using a connected touch screen.
The Decision-making system [16] manages activity selec-
tion, which employs the user’s preferences to personalize
the interaction.

4.2 Experimental Setup

The experiments were conducted to validate our approach,
which consisted of comparing the learning system’s perfor-
mance under three conditions that define how the reward
function is updated based on user feedback. In the experi-
ment, we recruited 24 university students with little expertise
in robotics (6 women and 18 men) aged from 20 to 30 years
old (μ = 24.55, σ = 2.75). These students had not pre-
viously interacted with the robot. They were equally and
randomly divided into one of the three conditions to exe-
cute entertainment sessions that aim at completing activities
related to watching photos, videos, and listening to music.
This task was selected considering the application we want
to give to the method: learning user preferences towards the
robot’s activities to personalize future activity selection and
the versatility and repertoire that multimedia activities offer.
Each session had a minimum allotted time of 20 min per ses-
sion. The robot autonomously ended the session when the 20
min had elapsed, and the ongoing activity finished. Since the
participants required four weeks to complete the experiment,
the sample size was limited to 8 people per condition.

Mini is a desktop robot. Therefore, in the experiments, it
wasfixed to anoffice tablewhere the participants individually
interactedwithMini without the intervention of other people.
The sessions were face-to-face interactions, as shown in Fig.
2. Each participant tested the robot’s activities as described in
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Fig. 2 Mini executing an activity with a user during the entertainment
experiment

Sect. 4.3, participating only in one of the conditions (between
subjects study). The participants decided when to interact
with the robot and had 20 days (from Monday to Friday
for four consecutive weeks) to complete a minimum of five
sessions (total time of 100 min). The number of sessions (5)
and the time per session (20 min) were set arbitrarily based
on a previous user study we conducted with the robot [17].
However, all participants voluntarily completed more than
the requested sessions, as indicated inTable 7. The conditions
under evaluation were:

• Condition 1: Explicit feedback (C1).Only explicit user
feedback was considered when updating the Q-values
associated with each activity. Independently of the activ-
ity result, the user was requested to rate the activity once
finished using a 0 to 5 point scale.

• Condition 2: Implicit feedback (C2). The users never
rated an activity, but instead, implicit feedbackwas calcu-
lated using the interaction metrics to estimate how much
the user liked the activity.

• Condition 3: Combined feedback (C3). This condition
joins both of the previous approaches. In this scenario, the
robot autonomously decides whether it asks the user to
rate the activity after finishing it (the probability of asking
is 50%). The reward value is predicted by considering the
interaction metrics.

4.3 Session Dynamics

As shown in Fig. 3, the session dynamics followed the same
course with subtle differences in the three conditions pre-
sented earlier. Before starting the experiment and testing the
robot’s activities, each participant completed an online sur-
vey to rate howmuch they liked different photos, videos, and
music activities using a 0 to 5 point scale. These ratings were

Fig. 3 Flowdiagram representing the experiment dynamics. The exper-
iment starts by loading the user profile data, including preferences.
Then, the robot decides if the user selects the next activity or itself.
Once the activity finishes, the Q-value is updated using the implicit and
explicit (if obtained) user feedback

later used as a baseline to compare the initial and predicted
preferences.

At the beginning of the first session, the robot informed
the users about the experiment’s dynamics and the need to
complete at least five sessions in four weeks while allowing
them to execute more. At the beginning of each session, the
participants had to press a Start button and select their name
on the touch screen to load their information into the robot’s
memory. This profile contained basic personal information
about the participants’ features (e.g., age or name), which the
designers previously included. The profile also included the
participant’s preferences towards the robot activities, with an
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initial value of 5 points adapted by the learning algorithms
with the interaction. Thus, we ensured that all activities had
the same probability of being selected at the beginning of the
experiment.

The participants or the robot could select the activities
in each iteration. The probability of the robot or the user
selecting the activity was 50% in each case. Thus, depending
on who made the decision, the activities could be selected in
two ways:

• If the user selects the activity, amenu appears on the touch
screen with the activities classified under the categories
photos, videos, and music. The user can navigate these
menus and select the robot’s following activity.

• If the robot autonomously selected the activity, then the
robot notified the next activity before starting. In this
case, the robot employed the Boltzmann distribution [10]
with a Temperature value set to 5 points to select the
user’s preferred activities more often and foster unex-
plored activities using the learned Q-values. We also
foster less visited activities to be selected more often,
increasing their probability.

The likelihood of preferred and less selected activities
increased as the experiment progressed. Meanwhile, the
selection probability of those activities often explored by par-
ticipants with low ratings was substantially reduced. It is also
important to remark that the user could stop the activity by
touching the robot’s right-hand shoulder. At thatmoment, the
activity was paused, and the robot waited for the user’s con-
firmation using the touch screen. After canceling an activity,
the user or the robot could select a new activity if the session
time was below 20 min.

When an activity finishes, three possible events occur
based on the evaluation condition:

1. If the participants were in Condition 1, then they were
requested to rate the activity using a 0 to 5 point scale
with 100% chance.

2. If the participants were in Condition 2, then the user
never rated the activity, and interactionmetrics were used
to update the activity Q-value.

3. If the participants were in Condition 3, then they were
occasionally requested to rate the activity (50% chance).
The interaction metrics were also used.

If the robot detected the user’s inactivity (i.e., not answer-
ing the questions), then the session finished. This issue
happened only once during the experiments since one user
had to leave due to personal problems. This session was
removed from the data and not considered in the analysis.
The robot then returned to an idle state and waited for a new
participant to press the Start button to begin a new session.

4.4 Obtaining User Feedback

Mini has two ways of obtaining user feedback and getting a
numerical reward to update the user’s preferences.

• Explicit feedback is obtained from the user ratings using
the touch screen.

• Implicit feedback, estimated from the interaction using
predefined metrics.

Both alternatives yield a numerical reward to update the
previously executedQ-value associatedwith the activity. The
reward value obtained after each activity ranges from 0 to 5
points, which limits theQ-value associatedwith each activity
inside this range. On the one hand, the robot obtains explicit
feedback by asking the user to rate how much they liked the
activity from 0 to 5. When obtaining explicit feedback, the
robot asked the userHowmuch you like to listen to/watch...?,
ending with the name of the activity just performed. Then,
using the touch screen, the user can rate the activity from 0
to 5. Equation (4) shows how the numerical value associated
with the explicit feedback is calculated.

rexplici t = User rating in {0, 1, 2, 3, 4, 5} (4)

On the other hand, the robot obtains implicit feedback by
estimating the numerical reward using customized parame-
ters that define how good the interaction between both agents
was while executing an activity. We defined three interaction
metrics, which jointly represent the quality of the interaction
process. These metrics are 0 or 1, depending on whether its
associated definition is false or true. The three metrics that
are used in this work and their related conditions are:

• User Selection (US): This metric represents if the user
selected the activity (1) or if it was autonomously pro-
posed by the robot (0).

• Activity Result (AR): These activities can have two pos-
sible outcomes: succeeded, in which case the value of
this metric is 1; or aborted, which is provoked by the
user when they voluntarily cancel the activity, in which
case the value of the metric is 0.

• Execution Time (ET): This metric represents if the activ-
ity’s execution time is similar to the execution times of
other participants. To validate this condition, we calcu-
late the mean execution time of the activity considering
all users μ and its standard deviation σ . Then, we
check if the current execution time is within the inter-
val [μ − σ,μ + σ ]. If it is, then the value of the metric is
1. Otherwise, the value is 0.

Equation (5) shows the reward value associated with the
implicit feedback using the interactionmetrics presented ear-
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lier. It is worth noting here that the interaction metrics user
selection and activity result have a double influence on the
reward when compared to execution time because we con-
sider them to be more relevant and reliable in our scenario.
However, in other scenarios, interaction metrics can be dif-
ferent.

rimplici t = 2 ·US + 2 · AR + ET (5)

Finally, if the reward value is calculated by combining the
explicit and implicit feedback (C3), then it is the average
value between the explicit (rexplici t ) and implicit (rimplici t )
feedback. Otherwise, if the explicit feedback is not obtained
because the question is not asked the user, then the combined
feedback is the implicit feedback, as Eq. (6) shows.

rcombined =
{

(rexplici t+rimplici t )

2 if question
rimplici t if not question

(6)

4.5 Activities

The learning system aims to obtain the user’s preferences
regarding the entertainment activities of the Mini robot. As
mentioned earlier, the learning process adapts by obtaining
explicit and implicit feedback from the user after execut-
ing each activity. Thus, learning can only succeed if the
user executes each activity many times so that the robot can
acknowledge how much the user likes each activity.

In the task that we designed to evaluate the learning sys-
tem and the role of user feedback, we opted for the activities
related to displaying multimedia content because they are
easy to use and offer versatility and diversity in their exe-
cution since they have different options for each type of
activity. The activitieswere classified into the categories pho-
tos, music, and videos.

Photos category have the activities of animals, monu-
ments, landscapes, or sad moments. Music can be Spanish
pop, Spanish rock, English pop, English rock, Latin, or noise.
Finally, videos can be about cooking recipes, funny moments,
sport, film trailers, and comedy.

The photos category displays eight photos for 5 s each. The
total duration of the activities 40 s. The photos were down-
loaded from Google to create a database of around 1000.
Each photo activity has a similar number of photos (around
250 each). The video category consists of displaying a sin-
gle video for around 3 min. We downloaded the videos from
YouTube to create a database of around 110 videos equally
divided into the previous categories. Finally, the music cate-
gory consists of playing a song selected from a database that
stores around 90 songs equally sorted in activities. The dura-
tion of the music’s activities is around 3 min. The item was

selected inside each activity randomly, but remembering the
last five items was selected to reduce the repetition chance.

The activities sad moments and noise inside the photos
and music categories were included to have two activities
that we believe the participants will dislike. Thus, we expect
that they will give a negative evolution to the Q-values adap-
tation compared to the activities the participants typically
like. Besides, using a big database and dividing activities
into categories provide diversity so users have activities that
they can like and dislike.

4.6 Evaluation

The evaluation of the learning performance exhibited by the
robot was carried out in two stages.

1. First, we used the Root Mean Squared Error (RMSE)
and theSpearman correlation to statistically reportwhich
condition produced the best adaptation to the initial pref-
erences obtained from the online survey. This analysis
was carried out for all activities in each category (i.e.,
Photos, Videos, and Music).
The RMSE measures the absolute difference between
observed and predicted values, which strongly indicates
the deviation between two samples. Preference values
range from 0 to 5 points, and RMSE is used to compare
the three ways of learning user preferences. According
to the range of our data, RMSE values below 0.5 units
can be considered excellent, from 0.5 to 1 as moderately
positive and above 1 as high.
The Spearman correlation is a metric applied to non-
normal distributions to obtain the degree of relationship
between two variables. This metric ranges from −1 to
1, distinguishing between explicit and inverse relations.
The lower RMSE and Spearman values close to 1 indi-
cate a strong relationship [31] between the observed and
predicted values.
The final correlation scores are the average correlation
values of the 8 users participating in each condition. The
correlation score of eachuser is computed considering the
initial preferences and learned values for all 15 activities,
only the photos activities (4), only the video activities (5),
and only the music activities (6).

2. Second, we statistically analyzed whether using different
types of feedback led the users to interactmore oftenwith
the robot and if this affected the number of updates of
the activities. We employed the one-way ANOVA test to
look for significant differences in the users’ engagement
between the three conditions, analyzing the impact of the
user feedback.
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3. We used the Kruskal-Wallis statistical test to determine
whether the number of times each activity was updated
was affected by how the robot obtained user feedback.
This test is carried out for non-normally distributed small
samples.

5 Results

This section presents the main results of the experiment
described in the previous section. We statistically compare
the three conditions used to adapt the Q-values, focusing
on the error yielded by each approach and the correlation
metrics. Additionally, we statistically analyze whether user
feedback influences the interaction time as an indicator of
increased engagement or if it is affected by the number of
times the activities were updated. Table 2 shows a summary
of the study participants and the main outcomes obtained in
the study.

Table 2 Summary showing the details of the participants in this con-
dition and the results of the experiment

Feature C1 C2 C3 All

N participants 8 8 8 24

Age range 22 to 29 20 to 28 22 to 30 20 to 30

Mean age 24.88 23.5 26.13 24.55

Min sess. time 20.12 20.35 20.21 20.12

Max sess. time 24.32 23.68 23.79 24.32

Avg sessions 8.78 8.21 8.06 8.36

Avg HRI time (min) 175.63 164.38 161.38 167.13

Avg activ. user/sess. 5.90 6.93 9.51 7.45

Avg activ. user 88.50 103.95 142.75 111.75

RMSE 1.355 1.662 0.772 –

Spearman corr. 0.567 0.178 0.811 –
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Fig. 4 RMSEwhen comparing the initial and predicted preference val-
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Fig. 5 RMSE value for each condition and type of activities when
comparing the initial and predicted user preferences

5.1 RMSE and Spearman Correlation

Themethodology presented in this manuscript was evaluated
by comparing which kind of feedback produces better adap-
tive results when correlating the initial user preferences with
the predicted preferences. The statistical analysis consisted
of analyzing the RMSE and the Spearman correlation from
data in Tables 4, 5, and 6.

Figure 4 shows the RMSE obtained for the three condi-
tions evaluated in this work. As we initially hypothesized,
the condition combining explicit and implicit feedback (C3)
yields the lowest RMSE (0.772), which indicates that this
alternative produces better predictions of the initial user pref-
erences. Then, the condition using only explicit feedback
(C1) reports a RMSE of 1.355 points, overcoming the use
of implicit feedback (C2), which reports a RMSE of 1.662
points.

Moving deeper into our analysis, we also explored for
which category (photos, videos, or music) the RMSE was
lower. As Fig. 5 shows, the system produces the best results
for the activities showing photos, followed by videos and
music.Considering explicit feedbackC1, the photos category
reports a RMSE of 0.86 points, videos a value of 1.32 points,
andmusic a value of 1.63 points. Regarding implicit feedback
C2, photos obtains a score of 1.28, videos 1.64, and music
1.91. Finally, combined feedback C3 obtains the best RMSE
value with 0.64 points for photos, 0.90 for videos, and 1.03
for music.

From this analysis, it is possible to perceive two interest-
ing results. First, it is possible to observe the same tendency
for all the categories. Independently of the type of activity, C3
produces lower RMSE than C1 and C2. This result supports
our hypothesis about the benefits of combining explicit and
implicit feedback rather than using them separately. Second,
it seems the system fits the preferences better for shorter
activities, producing better scores for photos (40 s) than
videos and music (duration around 3 min) since the data
used to train the RL algorithm can be obtained more often
improving the learning speed.
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From the previous outcomes, we wanted to analyze
whether the participants’ mean duration of the activities
in each condition affects the RMSE value and, therefore,
the learned preferences. We conducted a second statistical
analysis using the Spearman correlation metric to find sim-
ilarities between the mean duration of the activities and the
RMSE of each user participating in the three conditions.
The correlation results obtained were 0.23 points for Con-
dition 1 (implicit feedback), 0.28 for Condition 2 (explicit
feedback), and (0.16) for Condition 3 (combined feedback).
These values are considered low Spearman correlations, so
the activities’ duration in this study does not affect the RMSE
values.

Considering the previous RMSE scores, we can conclude
that when computing the RMSE for all activities, the RMSE
value when combining explicit and implicit feedback (C3)
indicates that the model produces good learning. However,
these results are not positive when using explicit (C1) or
implicit (C2) feedback, as the RMSE values are high. The
analysis of the RMSE values considering each condition and
each category (photos, videos, and music) reports significant
differences. For example, the RMSE value is positive for
the combined feedback condition (C3) for the photos and
videos categories but not that positive for music. Considering
conditions C1 and C2, only the learning values for the photos
category using explicit feedback can be considered positive.
The other cases are not positive since RMSEvalues are above
1 unit. The comparison of the 3 conditions evaluated using
the RMSE value shows that the learning values produced
when combining explicit and implicit feedback are much
better than when individually considering explicit or implicit
feedback.

After analyzing the RMSE, we used the Spearman corre-
lation metric for non-normal distributions to determine the
correlation between the initial user ratings obtained from
the online survey and the predicted Q-values. Table 3 shows
the correlation metrics obtained for each condition consid-
ering all the activities and sorting them by categories. As
mentioned in this manuscript, stronger correlations are rep-
resented by Spearman coefficients close to 1, as the study
[31] states. This correlation can only be interpreted if the
analysis reports statistical significance (p − value > 0.05).

The results we obtained regarding the Spearman correla-
tion for all activities separating the three conditions under
evaluation show that the observed and predicted values are
strongly correlated (0.811) when combining explicit and
implicit feedback (C3). Similarly, using only explicit feed-
back (C1) also reported amoderate correlation (0.567),which
suggests that the user’s ratings should be included in the loop.
However, as occurred with the RMSE, the implicit feedback
alone (C2) did not report a significant correlation, and there-
fore, the Spearman value is not worth interpreting.

Table 3 Spearman correlation values when comparing the initial user
preferences and the model predictions

Condition C1 C2 C3

All activities 0.567** 0.178 0.811**

Photos 0.826** 0.462** 0.850**

Videos 0.542** 0.123 0.779**

Music 0.594** -0.028 0.817**

The analysis was conducted considering all of the activities and by
categories. All significant statistical differences in this study are on
level p − value ≤ 0.01 (bilateral), indicated with ∗∗

The analysis by categories supports the outcomes pro-
duced by computing the RMSE. As shown in Table 3,
combining explicit and implicit feedback (C3) produces a
strong correlation for all categories, with values of 0.850
for photos, 0.779 for videos, and 0.817 for music. Similarly,
the use of explicit feedback (C1) leads to positive outcomes,
with a moderate Spearman correlation for videos (0.594) and
music (0.542) and a strong correlation for photos (0.826).
However, the initial and predicted preferences, when only
considering implicit feedback (C2), reports amoderate corre-
lation for photos with 0.462 points but not for videos (0.123)
and music (-0.028).

5.2 Engagement and Number of Updates

The last statistical analysis we conducted aimed to assess
whether how feedback was obtained affected user engage-
ment and the number of times each activity was executed.
We used the results in Table 7 for this analysis.

We carried out the one-way ANOVA test for the engage-
ment analysis because the data was normally distributed. In
this case, the one-way ANOVA did not report a significant
statistical difference between the groups of the condition
F(2, 21) = .119, p − value = .889.

We then conducted the Kruskal–Wallis non-parametric
test to determine if the number of times each activity was
performed was influenced by how the robot obtained user
feedback. The Kruskal-Wallis test was conducted because
the data was not normally distributed in this case. As in the
previous case, the results did not provide any significant sta-
tistical difference (p−value > 0.05). More specifically, the
Kruskal–Wallis test reported H(2) = 2.949, p − value =
.229 for photos activities, H(2) = 2.573, p− value = .276
for video activities, and H(2) = 3.822, p − value = .148
for music activities. From the previous results discussed in
the following section, we cannot assure that the type of feed-
back used to update the user preferences affects the number
of updates or the user engagement. This is because, during
the experiments, the number of times each user executes the
activities changes, and this can not be accurately evaluated.
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6 Discussion

Generating adaptive behavior in HRI is a process that contin-
uously looks for user preferences. Most RL algorithms seek
to optimize a problem finding to attain a specific goal. How-
ever, in this application, the learning system’s goal is not to
find a solution but to learn the users’ preferences towards a
group of activities. This fact implies that Q-values will not
converge to a final value unless the rating is repeated for
updating the reward function. If the user’s rating is always
the same, the learning system converges to the same value
that the user set as their initial preferences. It is worth men-
tioning here that if a different updating value is obtained,
then the adaptive process will modify the previous value to
correct the error and cancel the convergence process.

Our experiment required each participant to interact with
the robot for at least 100 min in four weeks to obtain accu-
rate learning dynamics. This experiment differs from most
of the HRI studies found in the literature, which typically
design short-term experiments with only one or two activity
sessions. However, we are aware that more participants and
experiments are required to precisely define the influence of
user feedback on HRI and which factors play a role in this
process, especially on implicit feedback, due to the numer-
ous metrics involved. This study serves as an initial step to
evaluate the impact of explicit and implicit user feedback
on preference learning and adaptive behavior in long-term
scenarios.

The experiment results show that users were free to inter-
act with the robot, so the amount of time spent with Mini
differed across users. However, they all carried out more ses-
sions than expected, which may indicate their will to interact
with Mini in this task. Our results also show that combin-
ing explicit and implicit feedback provides the most similar
learning values to the users’ initial preferences, highlight-
ing this approach’s potential benefit. These results suggest
that designing efficient methods to obtain implicit feedback
is important to HRI and supports the information explicitly
provided by the users.

The results suggest that implicit feedback alone is not a
good alternative because the correlation is not significant for
the categories of videos and music and is weak for photos.
A possible reason for the worse results produced by only
considering implicit feedback might reside in the interaction
metrics we selected to compute it. Unlike explicit feedback,
which obtains the real user preferences from their ratings,
implicit feedback in our model is computed from the inter-
action time, activity result, and user selection.However, other
metrics like for example the difficulty of the activity, the user
experience or knowledge level, the number of times the activ-
ity has been repeated or the errors that might appear during
the execution due to the activity programming/design.

The statistical analysis conducted on the data indicates that
the kind of feedback used to retrieve the user preferences does
not affect user engagement since the interaction timewith the
robot does not decay with time. This analysis also reports
that the number of updates of each activity is not affected by
how the robot obtains user feedback. This suggests that more
invasivemethods, like continuously asking the user to rate the
activity, are not perceived as negative. The statistical analyses
conducted in this study ignore the relevance per subject and
user since we treat all activities and users equally. We are
aware that possibly there are differences in the activities and
subjects, but these differences are subjective and can not be
easily analyzed from the current data.

Based on the previous discussion and the three hypotheses
we enumerated at the beginning of themanuscript, it is possi-
ble to provide the following statements. The first hypothesis
(H1) is partially accepted. The results show that condition C3
yields better adaptive results than C1 and C2, but no signifi-
cant differences could be obtained for better user engagement
and activity exploration. The second hypothesis (H2) can be
validated since the results prove that combining implicit and
explicit feedback in C3 is the best way to learn user prefer-
ences to personalize HRI. Finally, the third hypothesis (H3)
is partially accepted. C1 provides good learning results since
it uses real user feedback but does not impact activity execu-
tion.

From the previous results, we also statistically analyzed
if gender, age, and the other demographic factors obtained
from the demographic survey impacted the results of our
experiment. However,we did not observe any effects on these
factors. For the specific case of gender, we think that the kind
of activitymight impact the feedback provided. However, the
low number of women in the sample makes obtaining results
in line with this hypothesis difficult. A similar issue occurs
with age. Since the recruited participants are all university
students of similar ages, we do not have clear indications that
this factor influences how the robot obtains user feedback to
update the activity preferences.

6.1 Limitations

Design factors and the tasks chosen affect the learning sys-
tem described in this contribution. Next, we enumerate the
limitations of this work:

1. In tabular RLmethods, such as the one used in this work,
the number of actions greatly impacts learning speed and
tractability. This means the learning process is slower as
the number of actions increases. Thus, we propose to use
function approximation methods to speed up the learn-
ing process in further tests. In our approach, the method
used will not affect final values because feedback will
not change.
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2. Adaptation rate is controlled by α, which is a practical
value that regulates how fast the error is corrected. High
alpha values can drive the system not to fit the Q-value
properly, while shallow values affect the speed of the
adaptive mechanisms. This work sets the α parameter
to 0.5, which limits the error correction per time step.
Although this and other values modify the learning per-
formance, the designer can tune them to make the system
work as they expect.

3. Activity exploration balances the update process of all of
the actions equally. In this study, we apply Boltzmann’s
distribution using a low Temperature value of 5 units to
explore all activities at the beginning of the experiment
but promote selecting preferred activities as the experi-
ment progresses. Thismethod contains randomness in the
activity selection since it is based on probabilities gener-
ated from the user preferences (Q-values). Consequently,
as mentioned earlier, the randomness in action selection
and user preferences may lead to unexplored activities.
This issue might subtly affect the Spearman metric and
the RMSE.

4. The reward function design is the key to learning cor-
rectly. In our method, the interaction metrics define the
implicit feedback reward. We know that the interaction
metrics may affect the reward value; therefore, we expect
to explore the impact of the interaction metrics used in
future studies. Besides, in this scenario, we give more
importance to a couple of metrics (user selection and
activity result) since we believe they are more impor-
tant than the execution time. However, the designer can
change these weights or the interaction metrics depend-
ing on their application.

7 Conclusion

The results of this study show that combining the users’
explicit and implicit feedback to learn the users’ preferences
toward a group of activities to personalize the interaction
improves the results of individually using explicit or implicit
feedback. This fact indicates that the robot can obtain more
information from the interaction to improve HRI. The results
also show that the kind of feedback does not affect activity
exploration and user engagement, suggesting that includ-
ing explicit questions does not influence the execution of
activities. From these results, it is possible to state that
only hypothesis 2 (H2) can be entirely accepted. The other
hypotheses (H1 and H3) can only be partially accepted since
not all the assumptions are confirmed based on the data anal-
yses.

Considering the positive results provided by this study, we
would like to investigate these methods to produce adaptive
sessions in assistive robotics, extend the activity repertoire

of the robot, and explore the role of user feedback in other
areas and applications. We would also like to combine our
system with a preference predictor that we developed in a
previous work [17] to enable the robot to start the person-
alization of activities from a user-oriented prediction and
not from scratch to evaluate which factors influence user
feedback in HRI. Finally, exploring Continuous and Active
Learning methods that might be a good alternative to solving
preference learning from user feedback would be interesting.
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Table 4 Data collected from the experiment regarding the initially indicated and predicted Q—values for the activities related to the Photos category

Id Cond Photos
Animals
Real

Photos
Animals
Pred

Photos
Landscapes
Real

Photos
Landscapes
Pred

Photos
Monuments
Real

Photos
Monuments
Pred

Photos
Sad Real

Photos
Sad Pred

1 1 3 4,04 4 3,56 2 3,48 1 1,4

2 1 4 3,66 4 3,96 4 3,75 1 1,23

3 1 4 3 4 3,31 3 3,47 1 1,17

10 1 5 4,45 4 4,35 4 3,71 1 1,6

11 1 5 5 5 4,65 5 4,81 4 3,87

17 1 4 4,28 5 4,91 5 4,9 1 4,33

19 1 5 4,64 5 4,59 4 4,5 2 1,6

24 1 4 4,41 5 4,47 3 4,31 1 2,64

4 2 5 4,29 5 4,45 3 3,15 2 1,59

7 2 5 4,19 5 4,55 3 3,85 1 1,71

8 2 4 4,25 5 3,76 3 3,61 2 1,27

12 2 4 4,67 4 5 2 4,16 1 5

13 2 5 4,92 5 4,81 4 4,33 1 2,11

18 2 5 4,51 4 4,85 2 3,8 1 1,24

20 2 3 5 5 4,88 3 5 2 2,76

23 2 3 5 4 5 4 5 2 3,31

5 3 4 4,05 5 4,13 3 3,95 1 1,27

6 3 4 3,97 5 4,69 4 3,49 1 1,33

9 3 4 3,98 4 4,23 3 3,7 1 0,97

14 3 4 4,67 4 4,77 4 4,84 2 2,54

15 3 5 4,78 5 5 4 4,75 2 1,76

16 3 4 4,08 5 5 3 2,87 2 4,6

21 3 5 5 4 4,9 4 4,05 2 2,06

22 3 4 4,01 3 3,21 3 3,14 1 1,09
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