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Abstract
For efficient human–robot interaction, human operators need to be able to efficiently represent the robot’s movements in
space and predict its next steps. However, according to frameworks of Bayesian multisensory integration, features outside the
motion itself—like the sounds a robot makes while it moves—should affect how otherwise identical motions are perceived.
Here, we translate an established psychophysical task from experimental psychology to a human–robot interaction context,
which can measure these distortions to motion perception. In two series of preregistered studies, participants watched a
humanoid robot make forward and backward reaching movements. When the robot hand suddenly disappeared, they reported
its last seen location, either with the mouse cursor (Experiment 1a and 1b) or by matching it to probe stimuli in different
locations (Experiment 2a and 2b). The results revealed that even small changes to the robot’s sound robustly affect participants’
visuospatial representation of its motions, so that themotion appeared to extend further in space when accompanied by slightly
(100 ms) longer sounds compared to slightly shorter sounds (100 ms shorter). Moreover, these sound changes do not only
affect where people currently locate the robot’s motion, but where they anticipate its future steps. These findings show that
sound design is an effective medium for manipulating how people represent otherwise identical robot actions and coordinate
its interactions with it. The study acts as proof of concept that psychophysical tasks provide a promising tool to measure how
design parameters influence the perception and prediction of robot motion.

Keywords Human–robot interaction · Social robotics · Representational momentum · Movement sonification · Cue-
integration · Motion perception

1 Introduction

Robots are increasingly used in close interaction with
humans. Inmanufacturing, robotswork togetherwith humans
on flexible production lines for tasks that cannot be fully
automated [2, 41, 74]. Close physical human–robot interac-
tion is important in rehabilitation [43] to support patients
in everyday life and to improve their agency [55, 59], as
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well as in therapy and socially demanding service work [34,
94]. Robots are also used for teleoperation in environments
that are not safe for human operators [68], or where domain
experts are not available locally [14].

What limits productive human–robot interactions in these
and other applications is that robots often behave in a way
that people find unnatural [76]. Human-to-human coop-
eration is built on the ability to effortlessly “read” and
predict the behaviour of one’s interaction partners [5, 6,
73, 82, 86]. From simple tasks like handing over tools
or moving a table to more complex ones such as assem-
bling an object together, efficient cooperation relies on the
ability to represent our partner’s actions [78]. In human-
to-human cooperation, these interactions are supported by
sophisticated internal models that capture how other inten-
tional (human) interaction partners behave within a given
environment [5, 20, 33, 49]. These models do not only sup-
ply observers with higher-level semantic information about
which action another agent is currently executing [73], but
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also with more fundamental visuospatial information about
these actions’ lower-level kinematics, such as changes in
spatial location, direction, and speed, which are crucial for
guiding moment-to-moment interactions in a shared task
space [61]. Importantly, observers represent these kinematic
parameters in a predictive manner, capturing not only the
movements’ current state but also how they will likely
develop in the immediate future, so that one’s own actions can
be directed not towards where the motion is now but where
it will be in its next steps [5, 33, 49]. Non-biological agents
like robots do not fit these human-centric internal models
[91], however, making it difficult for people to understand
and predict their behaviour [18, 48].

Different approaches have investigated howhuman under-
standing of robot behaviour can be improved, from making
robots communicate via gestures [42], endowing them with
human-like social cues such as eye-gaze [67], to giving them
the ability for speech [46], with limited success [8]. Here,
we investigate an important but typically neglected factor
that may affect the observer’s perception of robot kinemat-
ics: the sounds that a robot produces as it moves. This can
include not only the robot’s consequential sounds, such as
the noise of its motors, the friction of its moving parts and
the whirring of fans [83], but also supplemental intentional
sounds that are designed to convey additional information,
such as an emulated emotional state [80].

Testinghowsoundaffects the perceptionof robot behaviour
is important because human motion perception is multi-
sensory. The visual perception of a moving stimulus is
automatically integrated with information received from
other senses, as well as with prior information about how
the motion is likely to continue, to arrive at a statistically
optimal estimate of what is observed [24, 89, 92]. Both
the intentional and consequential sounds that accompany
robot motions would provide a central component to these
estimations. Sounds should therefore be involuntarily inte-
grated into the perception of robot motion, and— especially
when sound and motion are not well aligned—should induce
illusory distortions in how the motion is represented. Iden-
tical visual motions could therefore be perceived differently
depending on the features of the sounds that accompany
them. Importantly, because human observers are typically
not aware of this integration, they often experience it as an
audiovisual illusion [1, 9, 23, 51]. Any induced changes will
therefore persist over repeated exposures, unless they are
counteracted by specifically designed feedback, or become
noticeable through (potentially costly) action errors that
human operators may make. Moreover, research suggests
that such illusory changes will, if anything, increase when
people’s attention is directed towards another task that they
are engaged in [53], as is likely in most human-robot inter-
actions.

So far, only a handful of studies have investigated how
a robot’s sound is integrated into the perception of robot
motion (see [70] for general overview of sound in HRI, [95]
for review specifically of nonverbal sound). Most of these
studies have measured only its impact on the evaluation
of the robot’s higher-level socio-emotive features, such as
its attractiveness, quality of movement and perceived safety
[69], or which sound characteristics facilitate its localisa-
tion in the absence of visual input [10]. Nothing is known
about how sound changes the perceptual representation of
robot motion itself. Yet, as noted above, investigating such
visuospatial changes is crucial because these features are
what is ultimately used by human interaction partners to plan
their own responses within the shared task space. Distortions
to a movement’s visuospatial representation will therefore
have a direct effect on the actions that human operators
direct towards the robot [58, 60].Moreover, even higher-level
socio-emotive responses to robot movements likely stem in
part from lower-level representations of its kinematic features
(e.g., its jerkiness, smoothness, etc.), or from mismatches
of motion signals in different channels (“uncanniness” [44,
75]). So far, however, no tasks are available that would enable
researchers to probe how human observers visuospatially
represent a robot’s motion.

The goal of the current study is to (1) develop an exper-
imental task that can sensitively measure the predictive
kinematic representations that humans derive of motions and
(2) make it usable for HRI research. We will use (3) the
robot’s sound as a testingbed to investigatewhether these rep-
resentations can be effectively measured and manipulated.
We draw upon the well-established family of representa-
tional momentum-like tasks [19, 28], which ask participants
to accurately localise the last seen position of briefly seen
motions (e.g., with a mouse pointer, or by comparing it
to “probe” stimuli presented in different locations on the
screen). Findings from this task have shown that, to localize
moving objects, humans do not just rely on the parameters of
themotion itself but improve their estimates bydrawingon all
available evidence across themultisensory perceptual sphere,
as well as their prior expectations about how the motion will
continue, and integrate it following the principles ofBayesian
computation [16, 37]. People’s perception of motion there-
fore does not veridically represent the visual motion input,
but is (illusorily) distorted towards the motion’s expected
next steps, which allows agents to compensate for inherent
delays in motor control, making real-time interactions with
a dynamic environment possible [25, 26, 61]. For example,
when asked to accurately report disappearance points ofmov-
ing objects, location judgments are (erroneously) displaced
away from the objects true location towards the expected
next steps of the motion sequence, and these misperceptions
incorporate one’s prior knowledge of the forces acting on
the object [27], intuitive knowledge of physics [21], context,
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and in social interactions, the goals attributed to the agent [5,
30–33, 49, 50].

Here, we use this task to probe people’s kinematic repre-
sentation of robot movements, andmeasure how it is affected
by the robot’s sound. In four studies, participants viewedbrief
sequences of a robot hand in side view reaching or withdraw-
ing (see [30] for similar design in human action perception).
The robot’s hand disappeared at an unpredictable point dur-
ing the action, and participants were asked to accurately
report its last seen location, either with their mouse cursor
(Experiments 1a and 1b) or by comparing it to static probe
stimuli showing the robot hand displaced forwards or back-
wards in time (Experiments 2a and 2b). To test whether the
robot’s sound affects motion representation, we manipulated
the duration of the sound that accompanied the movements,
as an important ecologically valid sound component. As a
complex system made up of various components, a robot’s
consequential sounds will not always begin and end simul-
taneously, due to inherent delays and their position in the
operational hierarchy. For example, a motor may be most
active during the early stage of a motion, while a fan that
cools it may continue to operate even after the motion has
ceased. Similarly, supplemental sounds may be deployed out
of sync with a robot’s motion due to computational error, or
intentionally to achieve a desired outcome. If sound dura-
tion is integrated into the perception of visual motion, then
changes to sound duration should affect the extent of the per-
ceived motions. Reaches and withdrawals should therefore
be reported to have travelled further along their trajectory
when accompanied by a longer sound than a shorter sound
[84].

Numerous manipulations of robot sounds hold promise
for introducing biases in how robot actions are represented
perceptually. For example, Orthmann and colleagues found
that robot actions were rated faster when accompanied by
sounds with higher frequency than when accompanied by
soundswith a lower frequency [7]. Spatially distributed robot
sounds influence participants’ ratings of animacy and agency
[71]. We chose to manipulate the duration of the sound that
accompanied the robot’s actions, as prior evidence from out-
side HRI indicated that sound duration is integrated with
perceived motion, abstract shapes making the motion appear
more or less pronounced depending on the duration of the
sound that accompanies it [84]. Importantly, this manipu-
lation of sound duration can be incorporated on very simple
hardware, and therefore haswide application, unlike spatially
distributed sounds that require a more complex setup.

Our research strategy is as follows. In Experiment 1a and
the preregistered Experiment 1b, we ask participants to accu-
rately localise the robot hand’s disappearance points using a
computer mouse. These studies show indeed that sound is
integrated with human perception of robot action and affects
how otherwise identical motions are perceived, so that visu-

ally identical disappearance points are localised further along
the motion path when accompanied by sounds of a longer
duration and not as far when the sounds terminated earlier.
Importantly, mouse responses rely on the same visuospatial
motor maps that people use to coordinate the movements of
their own limbs within a dynamic environment [36, 57, 58]
and can therefore serve as a proxy for the visuospatial pro-
cesses guiding dynamic human–robot-interaction. However,
while they robustly capture the effect of sound on spatial
localisation, they are subject to various biases that render
them unable to precisely measure how perceptual represen-
tations more generally relate to the objective motion that was
perceived, specifically whether the representation of robot
movement is predictive or lags behind the perceived motion.
To provide this crucial test, in Experiments 2a and 2b we
ask participants to make their motion disappearance judg-
ments not with a mouse cursor, but by comparing them to
static “probe” stimuli presented after. The non-spatial nature
of these responses eliminates the confounding biases and
shows for the first time that human representation of robot is
inherently predictive, capturing not only its last seen location
but being enriched by expectations of how it will develop in
the future.

2 Experiments 1a and 1b

Hypothesis:Wepredict that participants’ perception ofwhere
a robot’s moving hand disappeared (measured using partic-
ipant mouse response data on the x-axis) will be biased by
the sound that accompanies it, so that the hand motion will
appear to extend further along the action trajectory when the
sound accompanying it continues for longer than the motion
(+100mspositive auditory offset), relative towhen the sound
ends sooner than the motion (negative offset −100 ms).

2.1 Methodology

2.1.1 Participants

Participants (Experiment 1a: 51 participants, 35 women
including trans women, 16 men including trans men, mean
age 21.2, SD (standard deviation) = 3.32, 41 right-handed;
Experiment 1b: 51 participants, 32 men including trans men,
19women including transwomen,mean age 32.6 years, SD=
10.13, 48 right-handed), were recruited using the University
ofAberdeen’s researchparticipation scheme (Experiment 1a)
and Testable Minds (Experiment 1b). They gave electronic
informed consent as part of the experiment briefing and were
reimbursed with course credits or £ 4.70. Each experiment
took approximately half an hour.

In Experiment 1a, the final sample of 44 participants
provides.80 power to detect effect sizes of d (Cohen’s d)
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= .43(n2p Partial eta squared = 0.159). For Experiment 1b,
the final sample of 42 gives us.80 power to detect effects of
at least d = .44(n2p = 0.165). Prior studies investigating
multisensory integration in biological motion outside HRI
[30–32] revealed that effect sizes in similar paradigms are
consistently of this size or larger (d = .52 to d = 1.23).

2.1.2 Apparatus

Visual stimuliwerefilmedon aCanonm50mirrorless camera
and edited using Lightworks andVLMC. Audio stimuli were
created using samples from the sound repository freesound
which were edited using Audacity [4] and MATLAB [47].
The experiment was programmed using the Inquisit platform
[54] in an online format. Participants used their own per-
sonal devices to complete the experiment. Included devices
were personal computers with a mouse and keyboard. Partic-
ipants with mobile devices were asked not to participate and
excluded if they did. Participants were asked to wear head-
phones during the experiment, and their ability to hear the
sounds played was self-verified on the basis of test sounds
(simple beeps) at the start of the experiment.

2.1.3 Stimuli

Visual Stimuli: Visual stimuli were derived from video
recordings showing the side profile of the humanoid robot
Pepper (Aldebaran) [62], completing a reaching (leftward),
or a withdrawing (rightward) action. The grasping trajec-
tory was designed to emulate a human agent reaching
towards, and then grasping, an object. To reduce unnecessary
uncertainty for participants unfamiliar with robot kinemat-
ics the designed grasp/withdraw trajectory was biologically
inspired. As humans sample human motion daily, they have
an inherent robust model of human motion [3, 64]. Due to
this it was important for the robot’s morphology to match the
human-like trajectory profile. Of the robots available to our
lab, the Pepper robot best suited this task. Background details
in the video were replaced with a uniform black background
using the video editing software Lightworks.

Experiment 1a: All stimuli were derived from an initial set
of video recordings of three reach actions, starting on the right
side of the screen, reaching towards the left, consisting of 32
frames in total. Frame 1 therefore shows the robot hand in
its most backwards (close to the body) position while frame
32 shows the robot arm in its most extended position. Six
sequences of motion were generated from this original set,
each 5 frames long (6 including the initial still frame), three
of them showing reaches and three showingwithdrawals. The
action sequences startedwith a neutral frame, whichwas ran-
domly chosen between three alternatives (frame 13, 14, 16),
showing a medium extension of the arm. Reaches and with-
drawals were generated by either stepping forwards (e.g.,

frame 15–17–19–21–23) for reaches, and backwards (e.g.,
frame 11–9–7–5–3) for withdrawals through the frames of
the original video stimulus sequences. Due to the three differ-
ent starting positions, each action sequence could terminate
in different locations in space, either closer to the centre of
the screen, in a medium distance from the centre, or further
out in the periphery. Each frame of the sequence was dis-
played for 82 ms, and immediately replaced with the next
frame without gap.

The robot actions were presented as a rapid succession
of static frames instead of video because this mode of
presentation affords precise control of the timing of onset
and offset of each frame and ensures that stimuli are not
contaminated by compression/video artifacts on different
platforms. Importantly, the presentation of each frame in
rapid succession without any temporal gaps matches the
usual frame rate in animation (12 fps ≈ 82 ms) and induces
the full perception of motion ("Apparent motion", [90]),
while guarding against a contribution of smooth-pursuit eye
movements, which could otherwise contaminate results in
representational-momentum-like designs [36]. In additional
work we have confirmed that results do not differ when a
smoother (double frame rate) mode of presentation is used.

Experiment 1b: As in Experiment 1a, three reach and
three withdrawal sequences were generated from the videos
of the original reach sequences. In contrast to Experiment
1a, the starting position of the action sequence remained
identical across sequences (frame 14), while the extent of
the motion could vary between 3, 4, or 5 frames (repre-
senting a motion covering a short distance, an intermediate
distance or the longest distance, respectively). This does not
include the initially presented still starting frame. As before,
reaches were created by stepping forward through the ini-
tial video sequence and withdrawals by stepping backwards
through them. Due to the different sequence lengths, each
action sequence could again terminate in different locations
in space, either closer to the centre of the screen, in a medium
distance from the centre, or further in the periphery. Each
frame within the sequence was displayed for 82 ms and
immediately replaced with the next frame without gap.

Auditory StimuliWechose to design our own audio stim-
uli using samples from the collaborative sound repository
freesound instead of using recordings from the Pepper robot,
as this was dominated by the clicking and squeaking of the
housing for which duration was difficult to manipulate. To
this end, we used two recorded samples of consumer motors,
but increased the amplitude of low frequencies to give the
impression of a robot with larger mass [7] such as Pep-
per. Dead zones in the audio were removed. The resulting
audio stimuli provided an ideal testing bed for the sound
offset manipulation, providing realistic continuous sound
with a clear onset and offset. Moreover, while intention-
ally designed to supplement the robot’s movements, they are
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Fig. 1 aTrial sequence example and relative lengths of presented visual
and auditory stimulus. This trial sequence shows awithdraw. During the
response stimulus the participant uses their mouse to indicate the last

perceived location of the robot’s index finger. b Starting position and
final Reach and Withdraw positions from a 5-frame motion. c Relative
motion and auditory offsets

based on features associated with the robot’s consequential
(motor) sounds, supporting the formation of a causal link
between robot movement and accompanying sound [15].

Experiment 1a: Two versions of the audio stimuli were
generated, with durations of 310 ms and 510 ms, represent-
ing an offset of (−100 ms and +100 ms) relative to the
visual motion sequences. These offset values were chosen
from literature outside the HRI context [84], as these suf-
ficed to induce measurable shifts in perceptual judgments
while being not readily detectable by participants.

Experiment 1b: Six versions of the designed audio were
generated. Three represented a 100 ms offset after the ter-
mination of the motion sequences, and three a 100 ms offset
before their offset. This resulted in durations of 146 ms and
346 ms for the 3-frame sequence, 228 ms and 428 ms for the
4-frame sequence, and 310 ms and 510 ms for the 5-frame
sequence.

2.1.4 Procedure

The participants first gave informed consent and received
experimental instruction. They then proceeded to complete
eight training trials, identical to the experimental trials. Train-
ing trials could be repeated if the participants felt they did
not fully understand the task. Both Experiment 1a and 1b
consisted of 120 trials, presented in 2 blocks of 60 tri-
als each, with conditions following in pseudo-randomized
order, counterbalanced so that each combination of the three
sequence lengths/starting positions, two action directions,
and two sound durations (100 ms longer or shorter than
the movement durations) were repeated an equal number
of times. In Experiment 1b, after the 120 experimental tri-
als were completed, participants were asked to make a (free
text) guess of the experimental hypothesis, to test whether
the effects obtained can be explained by participants guess-
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ing the experimental hypothesis and adapting their behaviour
accordingly (i.e., demand effects). Additionally, participants
were asked questions probing their awareness of a change in
the two sound conditions during the experiment (for details
see in the supplementary information, testing for demand
effects). The experiment lasted about 30min in total.

At the beginning of each trial (one robot action), partic-
ipants were presented with a static image of the first frame
of the movement. Following a randomly generated delay
between 1000 and 2500 ms, the action sequence (reach or
withdrawal) and auditory stimuli were presented. Action
sequence and auditory stimuli always began synchronously
after the random interval so that participants could form a
causal relationship between the sound they were hearing
and the robot hand moving [15], ensuring that participants
believed the sound they heard came from the robot’s motion
[84]. The sequences stepped forward (for reaches) or back-
ward (for withdrawals) through the stimulus sequence in five
frames (Experiment 1a) or three, four or five frames in Exper-
iment 1b. The last framewas immediately replaced by a black
screen. The auditory stimuli stopped playing either 100 ms
before the action sequence offset, or 100ms after. The partic-
ipants were asked to use their mouse and click to accurately
indicate the last seen location of the robot’s indexfinger. They
had five seconds maximum to respond. The next trial started
after they clicked a green marker in the centre of the screen,
so that their mouse was centred for the start of the next trial.

2.1.5 Analysis

To measure the localisation error in participant responses,
the displacement between the real coordinates of the robot’s
index finger (xt , yt ), and the mouse response coordinates
of participants (xr , yr ) were calculated. Since participants
completed the experiment on their own personal devices,
device resolutions were captured (xdr , ydr ) and used to scale
participants’ individual responses to a universal pixel size
(1920 × 1080). Localisation error on the x-axis and y-axis
are calculated using Eqs. 1 and 2, respectively.

ex =
(
1920

xdr
xr

)
− xt (1)

ey =
(
1080

ydr
yr

)
− yt (2)

Zero values on both axes indicate a perfect match of pre-
sented and reported disappearance points. Positive values of
ex denote a rightward shift in responses relative to the actual
final position of the robot’s hand, and negative values rep-
resent leftward responses. Positive and negative values of
ey represent an upwards and downwards shift in responses,
respectively.

The dataset was pre-processed and analysed using the
statistical computing language R, Version 4.2.2 [65]. This
included the exclusion of participants and trials (Sect. 2.1.6),
and calculating the standardized localisation error for indi-
vidual participants for each experimental condition.

Statistical analysis was completed using the function
‘ezANOVA’ from the package ‘ez’ [40] for the standard-
ized localisation error, indicating the difference between the
real location of the robot’s index finger’s disappearance point
and the location the participants identified with their mouse
click. Localisation error on the x-axis (ex ) was measured
as the displacement between participants’ response coordi-
nate (xr ), and the actual termination x-axis coordinate of the
robot’s hand (xt ), and analogously for the y-axis.

2.1.6 Exclusion Criteria

Participants were excluded if they used a mobile device
without mouse. This was the case for four participants in
Experiment 1a, and five in Experiment 1b. Additionally,
participants with an aggregate mean localisation error (dis-
placement between target stimulus and participants response
across all conditions) greater than 10% of displayed stimulus
size were excluded. From Experiment 1a three partici-
pants were excluded based on this criterion, and one from
Experiment 1b. In Experiment 1b, three participants were
excluded because they consistently responded after the allo-
cated response time interval of 5 s.

InExperiment 1a, trialswith localisation error greater than
3 SD from the median were excluded. As preregistered in
Experiment 1b, trials with localisation error greater than 3
SD from the median were excluded, as well as trials with
response times shorter than 200 ms, or longer than 3 SD
from the sample median (≈2.2%).

2.2 Results: Experiments 1a and 1b

Each participant’s mean ex localisation errors were entered
into 2 × 2 × 3 repeated measures analyses of variance
(ANOVA), with factors Action Direction (Reach vs. With-
drawal), Sound (−100 ms vs. +100 ms) and End Position of
motion termination relative to the centre of the participant’s
screen on the x-axis (Centre, Middle, Outer). Data was anal-
ysed using the same ANOVA model for both Experiment 1a
and 1b.

Our predictions primarily concern the localisation errors
on the x-axis, as the majority of the robot’s grasp motion is a
translation on the x-axis, with limited variance on the y-axis
(see Fig. 1). Our main hypothesis is tested by the interaction
of Sound and Action Direction, indicating that longer sounds
bias responses more strongly leftwards for (leftwards mov-
ing) reaches and more rightwards for (rightwards moving)
withdrawals than shorter sounds. While not directly rele-
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Fig. 2 2D kernel density estimation for spatial distribution of response
coordinates expressed as the difference between the real final coordi-
nate of the robot’s index finger and participants’ response coordinate
on the x-axis and y-axis. Response coordinates are shown in universal
Scaled Pixels (SP). The (0, 0) coordinate represents real final position
on any given trial (0 SP difference on each axis). The (0, 0) point for
reaches has been placed above that for withdrawals as the real final

position for reaches was above that of withdrawals. On the right, the
extent to which each participant was affected by the sound manipula-
tion is represented by dots, with their location on the x axis showing
howmuch, in standardized pixels, the longer and shorter sounds shifted
the motion localisation. The cloud represents the overall sample dis-
tribution. The dotted line represents the zero point (no difference in
localisation responses between the two sound conditions)

vant to our hypotheses, and statistically independent from it,
pilot workwith this paradigm has also revealed an interaction
between Action Direction and End Position. This reflects an
increasing “pull” of participants’ location judgments towards
the centre of the screen the more peripherally the motions
terminate, in line with the well-known tendency for visual
judgments to stabilize towards average disappearance loca-
tions across trials [45, 63].

As we have no further predictions, all other main effects
and interactions should be treated as incidental unless meet-
ing a (Bonferroni-adjusted) alpha threshold of.006 to account
for hidden multiplicity in an ANOVA. [13]. Analysis of the
y-axis data is presented in the Supplementary Information
(see Experiment 1, y-axis results), and generally replicates
all findings on the x-axis.

2.2.1 Experiment 1a

Analysis of participants’ localisation errors revealed the pre-
dicted two-way interaction of Action Direction and Sound
(F(1, 44) = 12.1, p = .002, n2p = 0.216). As can be seen

in Fig. 2, people reported the disappearance point of reaches
(leftward motions) more leftward when the robot’s sound
extended beyond the motion than when it terminated before
it, andmore rightwards for withdrawals (rightwardmotions).
As hypothesised, longer sounds therefore bias participants’
responses in the direction of the robot’smotionmore strongly
than shorter sounds, even though exactly the same visual
motions were shown.

The ANOVA model also indicated a significant intercept
(F(1, 44) = 136, p < .001, n2p = 0.75). As apparent from
Fig. 2, participants’ localisation errors were generally pos-
itive, indicating that they reported the disappearance point
of the robot’s index finger systematically more rightwards
than it really was. This rightwards bias is statistically inde-
pendent of our hypothesis tests and common for stimuli that
extend rightwards such as ours, as localisation responses are
typically attracted by the stimulus’ centre of mass (e.g., the
middle of the hand, [11, 30, 33, 49, 50]).

Finally, the expected interaction between Action Direc-
tion and End Position was found (F(2, 88) = 50.72, p <

.001, n2p = .61), as well as a main effect of End Position
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(F(2, 88) = 9.64, p < .001, n2p = 0.179). These find-
ings reflect the predicted general bias of mouse localisations
towards the perceptual history, which average towards the
centre of the screen [45, 63]. Our ANOVA models indicated
no further main effects or interactions that met the adjusted
threshold (all F < 1.21, p > .328).

2.2.2 Experiment 1b

Experiment 1b fully replicated the results of Experiment
1a. The analysis revealed, first, the predicted (and prereg-
istered) two-way interaction of Action Direction and Sound,
F(1, 41) = 71.9, p < .001, n2p = .637. As in Experi-
ment 1a, people reported the disappearance of leftward going
reaches more leftwards when the sound extended beyond the
motion than when it terminated before it, and more right-
wards for withdrawals (Fig. 2, lower panel).

Like in Experiment 1a, our model also replicated the gen-
eral biases affecting mouse localisation responses, which
are independent of our hypotheses. It revealed a significant
intercept, F(1, 41) = 17.9, p < .001, n2p = 0.304, repli-
cating the general rightwards bias of localisation responses
towards the robot hand’s centre of mass. Moreover, it repli-
cated the general bias of mouse responses towards the
centre of the screen, as indicated by an interaction between
Action Direction and End Position, F(1, 82) = 5.79, p =
.004, n2p = 0.124 as well as a main effect of Action Direc-
tion (F(1, 41) = 17.9, p < .001, n2p = 0.304). Thus, as in
Experiment 1a, participants’ localisations did not cover the
whole of themotion butwere biased centrally, and this inward
bias increased the further outwards the motion terminated.

Our ANOVA models indicated no further main effects
or interactions that met the adjusted threshold (all Fs <

4.83, p > 0.011), with the exception of a main effect of
Sound F(1, 41) = 12.2, p = .002, n2p = 0.231, repre-
senting that participants responded further rightwards when
presented with longer sounds, as opposed to shorter sounds,
which is independent of our hypotheses. It is most likely
due to the fact that the effect of sound offset on motion
over-estimation was more pronounced for rightwards mov-
ing reaches (See Fig. 2, lower panel), therefore creating an
overall bias towards the right.

2.2.3 Between-Experiment Comparison

In an exploratory analysis, we verified whether the motion
localisation biases that were induced by the sound dura-
tion manipulation were larger in Experiment 1b than in
Experiment 1a, due to the increased uncertainty about the
end-positions and timing of the motion. We therefore ran
the same ANOVA model on the pooled data of Experiment
1a and 1b, with Experiment (1a vs. 1b) added as an addi-

tional between-participants factor. This indeed revealed a
three-way interaction between Action Direction, Sound and
Experiment, F(1, 85) = 10.64, p = .002, n2p = .111),
revealing that the sound had a larger effect on the perceived
motion extent in Experiment 1b than Experiment 1a.

3 Experiments 2a and 2b

Experiments 1a and 1b provided the first evidence that the
sound emitted by a robot influences how people represent the
low-level visuospatial characteristics of its motion. When
participants were asked to localise the visually perceived
disappearance point of briefly presented robot hand move-
ments, their judgements were systematically influenced by
the sounds it produced, so that themotions appeared to extend
further into space when accompanied by a longer sound and
not as far when accompanied by a shorter sound, particularly
if the motion endpoints could be less reliably predicted in
Experiment 1b than in Experiment 1a. Please note that these
results were obtained even thoughwe did not ask participants
to make a judgments where they assumed the robot motion to
have terminated after it had disappeared, or to predicts its next
step, but to accurately report the hand’s last seen location.Our
findings therefore indicate that the sound manipulation did
not affect higher-order judgments of assumed motion end-
points, but the more fundamental visuospatial representation
of themotions itself, similar to other illusory changes induced
by the integration of vision and sound [1, 9, 23, 51].

The mouse movements used for spatial localization are
assumed to draw upon similar visuospatial motor maps [36,
57, 58] that are used to coordinate the movements of one’s
limbs within a dynamic environment and therefore capture
processes during robot–human interactionwithin a share task
space. However, localisation responses are subject to well-
known biases that we also observe here, such as a rightwards
bias towards the hand’s centre of mass [11, 30, 33, 49, 50],
and a bias towards the middle of the screen, the starting point
of themouse pointer [45, 63] and the average locationof judg-
ments made before [17]. While these biases are independent
of our hypotheses, they make it impossible to assess how
participants’ representation of the observed motions more
generally relates to their actual kinematics. A classic finding
is that the human representation of observed motion is pre-
dictive, so that peoplemisperceivemotions displaced into the
future, extrapolated towards themotion’s expected next steps
[19, 24, 26]. These predictive displacements are assumed to
be a major component of people’s ability to interact with
a dynamic (social) environment [5, 77], compensating for
delays in motor control [57, 58, 60, 61] and allowing our
own responses to be planned towards where actions will ter-
minate in the future rather than where they are right now.
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To probe this predictive representation of observed robot
motion, Experiment 2a and 2b changed how the influence
of sounds on motion perception was measured. Participants
saw and heard the same stimuli as in Experiment 1b. How-
ever, now, they judged the motion disappearance points not
by moving the mouse, but by comparing the hand’s last seen
location to a static “probe” comparison image, which was
presented shortly after the motion disappeared and which
showed the robot’s hand either further along the motion
sequence than it really was (either +1 or +3 frames for-
wards) or not as far (either −1 or −3 frames backwards).
Participants simply indicated, through a press of a button,
whether the presented probe image was identical or different
than the last seen image in the motion.

Probe tasks are well validated in motion perception
research. They have been used to measure the motion of
both naturalistic [30, 31, 33] and abstract stimuli [29], and
how they are affected by sound [84]. In contrast to mouse
responses, they more directly probe the perceptual represen-
tation of moving stimuli, without drawing upon visuospatial
“motor” maps that are used to spatially guide one’s limbs to
targets in the environment [36, 57, 58]. Importantly, the non-
spatial nature of the required button presses renders them
unaffected by the biases acting on mouse judgments and
allows us to directly measure the predictive component of
robotmotion perception inExperiments 1a and1b.We should
therefore find that participants are more likely to identify
probe stimuli further along the trajectory with the hand’s
last seen location, compared to probe stimuli in a previous
part of the motion. Moreover, if sounds are integrated with
the perception of the motion, these mis-localisations should
increasewhen themotions are accompanied by longer sounds
than when accompanied by shorter sounds.

Hypothesis: We predict that participants will misidentify
probe stimuli further along the trajectory as the robot hand’s
last seen location, compared to probe stimuli in a previous
part of the motion. Moreover, these mislocalisations should
increasewhen themotions are accompanied by longer sounds
than when accompanied by shorter sounds if the sounds are
integrated with the perception of the motion.

3.1 Methodology

3.1.1 Participants

Participants in Experiment 2a were recruited through the
University of Aberdeen’s research participation scheme (24
participants, 19 women including trans women, 5 men
including trans men, mean age 24.1, SD = 6.91, 21 right-
handed). In Experiment 2b, recruitment occurred through the
participant recruitment platform Testable minds (32 partici-
pants, 22men including transmen, 10women including trans
women, mean age 31.9 years, SD = 8.09, 29 right-handed).

Participants provided electronic informed consent as part of
the experimental briefing and were reimbursed with course
credits or £ 7.20 respectively. Each experiment took approx-
imately 45min.

The final sample of Experiment 2a, 19, provides .9 power
to detect effect sizes of d = .787 (n2p = 0.357). For Experi-
ment 2b, the final sample of 26 provides .95 power to detect
effect sizes of d = .736 (n2p = 0.360).

3.1.2 Procedure

No adaptions were made to the apparatus or stimuli (Sect.
2.1.3) in the transition from Experiments 1b to Experiments
2a and 2b.

Participants first gave informed consent and received
experimental instruction. Afterwards, eight training trials
(identical to the experimental trials) were completed. These
training trials, and the instructions preceding then, could be
repeated if the participant wished. The experiment consisted
of 288 trials, presented in six blocks of 48 trials each. Within
each block, conditions were presented randomly, and coun-
terbalanced such that each combination of the two action
directions, two sound offsets and three action lengths were
presented equal number of times. Between each experimen-
tal block there were two-minute breaks, with a countdown
indicating the rest time remaining, and re-displaying the
experimental instructions. At the end of the experiment, as in
Experiment 1b, participants were asked to make a free-text
guess of the experimental hypothesis, andwere given a funnel
debrief, investigating their ability to detect the sound manip-
ulation (see Supplementary Material, testing for demand
effects).

As in Experiment 1a and 1b, at the start of each trial partic-
ipants were presented with a static image of a robot’s hand.
Following a randomly generated delay between 1000 and
2500 ms the robot would either reach to the left, or withdraw
to the right. Synchronously, the robot’s sound would start to
play as it moved across the participants’ screen. As in Exper-
iment 1b, the robot stepped through the action sequence by
three, four or five frames. The last frame was immediately
replaced by a black screen. The robot’s sound either stopped
100 ms before the robot finished moving, or 100 ms after its
motion terminated. After a blank screen of 430 ms, partic-
ipants were then presented with a static probe image of the
robot’s hand and asked to judge if the displayed probe was
‘different’ to the last position of the robot’s hand. The pre-
sented static probe could show the hand either three frames
behind its final position, one frame behind, one frame ahead,
or three frames ahead, relative to the robot’s direction of
motion (see Fig. 3).

‘Different’ responses were recorded by the participant
pressing the ‘spacebar’ of their personal device. Participants
were asked to signal “same” responses—that they perceived
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Fig. 3 Possible static probes that participants selected to be the ’same’ or ’different’ to the final frame of the action sequence

the presented probe hand to be in the same position as the
hand’s last position before the black screen—by not pressing
a key. In Experiment 2b, auditory feedback (a simple chime)
was given when the participants pressed the spacebar, to let
them know that their response had been recorded. Partici-
pants had a maximum of 5s to make their judgement. The
next trial began 5s after the probe response stimulus was
displayed, independent of participant response.

3.1.3 Analysis

The dataset was pre-processed using R [65]. Data from par-
ticipants who did not finish the experiment were excluded as
well as the data from participants who met one of the exclu-
sion criteria (see 3.1.4). Motion Overestimation, expressed
as the weighted means of the proportion of participants
‘same’ response, was calculated for each participant for
each condition. Statistical analysis was completed using the
‘ezANOVA’ function from the ‘ez’ [40] library.

While biases in perception using similar probe tasks have
been quantified in various ways (see [28], for overview), we
used the weighted means approach [22], as this technique
provides a measure that weights forward and backwards
probes (future/past) with equal importance, while weight-
ing responses that are further in the past, or future of the
action sequence more strongly. The weighted means of the
proportion of ‘same’ responses per condition was calculated

as is represented in Eq.3.

p =

⎛
⎜⎜⎝

−3
−1
1
3

⎞
⎟⎟⎠ ,MOw =

∑p=3
p=−3 (

x̄s,p
x̄T ,p

) × p∑ x̄s
x̄T

(3)

In which MOw is the weighted shift in motion overesti-
mation, and positive MOw indicates forward displacement
from the robot’s hand in the direction of motion. Neg-
ative MOw represents displacement against the direction
of motion. p denotes the probe image presented to par-
ticipants, with options (−3,−1, 1, 3), corresponding to the
probe image being three frames into the past of the robot’s
action sequence, one frame in the past, one frame in the
future, or three frames into the future. x̄s,p represents the
sample mean of ’same’ responses at a single probe, while
x̄s , the total mean of same responses over all probes. x̄T ,p
denotes the mean of the total responses (’same’ plus ’differ-
ent’) at a single probe, and x̄T the total responses across all
probes.

3.1.4 Exclusion Criteria

Participantswere excluded if theirmean proportion of ‘same’
responses was less than 10% or greater than 90%. This was
the case for zero participants in Experiment 2a and Experi-
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ment 2b. Additionally, participants were excluded if they did
not make at least 10% more ‘different’ responses to probe
stimuli that were further away from the hand’s last seen loca-
tion and visually obviously different (three frames further
along, or three frames further back) compared to probes that
matched the hand’s disappearance point more closely and
were barely perceivable (one frame further along the tra-
jectory or one frame further back). The absence of such a
difference would indicate an insensitivity to even the largest
differences between hand disappearance points and probe
stimuli, and imply a general lack of attention, visual acuity, or
a generalmisunderstanding of the task. These exclusion crite-
ria were decided a priori based on pilot data (Experiment 2a),
and preregistered before collecting data for Experiment 2b. 5
participants in Experiment 2a, and 6 participants in Experi-
ment 2b, were excluded for this reason. The final sample had
the following demographics: Experiment 3: 19 participants,
16 women including trans women, 3 men including trans
men,mean age 23.8, SD= 6.43, 16 right-handed; Experiment
4: 26 participants, 18 men including trans men, 8 women
including trans women, mean age 32.8 years, SD = 8.28, 23
right-handed. It should be noted that all preregisteredfindings
for Experiment 2a and 2b remain significant if the exclusion
criteria are not applied.

3.2 Results: Experiments 2a and 2b

Each participant’s weighted mean motion overestimation
scores were entered into a 2 × 2 × 3 repeated measures
analysis of variance (ANOVA) with factors Action Direc-
tion (Reach vs. Withdraw), Sound (−100 ms vs. +100 ms)
and End Position of motion termination relative to the cen-
tre of the participant’ screen on the x-axis (Centre, Middle,
Outer).

As preregistered for Experiment 2b our hypothesis is that
participants will generally overestimate the robot’s motion,
particularly during the longer sound duration, compared to
the shorter sound duration. General overestimation—that
participants’ perception is biased towards their prediction
of the future location of the robot hand—is characterised by
the intercept term in our ANOVAmodel, with generally pos-
itive values indicating over-estimation of motion towards the
predicted next steps and negative values indicating under-
estimation. The crucial hypothesis that longer robot sounds
will prompt participants to perceive the hand further into its
future trajectory than shorter sounds is represented by the
main effect of Sound.

As with Experiments 1a and 1b, since we have no addi-
tional predictions, all other main effects and interactions are
treated as incidental unless they meet the adjusted alpha
threshold of .007 to correct for incidental findings in multi-
factor ANOVAs [13].

3.2.1 Experiment 2a

The analysis of motion overestimation (MOw) revealed the
predicted effect that participants’ perceptual responses were
biased towards probes representing the robot’s future tra-
jectory, as opposed to probes representing the recent past,
indicated by a significant intercept (F(1, 18) = 16.6, p <

.001, n2p = .480). For both reaches [Fig. 4(a), and with-
drawals Fig. 4(b)], participants were therefore more likely
to identify probes in a future location as “same” than probes
in a past location, consistent with the general overestimation
of perceived motion into its predicted future location (repre-
sentational momentum [27, 30, 49].

Importantly, our main prediction—that robot sounds that
terminated after the shown motion would increase this bias
towards identifying future probe locations as “same”—
was confirmed by the main effect of Sound (F(1, 18) =
15.4, p < .001, n2p = 0.461), indicating larger overestima-
tions for longer than shorter sounds [see Fig. 4(c)].

In addition to these predicted findings, the ANOVA also
revealed an interaction between Action Direction and End
Position (F(2, 36) = 8.77, p < .001, n2p = 0.326), which
is independent of our main hypotheses. It reflects that over-
estimation is more pronounced for the shorter than the longer
movement durations.

OurANOVAmodel indicatedno additionalmain effects or
interactions that met the adjusted threshold (F < 4.99, p >

0.012).

3.2.2 Experiment 2b

Experiment 2b successfully replicated all relevant findings
of Experiment 2a. The ANOVA first indicated a significant
intercept (F(1, 25) = 62.5, p < .001, n2p = 0.714). As
in Experiment 2a, participants’ responses were generally
biased towards probes representing the future steps of the
robot motion kinematics [Fig. 4 (e), (f) and (g)]. Moreover,
as in Experiment 2a, the ANOVA revealed the crucial main
effect of Sound (F(1, 25) = 28.7, p < .001, n2p = 0.534),
confirming that longer sounds increased the overestimation
of perceived motion relative to shorter sounds [reflected in
Fig. 4 (e), (f) and (g)].

Next to these predicted results, Experiment 2b also repli-
cated the interaction between Action Direction and End
Position, (F(2, 50) = 6.44, p = .004, n2p = 0.205), plus
a main effect of End Position (F(2, 50) = 6.21, p =
.004, n2p = 0.20). This again reflects that motion overesti-
mation is more pronounced for the motions ending in central
locations (Centre), and weaker for motions ending in the
periphery (Middle and Outer) motions, specifically for with-
drawals relative to reaches.

OurANOVAmodel indicatedno additionalmain effects or
interactions that met the adjusted threshold (F < 1.65, p >

0.203).
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Fig. 4 For Experiment 2a, a and b show the proportion of trials in
which the participant judged the probe position to be the same as the
final position of the robot is plotted at each level of the probe stimulus
(−3,−1, 1, 3) for Reaches and Withdraws, respectively. In c motion
overestimation is expressed as a weighted mean. In d, each dot rep-
resents each participant’s difference in their weighted mean motion

overestimation scores between the longer sound and shorter sound con-
ditions, while the cloud presents the density of the scores for the sample.
Error bars in a, b and c represent 95% confidence intervals for the main
effect of Sound. For Experiment 2b, the same is shown via (e), (f), (g)
and (h)

4 Supplementary Information

4.1 Experiment 1: y-axis

Since the actions that the robot performed were leftward
reaches or rightward withdrawals, we expected perceptual
biases to be most dominant on the x-axis. However there is
a small motion variation on the y-axis that could induce the
same effects as we find on the x-axis.We report findings from
the y-axis, using the identical analysis to Experiment 1a and

1b on the x-axis in the Supplementary Information—Exper-
iment 1 y-axis), which broadly replicates the findings from
the x-axis.

4.2 Learning Effects

The current analysis does not allow us to measure possible
changes in our findings over the course of the experiment,
such as possible learning effects. Understanding if the per-
ceptual changes we report remain stable throughout an
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extended human–robot interaction, or if after numerous repe-
titions of the robot’s actions and sounds the perceptual biases
diminish—as the participant learns features of the robot’s
motion, is crucial for determining use-cases. To test this,
we constructed mixed-linear models to track how the per-
ceptual biases in our replication studies (Experiment 1b and
2b) change over the course of the full experiments. In both
experiments, the effect of sound on perceptual judgements
was remarkably stable, regardless of how far participants had
progressed through the experiments and the number of rep-
etitions they had seen of the different combinations of robot
action and sounds. The same was true for the general over-
estimation of motion in Experiment 2b, which if anything
increased slightly over the course of the experiment. Full
analysis and discussion can be found in the Supplementary
Information—Learning Effects.

4.3 Demand Effects

We conducted additional analysis to ensure the sound-
induced perceptual biases observed in the present exper-
iments do not reflect demand effects when participants
guessed the experimental hypothesis during the experiment
and modified their responses accordingly. At the end of
Experiment 1b, 2a, and 2b, participants were (1) asked to
make a free text guess of the hypotheses they thoughwewere
testing. Theywere then given a tiered funnelled questionnaire
asking (1) whether they noticed an experimental difference
between trials other than the direction of the robot’s action,
and, if yes, (2) whether they could identify what this change
was. It was then (3) revealed that the sound of the robot was
manipulated and theywere asked to identifywhich character-
istic of the sound changed. These responses were blindly and
independently rated by JC and PB in terms of how closely
they captured the real experimental hypotheses and sound
manipulation. The majority of participants did not identify
the hypothesis, or detect a difference in the robot’s sound.
Moreover, there was little indication that participants who
(1) guessed the experimental hypothesis, or (2) identified
the difference in the robot’s sound were any less affected
than participants who could not. Full details can be found
in the Supplementary Information—Controlling for Demand
Effects.

5 General Discussion

For productive human–robot interaction, it is crucial that
human partners can represent the robot’s motions effec-
tively, so that they can plan their own behaviour in response.
Here, we present a task—based on well-established rep-
resentational momentum designs [19, 28] in experimental
psychology—that can measure how people visuospatially

represent the movements they observe. We tested whether
the sounds that robots produce induce illusory distortions
in how observers represent the lower-level kinematic fea-
tures of their actions and anticipate their next steps. In four
experiments, we showed participants brief clips of a robot
reaching forward or backward and asked them to localise the
robot hand’s last seen location after it had suddenly disap-
peared from view, either with a mouse cursor (Experiment
1a and 1b) or by matching it to comparison stimuli presented
directly after (Experiment 2a and 2b). We manipulated the
sounds that accompanied these motions so that the sounds
either terminated before or after movement offset (± 100
ms). According to multisensory cue integration frameworks
[16], the sounds should be integrated into the perception of
the robot’s movement kinematics [84], so that visually iden-
tical motions appear more extended when accompanied by
a longer sound and less so when accompanied by a shorter
sound.

All experiments confirmed the predicted influences of
sound on participants’ perceptual judgments. In Experiment
1a and 1b participants were asked to accurately localise the
perceived hand disappearance points with the mouse cur-
sor. They reported that the robot’s motions extended further
into space—further forward for reaches, further backward for
withdrawals—when accompanied by a sound that extended
beyond the motion’s offset compared to a sound that ter-
minated before the offset. This bias in visual judgments
was present when participants had reliable prior knowledge
about the duration of the motion they would see (i.e., the
motion always terminated after 410 ms, Experiment 1a), but
increased when the timing of the motion offset was unpre-
dictable (Experiment 1b). Together, these findings show that
visual motion and sound are dynamically integrated during
robot action observation [16, 84], and induce subtle distor-
tions in howotherwise identical visualmotions are perceived.
Moreover, consistent with frameworks of Bayesian integra-
tion, these influences increase when the motion offset can be
less reliably estimated [39, 93].

Experiments 2a and 2b then confirmed that the human
representation of robot motion is predictive, like the percep-
tion of abstract objects [29] and biological human agents
[30]. When participants judged the robot hand’s disappear-
ance point against comparison stimuli, they (mis-)identified
disappearance points slightly in the future than they really
were—further forward for reaches, further backward for
withdrawals—with the hand’s final location. Importantly,
these predictive representations of robot motion were again
affected by the sound that accompanied the motion. Peo-
ple identified a location even further in the future as the
hand’s last seen locationwhen the sound extended beyond the
motion than when it was accompanied with a shorter sound.

Together, these findings are in line with multisensory cue
integration frameworks [16]. Accordingly, when viewing
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motion, the brain integrates all available information from
the same or other modalities (here: audition), as well as prior
expectations about how the motion is most likely to con-
tinue. As a consequence, people’s representation of observed
motion is not veridical, but biased away fromwhat was really
observed, towards the expected next steps in the motion
sequence [27, 30, 49], and towards information provided by
other channels. Our study identifies the sound that accompa-
nies robot motion—an often ignored design parameter—as
a crucial component that shapes the generation of these inte-
grated predictive percepts of robot motion.

It is remarkable that the relatively subtle manipulation of
sound timing (of ± 100 ms), which remained undetected
by the majority of participants even when explicitly asked
about any such changes, can induce biases of large effect size
in motion judgments, indicating practical relevance. More-
over, sound duration affected not only the control of one’s
own movements in space when guiding them to the robots
hand’s disappearance points (mouse localisation judgments,
Experiment 1a and 1b). In addition, it affected the more fun-
damental perceptual representation of the observed motions,
which is tested by the probe judgment task (Experiment 2a
and 2b). Finally, additional analyses (see Supplemental infor-
mation) showed that, across participants, the effect of sound
on motion overestimation was independent of (1) whether
they were able to guess the experimental hypotheses, (2)
whether they were aware of the different sound durations,
and (3) did not decline over the course of the experiment,
despite the large number of action and sound repetitions
participants were exposed to (see Supplemental analyses).
These findings suggest that participants experience the inte-
gration of sound and motion similar to other multisensory
illusions [1, 9, 23, 51], which affects the perceptual repre-
sentation of the robot motions at a relatively early stage of
visuo-cognitive processing that is mostly outside observers’
awareness and is therefore largely independent from higher-
order cognitive influences (e.g., awareness of biases, training
or learning effects over multiple exposures, for similar find-
ings outside HRI, see [12, 72] ).

The current findings go beyond prior work that has shown
that the sounds robots produce can affect the psychometric
assessment of its higher-level socioemotive characteristics,
such as whether people feel “safe” when interacting with
it [87], how they rate its quality, or its competence [69].
Ours is the first study to show that a robot’s sound affects
the perception of even low-level features of its behaviour,
such as the kinematics of its movements and its expected
next steps. Establishing an influence on the representation
of low-level features is important because low-level visu-
ospatial features are what ultimately informs the planning
of human cooperation partners’ own actions in response
within the common workspace, for example, when accept-
ing an object from the robot, giving an object to it, or when

simply navigating around it [78]. Moreover, the percep-
tion of the low-level features—such as the smoothness of
a motion, its speed and its extent in space—feeds directly
into higher-level judgments of more global aspects of its
behaviour (e.g., competence, safety). Indeed, there is evi-
dence that problematic emotional user responses, such as
those in troughs of the uncanny valley [56], often origi-
nate from mismatches between different low-level features
(e.g., mismatching motion and human-like appearance [88])
or between low-level features and higher-level impressions
(e.g., when a robot’s non-biological facial motions contrast
with its human-like appearance [52]).

The present findings show that the sound that accom-
panies a robot’s actions is both a crucial issue that needs
to be carefully considered in its design, and an important
tool that designers and engineers have at their disposal to
better integrate its behaviour into workflows spread across
artificial and human operators. For applications such as in
flexible production lines in which humans and robots work
together and share a workspace [41, 74], the accurate rep-
resentation of motion extent is of direct relevance. Sounds
that accompany the onset of such motions, but are not fully
aligned with their end are frequent (e.g., because of friction
of moving parts, starting up or ramping down of motors).
Our findings suggest that such situations are likely to induce
distortions to how the robot’s behaviour is represented, and
lead to problems with interactions, on both the level of
more global evaluations (e.g., in terms of the robot’s pre-
dictability, jerkiness, and safety) and online action planning
(e.g., where to reach for when accepting a tool from the
robot), which are likely to increase when human opera-
tor’s attention is split towards another, concurrent task [53].
Moreover, our additional analyses (Supplemental Material)
suggest that any sound-induced changes do not only affect
initial human–robot interactions, but can persist over many
iterations, unless they are addressed by specifically designed
feedback or come to the human interaction partner’s aware-
ness through (potentially costly) errors. Our findings provide
first insights into the features of a robot’s consequential sound
that can mitigate such issues, but which can also be easily
leveraged when designing intentional sounds to supplement
the robot’s actions, to produce seemingly more or less pro-
nounced motions or to improve their predictability.

On a theoretical and methodological level, the present
findings translate fundamental psychophysical work on the
integration of sound and motion into an HRI context. Prior
psychophysical work outside HRI has shown that the rep-
resentation of moving stimuli can be affected by the sound
that accompanies them [84]. However, these studies used
abstract stimuli, with limited spatial extent, and sound was
manipulated between longer blocks of trials, giving room for
longer-term expectations to affect the results. Our research
shows that sound affects motion perception in much more
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ecological contexts, with dynamic, naturalistic, spatially
extended realistic robot parts with shading and colour, and
where the sound that accompanies the motions changes
dynamically with every trial. The findings therefore show
that fundamental principles of human multisensory integra-
tion [16] provide an effective framework to understand—and
manipulate—howrobot behaviour is perceived.These frame-
works assume that sensory representations, and the subjective
perceptual experiences that result from them, are abstracted
in probabilistic terms, in terms of likelihoods attributed to
each sensory characteristic. These likelihoods are further
constrained by concurrent information from other channels
[84, 85], and by prior expectations about the object’s forth-
coming behaviour [30], with an increased weighting of such
influences when sensory information is uncertain, providing
an optimally likely estimation of the relevant feature given
all sensory inputs [35]. As long as the observer can infer a
causal [15] (or statistical) relationship between both cues, the
perception of one should influence that of the other, as seen
in both experiments [93].

The present findings provide valuable insights into the
general mechanism governing the human perception and
prediction of a robot’s actions, demonstrating a major role
of auditory characteristics in even visual estimates of robot
behaviour.However, several limitations andquestions remain
targets for future research.

First, while the experimental paradigm relies on video
representations of robot avatars, prior research suggests that
the biases it measures feed directly into the action planning
mechanisms that we use to interact with moving objects and
dynamic interaction partners such as robots [58, 60]. How-
ever, our experiment only tested a limited range of simple
actions (reaches and withdrawals). In the real world, people
will be interacting with robots executing a larger variety of
often more complex, multi-step actions, each with perhaps
less straightforward morphologies. It is important to con-
firm that the present findings will generalise to such cases.
Importantly, our theoretical framework of Bayesian multi-
sensory integration [37] predicts that the role of soundwould,
if anything, increase in such situations. If a robot’s motion
becomesmore variable and less predictable, other cues—like
the sounds used here—would becomemore heavilyweighted
in perceptual estimates and should therefore more strongly
affect localisation of the robot’s motion [16]. Indeed, such
an increase was observed in the comparison between Exper-
iment 1a and 1b, where the increase in variability of motion
endpoints was associated with a stronger effect of the sound
manipulation in Experiment 1b.

Second, currently, the influence of individual cognitive
traits and personal biases on this phenomenon is unclear.
Future work could explore whether there are specific char-
acteristics that could serve as predictors of susceptibility to
the illusory changes to observed motion. For example, there

is evidence that an individual’s susceptibility to audiovisual
illusions depends on their so-called temporal binding win-
dow, reflecting how closely stimuli from different modalities
have to be related in time to be integrated into one percept
[81]. Similarly individuals with difficulties in motion pro-
cessing or general visual processingmay exhibit a heightened
reliance on auditory cues. Indeed, when in similar illusions
visual information is obscured, sound is relied on more
strongly in localisation [1], thus intensifying its observed
effect. In contrast, participants who are aware of the poten-
tial misalignment of sound and motion, or with specific prior
experience, may be affected less. Examining how individ-
ual differences contribute to the manifestation of this effect
would provide a more comprehensive understanding of the
intricate dynamics at play, perhaps leading to more sophisti-
cated and tailored human–robot interactions.

Finally, further research could compare whether different
sound features—e.g., quieter compared to more energetic
sounds [7], sounds that appear smoother or jerkier and
stuttering—induce similar distortions, and whether motion
perception is also affected by other visual cues, such as
kinematic profiles, robot morphology, and the robot’s social
cues. It has been shown for example that robots that obey
biologically inspired kinematic trajectories (e.g., the two
thirds power law, minimum jerkmotion profiles) are easier to
teleoperate /remote control [38, 79] and elicit stronger attri-
butions of goal-directness [66].One promising use case of the
findings of this study would is teleoperation. Supplementary
sound (such as that designed by Robinson and colleagues
[69]) could “sonify” a teleoperated robot’s motion and act
as implicit feedback for operators in circumstances where
precision is paramount.

6 Conclusions

This study demonstrated that sound can be used to systemati-
cally affect howa robot’s action kinematics are visuospatially
represented. A sound with a positive offset (longer sound)
elicited a shift in perception in the direction of motion, while
a negative offset (shorter sound) evoked a shift in perception
against the direction ofmotion. Thefindings show that frame-
works of Bayesianmultisensory integration can productively
be applied to robot–human-interaction research and provide
an effective framework to design multimodal interactions of
artificial agents (robotic and digital). We see both the robust
nature of this effect and its large effect size as reason to
exploit this effect in physical robotic systems to improve the
perceptibility of robotic agents to humans. This study there-
fore contributes a foundational experimental design to test
the influence of robotic design parameters on human percep-
tion, which can be built on in further studies. The Bayesian
cue integration framework enables designers to create more
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naturalistic interactionswith designed environments and arti-
ficial agents in augmented and virtual reality. We argue that
the same framework can be exploited for social robotics, and
that the methodology used in this study offers a first exam-
ple for deriving quantifiable relationship between modifiable
design parameters and low-level human perception. These
results and methodology could lead to easy-to-implement
methods that aid the human representation of the teleoperated
robot’s motions. This could accelerate innovation in the field
of robot remote operations, ultimately leading to increased
operational safety and effectiveness.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12369-024-01105-
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