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Abstract
Access to regular sports competitions is often precluded for disabled people. Chess, which has been recognized as a sport by
the International Olympic Committee in 1999, is a rare exception. Nevertheless, to compete in official tournaments, people
suffering from a high level of motor impairment must rely on the assistance of a person to move their pieces on the chessboard,
under their indications. This can result in a reduction of the feeling of independence and self-esteem. In this work, a service
robot is employed as an assistant for competitive chess players, moving pieces on a standard chessboard for competitions,
and adhering to the rules of the international chess federation (e.g. not relying on a custom sensorized chess-set). The robot is
controlled through an intuitive graphical user interface. The user interface can be navigated with easy-to-use devices, such as
a mouse, a touchpad, or a commodity joystick for motion-impaired people (Ottobock calibratable Mini joystick). An effective
framework for the opponent’s move identification from RGB-D images is proposed and used to keep track of the live game
situation. The application is implemented in ROS on a PALRobotics TIAGo robot, a service robot with a 7 degrees-of-freedom
arm, an extensible torso, and a re-orientable RGB-D camera. The robustness of the application is tested by reproducing six
famous chess games several times on a standard wooden competition chessboard, making TIAGo play on behalf of the player
with white or black pieces, alternatively. The application is properly working without the need of operator intervention in
the 91.6% of the performed moves. The proposed approach successfully opens the door to independent competitive chess
playing for motor disabled people in official tournaments.
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1 Introduction

Disability is very diverse and can manifest in different con-
ditions of the body or of the mind. Most of these conditions
generate difficulties for disabled persons to engage in activ-
ities and interact with the environment, sometimes even
impacting self-esteem and giving rise to a feeling of lack
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of independence [18]. In this context, assistive robotics aims
to support the well-being of people, carrying out tasks that
would otherwise be performed by a caregiver, or, even worst,
be precluded. In particular, Socially Assistive Robots (SAR)
reach this goal by enabling social interaction to achieve mea-
surable progress in convalescence, rehabilitation, learning
and ultimately helping in maintaining a positive social life
[7]. SAR can change how the disabled person is perceived
by others and how s/he feels in a social context, and provide
structure for interactions, overall enhancing the social behav-
ior of the subject. The assistance of people with physical
impairments [1] or cognitive disorders [15] are just a part of
SAR’s potential applications. Social robots have been effec-
tively deployed in the rehabilitation context [12] to promote
physical and mental well-being [13, 23], and with children
in a teach-through-play approach [25].

Access to regular sports competitions is often precluded
for disabled people. Chess, which has been recognized as a
sport by the International Olympic Committee in 1999, is a
rare exception, as everyone can play it without disparities if
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they train for the same amount of time and at the same level.
Chess players suffering from a disability are admitted to reg-
ular chess competitions, in addition to specifically dedicated
tournaments, and can compete against able-bodied players
thanks to ad-hoc solutions [9]. As an example, a blind per-
son can play unassisted using a personal chess board with
tactile dots on top of the pieces and saying the move out loud
to the opponent. Motion-impaired players as well may not be
able to move the pieces themselves. In this case, they have to
rely on an assistant to play their moves on the official chess-
board, an aspect that could negatively affect their sense of
independence, and self-esteem.

In this context, this project aims to develop a robotic helper
to support disabled chess players in competitive games. The
robot would stand as an alternative to the currently involved
human assistant, increasing the feeling of independence in
the assisted person.

2 RelatedWorks

The concept of a robot playing chess has been around for
years. Starting from the 1950s, chess programs were able
to calculate the best moves in games, but it was only 1982
when Novag Robot Adversary used a robotic arm to pick
up and move the pieces automatically [20]. Chess is often
used in board game research due to its high state-space com-
plexity and complex rules-set, which make it a challenging
yet achievable problem to test manipulation, Human-Robot
Interaction (HRI), and perception capabilities of robotic sys-
tems. Most of the current research efforts are meant to create
a robotic replica of a chess player [3, 6, 14, 24]. On the other
hand, the idea of a robotic assistant for a disabled player
has been seldom explored [19]. Indeed, many state-of-the-art
robots are programmed for demonstrative purposes only (e.g.
ChessKA,KUKAMonstr [4]). The goal of these devices is to
play the moves coming from a chess engine in public exhibi-
tions, e.g., to prove the ability of these artificial intelligence
algorithms to beat human grandmasters in dedicated events
[4]. These applications are notmeant to be used in real tourna-
ments, thus simplifying the game-tracking problem through
additional sensors on the chessboard itself [14]. Oppositely,
other works implement vision to recognize different pieces
on the chessboard through machine learning algorithms. As
an example, Del Toro and colleagues [6] designed a robotic
arm that plays chess against a human opponent. The track-
ing of the pieces on the board is accomplished by training a
convolutional neural network. Similarly, Matuszek and co-
workers endowed a custom 6-DoF arm named Gambit [17]
with anRGBD in-hand camera. Thanks to the visual informa-
tion, Gambit can track the occupied squares, classify pieces
via support vector machine, and detect the presence of hands
in the field during the move execution [17]. Pieces move-

ment recognition that does not rely on a machine learning
algorithm has been implemented by Chen and Wang [3]. In
the addressed work, the humanoid Rethink Robotics Baxter
robot has been used to play chess against humans, exploit-
ing computer vision to detect chess movements and using an
open-source chess engine to compute the next move.

In the framework of assistive robotics, Omarsdottir and
colleagues [19] created Chessmate, a robot intended as a
telepresence tool for physically disabled players. This appli-
cation makes use of a setup very far from the standard
competition chess set, using a custom chessboard to manip-
ulate pieces magnetically. Moreover, Chessmate relies on
receiving as input the moves of both the players, lacking
a system to recognize the opponents’ moves.

Another solution to foster inclusion though the game of
chess for people suffering from motor impairment is rep-
resented by brain-computer interfaces [5, 11, 16]. The aim
of these works shares the spirit of the present one, and the
effort done to advance research in brain-computer interfaces
is commendable. However, these works suffer from the limi-
tation typical of brain-computer interfaces such as long setup
time, the need for calibration procedures, and mental fatigue.

3 Contribution

The contribution of this paper is to integrate and adapt
existing technologies to develop an application promot-
ing inclusion through sports competition. Ultimately, the
use of the robot in official competitions would allow the
user to become independent from a human assistant, pos-
itively impacting his/her self-sufficiency (both actual and
perceived). This insight is supported by the outcome of a
survey administered to dystrophic patients to identify the
requirements for an upper limb assistive exoskeleton [10].
Amongst other activities of daily living, playing chess inde-
pendently, not only through the PC screen, arose as one of
the potential target tasks. In this view, the proposed robotic
assistant for competitive chess players with a motion disabil-
ity would act as a full-fledged SAR.

This project is intended to possibly find application in
the real-world context, since, to date, there is not a similar
assistive device approved by regulations in the chess world.

In this view, the project has been carried out following
these phases of work. (1) The key requirements for such an
application are identified; (2) a prototype solution to fulfill
the requirements is implemented and tested; (3) Accessibil-
ity for disabled people and compliance with chess rules are
taken into account at every step of the project. The described
approach introduces these novel features with respect to cur-
rent solutions:
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1. The developed solution should not rely on modification
of chessboard or pieces designing them as “special”, but
should comply with standard chessboard and pieces;

2. The developed solution should not rely on chess rules
or do not allow/correct them given that only the player
should be in charge of the game;

3. The developed solution should be under the constant con-
trol of the user without the help of an external person, and
without using vocal commands so as to not disturb the
game.

4 Functional Requirements

The present work aims at building an effective framework to
use a robot as a SAR for physically disabled chess players
in official chess competitions. As far as we know, to date
there are no robots used in the competitive chess world as
assistants for disabled people and thus there is a lack of rules
about this topic. Nevertheless, the designed robotic assistant
has to adhere to International Chess Federation (FIDE) offi-
cial rules, substituting the human assistant that is nowadays
required for disabled chess players to take part in competi-
tions [9]. The minimal hardware requirements of the robot to
be employed in the proposed application are (1) amechanical
arm spanning the official chessboard workspace, and (2) an
RGB-D camera. When coming to functional requirements,
the robot should

(1) Play the moves selected by the user interacting with the
standard equipment used in competitive tournaments.
Therefore, the robot has to recognize and handle any
type of move (i.e., captures, en-passants, castles, and
promotions1), to place the captured pieces in a dedicated
box/area, and to click the clock at the end of the move;

(2) Keep track of the game situation;
(3) Provide an intuitive graphical interface, accessible with

a device designed for motion-impaired people;
(4) Be “blind to the rules of chess”, i.e.not checking for the

validity of the received instructions. Even illegal moves
must be played, if requested by the user, in order to recre-
ate a real game situation in which these mistakes are
penalized;

(5) Introduce a minimal time overhead, compared with a
human assistant, to facilitate user’s acceptance.

1 To learn more about special moves (and chess rules in general) the
reader is referred to the FIDE’s Laws of Chess [8].

Fig. 1 Complete experimental setup. (1) TIAGo robot, mounting a par-
allel gripper. (2) The chessboard with the chess pieces placed in their
initial configuration. (3) The box to host captured pieces, placed on
the left side of the chessboard and with the ArUco marker number 300
placed on it. (4) The chess clock, positioned to the right of the chess-
board and with (5) the ArUco marker number 100 placed on TIAGo’s
side button. (6) The Ottobock joystick. (7) Joystick and push-button
boards. (8) A computer for user interface visualization

5 Materials

The robot employed as assistant in the present application is
a PAL Robotics TIAGo robot (Fig. 1, 1). It is composed by
a mobile base, a lifting torso, a 7 degrees of freedom arm
and a parallel gripper as end-effector. The two parallel plates
of the gripper can move independently, reaching a total span
of 8cm. The head is equipped with motors for pan and tilt
motions and hosts a RGB-D camera (Orbecc Astra S cam-
era). Thanks to its wide range of sensors and peripherals, the
TIAGo robot has been employed in several application in the
context of assistive robotics [2, 21, 22].
The application has been tested on an official chess competi-
tionwooden chessboard (dimensions: 55 cm× 55 cm, 1.5 cm
high) and pieces set (Fig. 1, 2). To replicate in a controlled
environment the official setup, the complete experimental
setup includes a wooden box (Fig. 1, 3) to place the captured
pieces and a digital chess clock (Fig. 1, 4). The robot can be
controlled through an Ottobock calibratable Mini joystick,
which is usually employed to drive electric wheelchair and
it is very sensible (Fig. 1, 6) linked to an electronic board
connected to the control computer (Fig. 1, 8) via standard
USB cable. A standard mouse or touch pad can alternatively
be used to navigate through the user interface. Additionally,
a push button connected to an Arduino Nano Every board
(Fig. 1, 7) is mounted over the chess clock and two ArUco
markers (binary fiducial markers used in computer vision for
pose estimation), printed on cardboard are placed over the
clock and over the box (Fig. 1 5 and 3, respectively).
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Fig. 2 Graph structure of the
implemented application,
divided in its functional units

6 Methods

The developed application is constructed by connecting pre-
existing ROS nodes deployed on the TIAGo robot integrated
with self-developed nodes written in Python language to
manage different aspects of the application, namely vision,
motion, and user interface. The graph in Fig. 2 schematically
shows the final nodes network.

6.1 Vision

The vision system includes RGB image processing of the
chessboard, ArUco markers detection, and pointcloud pro-
cessing.
The image processing step is performed to localize the
chessboard, the clock, and the box in the 3D space. At the
beginning of the setup preparation, TIAGo’s head is oriented
downwards, to frame the objects on the table. At this point,
the RGB images acquired by the camera are processed to
localize closed contours. The biggest contour between the
identified ones is identified as the chessboard contour. Then,
the Hough lines transform is exploited to extract the square
centers. Clock and box localization, on the other hand, relies
on the identification of ArUco markers.

To keep track of the pieces positioning on the chessboard,
Algorithm1 is implemented. The tracking algorithmassumes
that the game starts from the known, conventional configu-
ration. The user moves are known, as they are given as input
to the robot. Therefore, a differential approach is adopted to
recognize the opponent’s move by looking at the changes in
the chessboard configuration compared to the previous turn.

In detail, two RGB images are acquired before and after
the opponent’s turn (Fig. 3a and b, respectively). A homo-
graphic transform is applied to both the images, in order
to change them to a bird-eye view. The Structural Similar-
ity Index Measure (SSIM) [26] is used to compare the two
images (Fig. 3c). The similarity map given by the SSIM is

binarized, to determine if each pixel has changed or not with
respect to the previous state (Fig. 3d). When this procedure
returns only two cells, their status at the previous turn is
checked. The cell formerly occupied by an opponent piece
is identified as the start square (movei ), and the other one
(either white or empty) is identified as the destination square
(move f ). In some cases, due to the perspective view of the
camera, more than two squares are identified by the SSIM
(Fig. 3f). To solve this ambiguity, the point clouds of the can-
didate cells are reconstructed to robustly assess whether they
are free or occupied, and if so, by which army (Fig. 3g and
h). In Algorithm 1, at line 22, the logic to determine occu-
pancy and color of a cell based on its point cloud is omitted,
as it is a trivial set of if/else statement based on point count
and RGB values. It is worth to underline that an entirely
point cloud-based solution has been avoided on purpose as
it would significantly increase the computational cost of the
algorithm, thus negatively affecting the waiting time. In the
unlikely case of ambiguity after this step, the user is presented
with a random candidate move.

6.2 Motion

The mechanical task that needs to be implemented is a pick-
and-place task, which requires the motion of TIAGo’s 7 DoF
arm in combination with the parallel plates gripper’s fingers.
Additionally, other minor movements of TIAGo’s torso and
head are used throughout the complete game of chess, to
ensure an optimal view of the chessboard.
The motions of the arm are planned exploiting MoveIt!, an
open-source robotic manipulation platform for motion plan-
ning and collision avoidance in ROS. The arm has to lift and
lower the pieces over the chessboard, place captured pieces
in the box, click the chess clock and, finally, move to a rest
pose. Movements over the chessboard mimic the action of
a human player, e.g. the knight is moved along its typical
L-shaped path and the bishop in a diagonal direction.
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Fig. 3 The first row (a to d) shows the steps of the simplest case for
the move detection process. The underlying move is black pawn from
d7 to d6. (a) RGB image of the chessboard before the opponent has
played the move (homographic transformation has been applied). (b)
RGB image of the chessboard after the opponent has played the move
(homographic transformation has been applied). (c) Structural Similar-
ity IndexMeasure (SSIM)map, resulting from the comparison of (a) and
(b). (d) Binarized SSIM map. Cell contours and cell names are added
for the sake of readability. The second row (e to h) shows the additional
steps in detecting more challenging moves when also the point cloud
is taken into account. The underlying move is black bishop from f8 to

c5 (highlighted by the red arrow). (e) RGB image of the chessboard
after the opponent has played the move (homographic transformation
has been applied). (f) Binarized SSIM map. Note that the binarization
step returns three cells, thus the move cannot be identified with the data
at hand. In this example, an ambiguity in the destination cell (either c5
or d5) is observed. (g) Point cloud of the scene after the move, recon-
structed combining RGB and depth image. (h) Cropped point cloud
of one of the candidate destination cells (i.e. c5) after removing the
chessboard plane. In this example, the d5 cell is found to be empty, thus
discarded from the destination candidates

The standard pick-and-place task is accomplished with the
gripper oriented along the vertical axis, perpendicular to
the chessboard plane. However, given some limitations of
TIAGo’s operational workspace (i.e., the furthest rows are
close to the robot’s maximum reach workspace; the closest
ones require to operate close to the robot torso, thus limiting
the feasible configurations), the desired gripper orientation
could be unreachable. Tomitigate the constraints on the robot
positioning with respect to the chessboard, the gripper ori-
entation varies depending on the pick and place locations.
Moves in the central region of the chessboard are performed
with the gripper in the standard vertical orientation. Two
more gripper’s orientations (65◦ and 115◦ with respect to the
vertical axis) are defined, and used to pick and place pieces
at the opposite ends of the board.
Note that the vertical orientation should be considered the
standard one, as itminimizes the risk of collisionwith the sur-
rounding pieces. The need for special gripper configurations
arises from the geometry of the hardware at hand. Imple-
menting the application on an arm with a wider workspace

or a more favorable placement (e.g., a manipulator placed
directly on the table) would remove the need for this shrewd-
ness.

Special moves (i.e., en-passant and castle moves) are
implemented as combinations of the described elementary
movements. At the current stage of development, promo-
tions require the collaboration of the opponent to place the
desired piece on the chessboard.

6.3 User Interface

The graphical user interface (GUI), developed with QtDe-
signer, is meant for non-expert users affected by reduced arm
mobility. In this view, the GUI is configured to respond to the
inputs of the joystick, in addition to standard input devices
such as a mouse or a touchpad. In the initialization phase, the
intuitive instructions displayed on the screen guide the opera-
tor through the preparation of the setup, and let him/her check
for the correctness of the calibration procedures. At the start
of the game, an instruction wizard window appears, explain-
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Algorithm 1 Move identification
1: mapOt−1 = occupancymap of previous config. Values for each cell

can be W (white), B (black), E (empty). The user is here assumed
to play W .

2: RGBt−1 = color image of previous config.
3: RGBt = color image of current config.
4: deptht = depth image of current config.

5: Get similarity map
6: mapS ← SSI M(RGBt , RGBt−1)

7: Evaluate which cells have changed
8: for each cell in mapS do do
9: Adi f f ← number of pixel below similarity score
10: if Adi f f > 0.5 ∗ Acell then
11: if mapOt−1(cell) = B then
12: append cell to movei
13: else if mapOt−1(cell) = Wor E then
14: append cell to move f
15: end if
16: end if
17: end for

18: Identify the move
19: if cells in movei or cells in movei are more than 1 then
20: for each cell in movei and in move f do
21: Build point cloud of the cell pcdt,cell
22: mapOt (cell) ← W , B or E depending on points number

and RGB value
23: if cell in movei and mapOt (cell) = W then
24: remove cell from movei
25: else if cell in move f and mapOt (cell) = B or E then
26: remove cell from move f
27: end if
28: end for
29: end if
30: return movei , move f

ing how to manage the joystick to navigate the chessboard,
select pieces, and control the desired move. Then, during
the game, a window displaying the chessboard with the live
pieces’ disposition is shown (Fig. 4). The application also
offers a tool to edit the game situation displayed by the user
interface if needed (i.e., if the Algorithm 1 fails to recognize
the opponent’s move), as displayed in Fig. 4 (label 5).
The user interface is implemented as a ROS node, communi-
cating with the vision and motion nodes to receive the results
of the initialization procedure, update the chessboard live sit-
uation, and send tasks and targets to the robot.

7 Experimental Protocol

To test the developed platform, six famous chess games
(reported in Table 1) have been replicated on a standard tour-
nament chessboard, using TIAGo as an assistant for the other
player. The test games include special moves (i.e., castle, en-
passant, promotion), captures in the last and first rows of

Fig. 4 User interface chessboard window. The game situation is repre-
sented on the screen. When the user moves the input device (touchpad,
mouse, or joystick) the currently selected square is highlighted in light
red (label 1). When selecting a move, the start and end square will be
highlighted in dark red and yellow, respectively (not shown in this Fig-
ure), waiting for the user to confirm. The user is constantly informed
of the application status (label 2). Errors in the move recognition can
be manually corrected enabling the “Manual Mode” (label 3). Clicking
the button opens a pop-up window with tools to cancel, add or replace
pieces on the virtual chessboard.A similar pop-upwindowopens in case
of promotion, i.e.when a pawn reaches the last rank on the opposite side
(label 4)

Table 1 The six famous games that have been replicated during the
experimental tests

Game Year

M. Carlsen - L. Van Wely 2006

unknown player - G. Greco 1620

S. Polgar - J. Kontra 1982

L. de Kermur - Saint Brie 1750

A. Anderssen - L. Kieseritzky 1851

B. Spassky - R.L. Fisher 1972

the chessboard, and variable duration, to test if the robot can
properly handle them.

In the numerical analysis of the outcome measures, a con-
ceptual distinction has been done between actions andmoves.
An action has been defined as the sequence of movements to
perform a pick-and-place task (going over a square, lowering
the gripper, picking the piece, moving to the target location,
and placing the piece), while onemove, can be a composition
of two actions, e.g., in captures or castle moves, and it always
ends with the click of the clock. During the recreations of the
games, we evaluated:

• Manipulation outcomes;

◦ Success in picking;
◦ Success in placing;

123



International Journal of Social Robotics (2024) 16:173–183 179

◦ Success in clicking the clock after the move execu-
tion;

• Recognition outcome: success in recognizing the oppo-
nent’s move.

Lastly, the average time needed to execute a complete
chess move and to perform an opponent move recognition,
has been evaluated.

8 Results

The executed moves during the tests reached a total of 1029,
while the total executed actions went up to 1303. In total,
133 out of the 1303 executed actions presented some errors.
To have a more detailed insight of the undesired behaviors,
44 errors happened in picking, 11 in placing, and 13 in click-
ing the clock. In 65 cases, the gripper touched a piece on
the chessboard that was not involved in the requested move.
These contacts have been categorized as hard collision (30
occurrences) if they required an operator intervention to re-
arrange the chessboard situation correctly, or soft collisions
(35 occurrences) if they did not compromise the game situ-
ation.
The opponent moves recognition system, was able to cor-
rectly track the game situation in the 96w% of the cases.
It should be noticed that not all the undesired behaviors com-
promise the game progress. Indeed, the soft collisions do not
require any intervention, and the tracking errors can be cor-
rected by the user through the user interface (as described
in Sect. 6.3). Considering this, the application required man-
ual intervention during the test only in 89 of the total 1029
executedmoves, resulting in a percentage of correct and inde-
pendent functioning of 91.6%. An overview of the overall
performance is reported in Fig. 5.

The percentage of failures over the totality of actions
performed over each square is represented in the colormap
reported in Fig. 6, where the color of each square gets darker
as the frequency of failures in the square increases. To pop-
ulate the map, the number of actions performed by TIAGo’s
arm over each square has been counted.

In terms of time, the move execution took on average
37.93 ± 11.50 s. The average processing time to recognize
the opponent’s move settled to 4.88 ± 2.78 s.

8.1 Pilot Test

In a pilot test, TIAGo assisted a person affected by muscular
dystrophy in playing a chess game against a healthy sub-
ject with the aim of evaluating the feasibility of the proposed
approachwhen used by a possible target user. The player used
a Bluetooth mouse to interact with the screen interface, and

Fig. 5 Barplots reporting the application success rate. These results
are relative to the executed moves. The sum of the white and grey bars
accounts for independent functioning. The black part of the bar repre-
sents the errors that require the intervention of an operator

Fig. 6 Colormap representing the distribution of the error percentage
over the performed actions for each square of the chessboard. In each
cell, the absolute number of failures is reported

the setup of the chess set was managed by the opponent. The
gamewas playedwithout anymajor inconvenience (i.e., hard
collision). The player was able to autonomously fix the game
situation from theuser interfacewhen the robot failed to prop-
erly track the opponent’s moves. The game was played to the
end demonstrating the validity of the proposed approach. The
main limitation was identified as screen dependency, seen as
a restriction to direct participation. Nevertheless, the user
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reported being satisfied with the operation of the application
and found the experience enjoyable.

9 Discussion

The objective of the work was to implement a robotic assis-
tant to support disabled chess players in competitive games.
The robot plays themoveonbehalf of the player. The possible
input devices (joystick, mouse, touchpad…) can be handled
by a person with limited arm and hand mobility, and used
to select moves from a graphical interface. The opponent’s
move are tracked by a vision system to update the game situ-
ation as seen by the robot and displayed in the user interface.

This work was mainly oriented to guarantee accessibility
to a social activity in a competitive environment, with all the
specificity of the case. This aspect strongly distinguishes the
presented application from other work employing robots in a
chess-related environment. Despite this, the accuracy results
obtained are compared with similar robotic “chess players”,
to prove the validity of the implemented system. Del Toro
and co-workers [6] used a four-finger gripper specifically
designed for the project, but they found the placing accuracy
to be strongly affected by low-cost nature of the project and
by the simple open-loopmechanical system. As a result, only
the 70% of the placing actions (35 out of 50) had a positive
outcome.On theother hand, theirmachine learning algorithm
for color classification and movement detection reached an
impressive success rate of 99.4%. Chen and Wang [3], using
a purely RGB-based (i.e., no depth information) approach
to keep track of the game, registered a 100% accuracy in
understanding the performedmoves. Though impressive, this
result may have benefited from the use of a black and white
chessboard and chess set, in which the two armies are well-
separated in the RGB color space. This condition is not
always guaranteed, as materials, colors, and lighting condi-
tions change from game to game. In addition, as for the arm
motions, the authors report that occasionally the arm acci-
dentally knocks over other pieces as it actuates, requiring
human intervention to fix the chessboard situation, though
no quantitative measure of this phenomenon is reported.

The main causes of failures are inaccuracies in the vision
pipeline, arm replicability error (reported to be 3.5mm in the
worst-case scenario by the robot manufacturer), and failure
in planning or executing the movement.
The heatmap in Fig. 6 shows how the most recurrent errors
happened on the far side of the chessboard. This highlights
how the localization of the squares’ centers is more accurate
for the squares closer to TIAGo’s camera due to the perspec-
tive view of the chessboard. Moreover, most of the errors
were pick errors, as expected, as this kind of error could be
due to cumulative small inaccuracies committed in previous
moves, i.e., when TIAGo positions a piece slightly out of the

center of the square. If this happens, the robot is likely to
fail when the same piece has to be picked again. To reduce
the impact of this problem, the computer vision pipeline has
been already re-designed, leveraging the insights gathered
from the first implementation (superseded, thus not described
in this paper). The solution presented significantly increased
the robustness against changes in light and chessboard ori-
entation. A further improvement in the segmentation and
recognition performance could be achieved by integrating
a bird-eye camera into the setup. As for the arm motions,
the error introduced by the arm positioning is comparable
with the size of the pieces. Nevertheless, the pieces’ cylin-
drical symmetry and the gripper large plates (4 cm) can help
mitigate the problem. To make the application more robust
against planning and/or execution failures, recovery strate-
gies should be implemented, to enable the robot to try again
when an action fails to be completed. As an example, when
the planner fails to find a valid arm trajectory, the arm could
be randomly moved to a different (safe) configuration. This
would provide a new seed to the trajectory planner, possibly
leading to the identification of a valid path.

As far as the execution time is concerned, the average
move execution time computed during the tests is strongly
related to the speed rate chosen to test TIAGo (limited to
the 20% of the maximum speed to avoid harmful collisions
during the test phase). The standard deviation of the duration
of double-action moves is higher than the one for single-
action ones because double-action moves can be composed
of different arm motion combinations that can take longer
time to be completed.
Even with the current execution time, the delay introduced
by the robot can be deemed to be acceptable, in the context
of long-timed games, typical of competitive tournaments.
Nevertheless, such a long time for the robot execution of
the move is likely to negatively impact the user experience.
Thus, it may represent an obstacle to the actual deployment
of the device in the real world. The present limitation can be
contrasted by increasing the maximum allowed velocity for
the robot motors.

In terms of economic viability of the proposed applica-
tion, it must be remarked that the PAL Robotics TIAGo
robot has been chosen as a test platform for availability rea-
sons. However, the robot embeds sensors and software that
have not been exploited for the present application. The pro-
posed application can be deployed on a less expensive setup,
made of an RGB-D camera, and mechanical arm with suffi-
cient workspace, connected to the PC for user interface. This
would cut the costs related to many unused functionalities of
TIAGo, thus making the developed application more realis-
tically implementable in a real chess competition context.

The pilot test proved the capability of the proposed system
to assist a chess player. The gathered observations provided
useful feedback on the current application, and helped to pri-

123



International Journal of Social Robotics (2024) 16:173–183 181

oritize the future developmental steps. In particular, the main
remarks concerned the user interface. Though the GUI has
been appreciated for its usability, the player underlined the
importance of having direct visual contact with the chess-
board. In this view, a vocal control would enable greater
involvement in the game. As for the input device, the user
asked to play with the mouse instead of the joystick to speed
up (1) the setup phase (i.e., avoiding the time-consuming
process of rigidly attaching the joystick to the armrest of the
wheelchair), (2) the move selection, moving freely around
the chessboard, and not square-by-square. Nevertheless, this
solution is only suitable for players with sufficient residual
force and mobility.

10 Conclusions and Future Sights

In this work, a PALRobotics TIAGo robot has been used as a
development platform to implement aSARapplication aimed
at an official chess competition context. Experimental tests
resulted in a satisfactory outcome both for the performance
of the pick-and-place task and the opponent’s moves recog-
nition algorithm. The percentage of moves executed without
the need for an operator’s intervention reached the 91.6%,
with the majority of the errors happening on the side of the
chessboard opposite to the robot. Though promising, these
results reflect that roughly 1 move out 10 requires operator
intervention. The error rate is probably too high to success-
fully deploy the system. Indeed, the target error rate can be
considered to be around the 3–4%, corresponding to at most
one error for average-length games.

Theopponent’smoves recognition algorithmalone reached
a total success rate of 96%. Though these results could be
further improved, e.g.by integrating a bird-eye or an in-hand
camera, the vision pipeline is satisfactory in terms of accu-
racy. In this view, it is worth remembering that these errors
can be corrected through the user interface (Fig. 4, label 3).

With the proposed application, whenever the user happens
to promote a piece, the opponent is asked to substitute the
promoted pawnwith the user’s desired piece. A possibility to
remove this dependency on human intervention is to locate,
e.g.using ArUco markers, an area outside the chessboard
where to place the captured pieces in a predefined configu-
ration. Thanks to this shrewdness, the robot would be able to
go back and reach for them whenever the player promotes a
pawn and asks for them to replace it.

Regardless of the above, the top priority should be given
to the implementation of a vocal control strategy, and its
compliance with the official rules. In this way, the need for
a monitor to display the GUI would be removed, allowing a
more direct involvement of the player in the game, possibly
improving the user experience. In this view, also the reduction

of the time taken to execute a move should be prioritized, in
order to ease the acceptance by the final users.

The presented implementation of a robotic assistant for
disabled chess players, helped in the identification of new
required features. In particular, the development of recov-
ery strategies in case of arm motion failures, arose as the
most impacting ones. In addition, a vocal control system
could be integrated as an alternative to the present graphical
interface. The user could thus switch to the preferred con-
trol interface. For example, the monitor could be removed in
casual, non-competitive games in favor of vocal commands.
On the other hand, the applicability of vocal control in the
context of official tournaments should be investigated. After
the implementation of the new required features, the appli-
cation will be tested with naive and relevant users to gather
data about usability and user experience. In conclusion, the
process tested in this work is promising, even though further
work is needed to improve robustness, execution speed, and
naturalness of the interaction to facilitate user acceptance.
Ultimately, this work could open the door to the real-world
application of robotic helpers in official chess tournaments.
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