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children [5–7], still little is known about the robot’s influ-
ence on infants.

Recent studies used robots as a tool for delivering early 
interventions to address developmental disability in infants 
[8, 9]. These studies corroborated the ability of robots to 
inspire and encourage infants to imitate desired patterns 
of movements [8, 9]. The widespread literature on mirror 
neurons [10] further suggested that interactions with an 
infant-sized humanoid robot may lead infants to imitate 
and practice key motor skills such as standing and walk-
ing. These findings highlighted the importance of promoting 
research on infants’ robotic technologies aimed at providing 
complementary support to human-administered therapy.

A key component of robots interactions for infants is the 
use of visual stimuli presented via robot behaviors [11]. 
Robots must be capable of reliably capturing infants’ visual 
attention to be able to teach and reinforce infants’ actions. To 
this end, robots need a method to gain infants’ attention. In 
addition, once gained, the robot must be able to maintain the 
infant’s attention. This includes the robot’s understanding 
of the infant’s current psychophysiological and emotional 

1  Introduction

Robots are currently being studied and expected to be used 
in a wide range of social applications [1]. Zviel-Girshin et al. 
envisaged a rapid increase in robots in modern society to the 
point that most children will potentially be surrounded by a 
robotic environment [2]. According to Beran et al., infants 
and children are increasingly playing with robotic technolo-
gies during their playtime [3]. Consequently, investigating 
infant-robot interactions (IRI) as well as robots’ influence 
on young children’s cognition, learning, language, social, 
and moral development, is crucially important [4]. Although 
studies have been conducted to investigate these aspects in 
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used in social environments, such as caring for infants with all types of disabilities, companionship, and education. 
Although studies have been conducted on the ability of robots to positively engage infants, little is known about the 
infants’ affective state when interacting with a robot. In this systematic review, technologies for infant affective state recog-
nition relevant to IRI applications are presented and surveyed. Indeed, adapting techniques currently employed for infant’s 
emotion recognition to the field of IRI results to be a complex task, since it requires timely response while not interfering 
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the related metrics to be used for this purpose. Therefore, this review is intended to shed light on the advantages and the 
current research challenges of the infants’ affective state recognition approaches in the IRI field, elucidates a roadmap for 
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states, as well as the determination of the optimal course of 
action depending on the infant’s current situation. Indeed, a 
seamless infant–robot interaction requires the infant to be 
motivated to follow the robot’s actions (such as leg move-
ments or eye gaze) [1, 12, 13]. Therefore, it is recommended 
that the robot positively impacts the infants’ curiosity [3] 
and first engages the infant in some form of social interac-
tion or socially intelligent behavior [12].

The quality of the interaction between infants and robots, 
and the analysis of the robots’ influence on infants, can be 
investigated by detecting infants’ affective cues during such 
interaction. For this reason, the social robotics field is sup-
ported by affective computing, which represents a branch 
of the data mining field aimed at providing effective and 
spontaneous interaction between humans and devices [14]. 
One of its primary goals is to enable systems to understand 
the emotional states expressed by human subjects so that 
personalized responses can be delivered accordingly [15]. 
Specifically, affective computing focuses on the study and 
development of systems and devices that can identify, inter-
pret, process, and simulate human affects [16]. The machine 
should be able to detect human emotional states and modify 
its behavior responding appropriately to those emotions. 
Therefore, reliable robotic emotion detection remains the 
cornerstone of affective computing [17].

By contrast, although affective computing during infants’ 
interaction with robotics systems is a fundamental task in 
the IRI field, researchers in this area still struggle to figure 
out how to deal with it. This is mainly due to the fact that 
emotions in infants have been principally studied by analyz-
ing vocal or facial expressions. In fact, over the first few 
years of life, children develop patterns of facial, vocal, and 
behavioral (i.e., bodily) expressions that allow them to com-
municate their feelings and adjust those communications 
according to the situation [18, 19]. However, the models 
underlying infants’ emotional phenomena on facial or vocal 
expression are built on varying theoretical assumptions that 
include anatomical and biological aspects as well as differ-
ent theories about the cause and purpose of emotions. Trans-
forming these theories into an emotional computational 
model is a difficult endeavor in and of itself.

Other than vocal or facial expressions, emotions can be 
detected from physiological signals. Efforts for emotion rec-
ognition through physiological markers are evident in many 
studies using electrocardiography (ECG) [20], electroen-
cephalography (EEG) [21] functional near-infrared spec-
troscopy [22, 23], skin conductance [24], and thermography 
[25]. The drawback of working with physiological readings 
is the personal access required to measure them. Direct 
contact with the infant’s body is needed to acquire most 
readings, but contact sensors used for measurements may 
perturb the infants’ body, potentially biasing the results. To 

favor the ecological dimension of infant robot interaction, 
it would be desirable to assess the psychophysiological and 
emotional states non-invasively. To this end, recently con-
tactless technology such as thermal infrared (IR) imaging, 
which enables monitoring human autonomic activity and 
inferring psychological and affective states in a contactless 
manner without the subject’s constraint [26–29], has been 
introduced in IRI field. Finally, since infants’ emotions and 
drives play essential roles in generating meaningful inter-
actions [30], the study of infants’ affective states during 
robot interactions can lead to new knowledge in the field 
of developmental psychology and inspire new insights for 
developmental robotics improvement [31]. Indeed, the 
emerging area of developmental robotics is oriented toward 
the advancement of robotics by attempting to reproduce 
infant-like behavior and learning.

1.1  Structure and Aim of the Study

The study’s purpose is to evaluate and assess the technolo-
gies and procedures used for infant affective states recog-
nition that are most significant to the IRI field and further 
investigate the main research areas of affective computing 
in IRI applications. The current infant affective state recog-
nition technologies have been surveyed in terms of accuracy 
achieved, their suitability in the IRI field as well as their 
potentialities and limits. In this sense, the study is intended 
to offer a potential solution to overcome the existing diffi-
culties in this area and provide new perspectives towards a 
successful interaction between infants and robots. Further-
more, the study provides a perspective about future devel-
opments of emotion-aware robots.

This work is structured as follows. Section 2 describes 
the methodological and search strategy structure. In detail, 
the search was based upon two research questions (RQs): 
(1) the infants’ affective states recognition techniques cur-
rently available, relevant to IRI studies and (2) the IRI main 
area of applications where affective computing is necessary. 
Indeed, answering those two RQs would provide a compre-
hensive overview of the potentialities and limits of affective 
computing in the IRI field. Section  3 presents the results 
obtained from the literature search and the outcomes of each 
RQ are explained in a dedicated subheading. Such results 
are then discussed in Sect. 4.

2  Methods

This study was conducted as a systematic literature review 
based on the original guidelines as proposed by Kitchenham 
[32]. The literature survey was organized into two sections 
addressing different RQs.
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RQ1  Examining the infants’ affective states recognition 
techniques and their relevance to IRI studies.

To promote an affective computing system suitable for 
IRI research areas, it is necessary to have a comprehen-
sive understanding of the infants’ affective computing 
approaches currently available in literature. Since infants 
cannot vocally express their emotions, understanding their 
affect has been considered by many to present a significant 
challenge. Indeed, emotion research in infants has received 
a great deal of attention over the years, and psychologists 
have developed various modalities for infants’ emotion 
recognition. However, questions have been raised about 
the soundness and applicability of these approaches in IRI 
applications. Therefore, this RQ aims to investigate exist-
ing emotion detection techniques and highlight relevant 
features for IRI applications. Besides, understanding the 
infant’s emotional states is critical in many robotic applica-
tions and considered fundamental to effective social rela-
tionships and psychological adjustment. Indeed, the design 
of robots that respond autonomously and emotionally may 
provide an alternative for assistive therapy. Nonetheless, 
before robotic systems can be endowed with affective com-
puting abilities the efficacy of the approaches utilized for 
baby emotion identification and categorization needs to be 
examined.

RQ2  Assessing the main research areas of affective comput-
ing in IRI applications.

Recently, there has been a growing interest in design-
ing interactive robots that humans can spontaneously and 
intuitively interact with. To allow spontaneous interaction, 
robotic applications frequently use technologies designed 
to recognize the affective state of the human interlocutor. 
However, IRI may be fundamentally different from adult 
human-robot Interaction in that infants are not simply small 
adults. Their physical, neurophysical, and mental growth 
are ongoing, which may result in conditions and operational 
circumstances that differ significantly from HRI [33, 34]. 
Furthermore, conducting studies involving infant partici-
pants places significant constraints on the experimenter as 
well as possible ethical issues. Therefore, the present RQ 
seeks to identify and describe the research fields in which 
the IRI and the infant’s affective states recognition are val-
ued. Indeed, the answer to this question will provide a clear 
picture of the potential use of robots with infants on the one 
hand, while also pointing out the technological challenges 
that must be solved in order to develop an affective comput-
ing system that satisfies the demands of IRI on the other.

The databases searched were both Scopus and Google 
Scholar. All the papers published in conferences and journals 

between 1990 and 2022 were considered. Papers published 
from 1990 were considered since from these years intelli-
gent technology development made robotics applications 
valuable and profitable.

Concerning RQ1 the search was based on the words 
“Infant” OR “Babies” OR “Toddler” OR “Pediatric” AND 
“emotion” AND “Recognition” OR “Detection” OR “Com-
puting”. In the Scopus database, those keywords were sur-
veyed in fields such as article title, abstract, and keywords. 
In the Scholar database, on the other hand, the advanced 
search can be performed either by searching (i) the entire 
text or (ii) the title only. Therefore, the advanced survey was 
carried out by searching for “Infant” OR “Babies” OR “Tod-
dler” OR “Pediatric” AND “Emotion” with at least one of 
these words: “Recognition” OR “Detection” OR “Comput-
ing”, and the field searched was the entire text. The overall 
search generated 771 results in Scopus and 739 in Scholar.

With respect to RQ2 the search was based on the words 
“Infant” OR “Babies” OR “Toddler” OR “Pediatric” AND 
“Robot” AND “Interaction”. In the Scopus database, the 
survey was set up by searching for those words within the 
following fields: article title, abstract, and keywords. The 
basic search generated 375 results. Whereas in Scholar, the 
search was based on “Infant-Robot interaction” within the 
entire text. A total of 260 results were obtained from the 
Scholar survey. The search was performed independently by 
two researchers.

The initial analysis consisted in filtering out papers 
related to subject areas such as arts, agricultural, bio-
chemistry, environmental science, medicine, physics and 
astronomy, pharmacology, chemical, and economics. This 
procedure reduced the considered pool to 255 papers in Sco-
pus and 106 papers in Scholar related to the RQ2, whereas 
with regards to RQ1 the pool was reduced to 262 papers 
in Scopus and 208 papers in Scholars. Therefore, the total 
number of papers from all the RQs resulting from the first 
screening analysis were 517 and 314 for Scopus and Scholar 
database respectively. The search was performed indepen-
dently by two researchers. Results from each source were 
carefully examined for duplications. Document types of 
Google Scholar research outcomes were examined closely 
to ensure that they were related to reliable scientific sources. 
The review papers and all the papers that did not refer to 
a user study or that did not relate to IRI or infant emotion 
recognition were excluded, which reduced the considered 
pool to 153 papers. Within those papers, 142 were related to 
Scopus research, and 89 were from Scholar with an overlap 
of 78 papers. The manual review process was adopted for 
the final exclusion by scanning the papers’ abstracts. Exclu-
sion criteria regarded all the results that were not conference 
or journal papers actually related to the specific RQ. The 
age of the study population considered in this work ranged 
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3  Results

Over the last several years, there is an increasing interest 
in the field of human-robot interactions (HRI) due to the 
increasing usage of robots not only in industrial fields, but 
also in other areas such as schools [36], homes [37], hospi-
tals [38], and rehabilitation centers [39]. Therefore, research 
in HRI has begun exploring people’s perceptions of, and atti-
tudes toward robot systems, including kinds of applications 
and tasks for which they might be useful [40]; the attribution 
of competencies on the basis of their physical appearance 

from 0 to 36 months. After the review process, performed in 
accordance with [35], 98 papers were included in the pres-
ent study (Fig. 1). The resulting papers were analyzed and 
grouped based on their experimental applications and oper-
ative RQs. A separate paragraph was dedicated to each RQ 
to ensure that appropriate literature was accurately covered 
and that it was suitable to respond to the specific RQ.

Fig. 1  Literature screening procedure for the selection of papers included in the review
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on the most widely used coding systems designed to ana-
lyze infants’ affective state led to three results, namely the 
Monadic Phases Coding System [50], the Maximally Dis-
criminative Facial Movement Coding System (MAX) [51], 
and the Facial Action Coding System (FACS) [52]. Their 
applications result in similar affect codes, but the three sys-
tems are quite different procedurally. The Monadic Phases 
System assesses infant affect by combining information 
about facial and vocal affective expression, gaze, posture, 
and type of action [53]. The affect categories derived from 
MAX, and FACS, on the other hand, are based on facial 
expression only. Both these coding systems rely on facial 
anatomy. In detail, FACS operates under the assumption 
that emotions activate micro-expressions, resulting in subtle 
changes in facial muscles activity [54]. For this purpose, it 
defines individual components of muscle movement, i.e. 
the Action Units (AU) [55]. Specifically, it distinguishes 
30 AUs. AUs are reliably associated with distinct emotions 
[54], based on the six universal facial expressions (happi-
ness, anger, disgust, sadness, fear, surprise). By contrast, 
MAX differentiates three anatomical facial regions (fore-
head and brows, midface, and mouth) and discriminates 
among types of movement within each region [50]. Com-
bination rules convert facial movement codes into expres-
sions of affect. These three systems are widely used to 
investigate similar research problems, for example, the rela-
tion between affective expression and infants’ age, gender, 
and birth status. Interesting results on gender differences in 
infants’ emotional expression showed that boys have higher 
levels of arousal than girls in infancy, and boys show less 
language ability and inhibitory control than girls [56, 57]. 
Also, a large number of studies have focused on the type 
and the direction of influence between mothers’ and babies’ 
affective expression [58–61] and infant affective response 
to experimental conditions [62–64]. Furthermore, facial 
expressions analysis was also used to differentiate discrete 
infants’ emotions [65]. This latter analysis was commonly 
based on MAX and FACS system rather than the Monadic 
Phases System. Figure 2 shows examples of infants’ facial 
expressions associated with different discrete emotions such 
as surprise (a), fear (b), sadness (c), and happiness (d).

Expressions, particularly when coupled with vocal and 
postural behaviors provide valuable clues to the motiva-
tional state of infants who are unable to report what they 
feel otherwise.

Other than facial expression, a behavioral measure that 
is increasingly being investigated is connected to body ges-
tures and infant motion. Many applications for analyzing 
humans and their movements have been developed with the 
advance of commodity depth sensors such as the Micro-
soft Kinect and its body tracking capabilities. However, the 
Kinect body tracking is limited to persons taller than 1 m 

[41]; the relationship between the robot’s physical appear-
ance and its behavior, or the effect of its human-like-ness 
[42]. Within HRI, IRI holds a peculiar place. Indeed, the 
interaction between infants and robots can be very differ-
ent from the interaction between adults and robots due to 
the infant’s continuing neuro-physical and mental develop-
ment [33, 43]. A fascinating challenge in IRI is to imple-
ment a human-like interaction in which the choice of the 
robot’s actions is taken based on the infant’s behavior. To 
this purpose, robots should be endowed with the ability to 
assess the infant’s affective state and determine whether or 
not to take action based on the infant’s emotional behavior. 
Besides, making robots respond spontaneously and socia-
bly to humans implies that robots should have a degree of 
sensibility to human emotions [44]. The methodologies for 
infant affective states recognition relevant for IRI studies 
are detailed in Sect. 3.1. Whilst the primary research areas 
of affective computing in IRI applications are discussed in 
Sect.  3.2. Specifically, the following paragraphs describe 
the results obtained for each RQs.

3.1  Technologies used to Evaluate Infants’ Affective 
State and their Relevance to IRI Studies (RQ1)

The strategies adopted for infant affective state recogni-
tion relevant for IRI studies are mostly focused on non-
invasive techniques that can automatically detect emotions. 
Behavioral analysis, such as facial expression evaluation, 
and non-invasive physiological signal analysis are the most 
commonly used approaches in this regard.

3.1.1  Infants Affective Computing through Behavioral 
Analysis

Understanding infants’ affective state is important to 
researchers, pediatric professionals, and parents alike. In 
fact, because infants cannot verbally report on their emo-
tions, understanding their affect has been considered by 
many to present a significant problem [45]. Infants commu-
nicate with the outside world through their facial expres-
sions, hand gestures, body action, sounds [46], and signed 
speech [47]. Therefore, these are important information 
sources to detect their emotions and needs. To study infant 
emotion, researchers have traditionally relied upon observ-
able features. Observable, behavioral indicators of emotion 
regulation strategies in infants include facial expressions, 
attention shifting (e.g., gazing at or away from a stimulus), 
engagement with objects, and self-soothing (e.g., rubbing 
face or thumb-sucking) [48]. Indeed, research on emotional 
development in infancy has been mostly based on facial 
expression analysis and had greatly benefited from the use of 
video analysis and coding systems [49]. Literature research 
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affective emotional experiences. For example, when infants 
experienced negative affect in contexts involving interactions 
with another person, they demonstrated evidence of regula-
tion via vagal withdrawal (i.e., lower respiratory rate that 
indicates regulation [74]). One of the frequently employed 
paradigm to investigate emotion regulation through physio-
logical signal analysis in infancy is the Still-Face Paradigm 
(SFP). Such a paradigm was designed to investigate the role 
of infants in social interactions as well as infant reaction to 
depression stimulation. The SFP is typically composed of 
three sessions of face-to-face interaction between an adult 
and an infant: (i) a normal parent-infant interaction; (ii) 
the ‘still face’ moment, when the parent took on a neutral 
expression and he/she was no more responsive to the infant; 
(iii) the moment when the parent resumed the interaction 
with the infant [75]. Physiological changes associated with 
arousal and regulation can also be examined during SFP. 
Many studies on infants’ arousal have relied uniquely on 
infant heart rate recorded through electrocardiogram sensors 
[76, 77]. However, other studies, have used thermal infrared 
imaging techniques to assess infants’ arousal based on skin 
temperature variation. Such studies relied on research show-
ing that thermal variation can be measured at 6 months of 
age and autonomic changes can be inferred [78]. Indeed, 
the skin temperature profile is subject to various influences, 
including the cutaneous blood flow, local tissue metabolism, 
and sudomotor response, all of them being in turn controlled 
by the ANS [79]. Consequently, advances in thermal IR 
imaging technology allowed monitoring infant autonomic 
functions and inferring psychological and affective states. 
Moreover, since thermal infrared imaging is a non-invasive 
and contactless technique, it permits ecologically-valid set-
tings whereupon infants participants are free to move with-
out restriction. For this reason, it is especially valuable for 
observing emotions in infancy research since infants are dif-
ficult to engage in strictly controlled experimental settings. 
Aureli et al. assessed the nose tip temperature variation in 
3- to 4- months-old infants, in order to explore the natural 
human process of attachment between baby and mother, and 
the effects of the SFP [80]. Behavioral data were also col-
lected. The finding confirmed a parallelism between physi-
ological and behavioral responses: infants exhibited no 

[67]. Therefore, systems aimed to automate infant motion 
analysis made use of sensors that are attached to the infant 
body. Other methods overcome these limitations by fitting 
a simplified body model to the whole body [68] or lower 
limbs [69] of infants captured by RGB-D devices. The 
features employed for emotion recognition based on body 
motion could include absolute or reciprocal positions and 
orientations of limbs, as well as movement information such 
as speed or acceleration.

3.1.2  Infants Affective Computing through Physiological 
Signal Analysis

Emotion recognition using physiological signals is one of 
the branches of affective computing and several researchers 
employ bio-signals to estimate people’s affect. Indeed, even 
though, to a lesser extent, infants’ emotions have also been 
investigated through the analysis of physiological signals. 
This is because the ability to control emotional reactions 
to environmental stimuli develops during the first years of 
life [48]. The behavioral and cognitive construct of emotion 
regulation have been extensively examined in the develop-
mental psychology literature, and they have claimed that 
personality, social competence, and problematic behavior 
have their origins in (or are influenced by) early emotional 
control [70]. Emotional reactivity (i.e., arousal) and the 
regulation of that reactivity are the two processes that con-
stitute an infant’s emotional experiences [48]. The latency 
to respond to a stimulus, the intensity of the reaction, and 
the stimulus threshold required to elicit a response are all 
terms used to describe reactivity [71]. Internal physiological 
markers of arousal and regulations are present from early 
childhood [72]. For this reason, physiological measurements 
are often needed to better understand emotion regulation in 
response to environmental challenges. Such measures are 
mostly focused on the autonomic nervous system (ANS) 
activity. Indeed, the ANS, together with the hypothalamus, 
regulates pulse, blood pressure, breathing, and arousal in 
response to emotional cues [73].

In addition, studies have indicated that specific patterns 
of infant physiology, including vagal withdrawal, are pre-
dictive of emotion regulation due to their relationship with 

Fig. 2  Representation of infants’ 
facial expressions associated with 
different discrete emotions such 
as surprise (a), fear (b), sadness 
(c), and happiness (d). Adapted 
from [65, 66]
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to apply this technique in the IRI field have been identified. 
For instance, the processing may be very time-consuming. 
Indeed, in most of the studies analyzed, emotions or facial 
expressions were encoded using stop-frame video [51]. 
Moreover, behavioral analysis needs to be performed from 
more than one observer in order to ensure inter-observer 
reliability, thus making measurement accuracy a critical 
concern [52]. By contrast, daily life scenarios such of those 
of IRI applications require real-time responses from the sen-
sors of interest. Automatic data recording and processing 
are therefore preferred. Besides, conventional recognition 
methods using facial images may lack recognition accuracy 
since they are not universal and depend on culture, gender, 
and age [87]. Automated approaches to assessing facial 
action are a potential solution to manual coding difficul-
ties. Nowadays, these automated approaches are an active 
research topic in the field of computer vision and machine 
learning and often involve collaborations between computer 
scientists and psychologists [88]. Hammal et al. reported 
that automatic coding of AUs showed moderate to strong 
reliability with manual coding [89]. Yet, lighting conditions, 
auditory noise, also make these techniques challenging to 
be implemented in a real-world environment [90]. Even if 
this automated approach in infants is in the early stage of 
research, introduction into the IRI field of advanced image 
processing techniques, such as convolutional neural net-
works, encourages and fosters its improvement [88, 89].

On the other end, physiological channels can deliver reli-
able, crucial, and timely information about infants’ emo-
tional symptoms, and emotional response to environmental 
stimuli. They are, however, mostly obtained through contact 
sensors [91]. Direct contact with the person’s skin requires 
the ability and the willingness to properly wear the device. 
Moreover, the time required for attaching sensors to infants 
would not be negligible, and this could be a source of dis-
tress for the infants, further complicating the conducting of 
IRI studies. Even if easily wearable sensors were developed, 
they have to meet various technological requirements (e.g., 
reliability, robustness, availability, and quality of data), 
which are often very difficult to design. Therefore, although 
over the last decade, emotion recognition using physiologi-
cal signals has gained its momentum, this approach is still 
hardly applicable in the IRI field. Indeed, for IRI applica-
tions it is important that these measurements do not inter-
fere with the infants’ activity. For this reason, nonintrusive 
measurements are required, which can be performed with-
out requiring additional cooperation from the infant or even 
without the subject’s awareness of the measurements. A suit-
able technique that well fits this requirement can be thermal 
IR imaging since it records physiological signals remotely. 
However, advancements in hardware and signal process-
ing would be required for this technique to overcome the 

signs of stress or discomfort during the still-face moment 
and no drop in face temperature which is considered a sign 
of stress or anxiety. In contrast, a temperature increase was 
recorded in support of the parasympathetic system activa-
tion as a result of infants’ greater interest in the surround-
ing environment. This was also confirmed by the behavioral 
evidence, which revealed that children drove their attention 
outward because of the interruption of the interaction with 
their mothers. Moreover, researchers used thermal IR imag-
ing to measure facial skin temperature as an index of mental 
stress in 8 to 15 weeks old infants when they were separated 
from their mothers [81]. Nakanishi and Matsumura investi-
gated changes in facial skin temperature in 2 to 8-months-
old infants, when they were laughing, as typical behavior of 
pleasant and joyful emotion [82] .

Besides skin temperature variations, physiological 
changes in response to emotion also occur in parameters, 
controlled by the ANS, such as blood pressure, heart rate, 
electro-dermal activity, pupil dilation, and respiration rate, 
which are not directly recognized by human observers Cire-
lli et al. focused on the emotional arousal and emotional 
regulation in infancy by employing skin conductance mea-
surement [83]. Bainbridge et al. by measuring heart rate and 
pupil dilation demonstrated that infants relaxed in response 
to unfamiliar foreign lullabies [84]. The heart rate is widely 
used for infant arousal detection using a comparison of sym-
pathetic and parasympathetic frequency bands of the sig-
nal. However, it is highly dependent on the body position 
during monitoring [85]. Minagawa-Kawai et al. studied the 
emotional attachment between mother and infants [22], Par-
sons et al. between parents and infants [23], both using the 
functional infrared spectroscopy technique (fNIRS). This 
technique enables the measurement of the localized hemo-
dynamic response in infants.

3.1.3 Relevance of the affective computing techniques 
based on behavioral and physiological data in the IRI field.

The ultimate goal of IRI and HRI, in general, is to 
have robots interact socially, which also means having the 
capacity of generating coordinated and timely behaviors 
predicated on their social surroundings. Therefore, the rec-
ognition of the emotional reaction of the human interlocu-
tors also needs to be performed in a timely manner. This 
aspect has a crucial impact on the selection of the emotion 
recognition technique to use for this purpose.

Researchers have usually focused on observable charac-
teristics such as facial expressions or gaze analysis to assess 
infants’ emotions. Indeed, expressions, especially when 
combined with vocal and postural clues provide valuable 
information on the affective state of infants who are unable 
to convey their feeling otherwise. As a result, emotions rec-
ognition based on infants’ facial expression analysis has 
become highly influential [86]. However, some limitations 
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3.2.1  Assistive Robotics for Infants

Robotic technologies and especially assistive robotics 
for infants are a growing area of research and can prove 
to be fundamental for infants with all kinds of disabilities. 
Indeed, it has been found that infants are often attracted to 
robotic devices, and that such technology may enable chil-
dren with physical disabilities to play and exercise, and 
facilitate learning in those who have cognitive challenges 
[95]. For instance, motion demonstrations from humanoid 
robots have several unique advantages for studying infant 
motion adaptation compared to classical techniques [96]. 
Since infants prefer face-to-face interactions [97], interac-
tive humanoid robots may capture and maintain the atten-
tion of infants longer than inanimate toys do. Furthermore, 
small humanoid robots can produce motions similar to those 
of infants. This ability may help the robot to inspire infants 
to imitate desired patterns of motion. Such assumption was 
tested and proved effective by Kokkoni et al. Indeed, the 
authors developed a pediatric learning environment using 
two socially assistive robots aimed at delivering motor inter-
ventions. The results of the study revealed that the robots 
were able to facilitate and encourage mobility in young chil-
dren through play-based interaction with the robot [98]. Fit-
ter et al. demonstrated that infants 6 to 8-month old imitate 
robot motion and robot rewards motivate infants to move in 
particular ways [8]. This suggests the potential role of the 
robot to teach and reinforce infants’ motion. These findings 
are indeed based on past infant behavior research that high-
lighted imitation and contingency learning as two infant 
behaviors that could be exploited to encourage robot-based 
motor interventions [99]. Likewise, Pulido et al. showed that 
the robot was able to encourage the infant to reach higher 
acceleration from their movement to get better rewards from 
the robot [100]. This finding demonstrated that the robot’s 
physical embodiment and ability to provide various reward 
types helped it motivate infants and keep their attention for 
longer than other therapeutic tools. The infant-like size and 
humanoid anatomy of the robot also allowed it to fit in the 
infant’s visual field and demonstrate motions that an infant 
can imitate. Galloway et al. employed a mobile robot to 
provide the first experiences of self-generated long-distance 
mobility to infants with special needs. The authors proved 
that even without training, both typically developing infants 
and infants diagnosed with Down Syndrome were able to 
independently move themselves using a mobile robot [101]. 
Chen et al. furthered this result by training 26–34-month-
old special needs infants, sitting on a mobile robot, to navi-
gate and avoid obstacles [102–104]. These observations 
may provide new insights or give tips for future interven-
tions on assistive robotics for infants. Moreover, research-
ers outlined social robots as a tool to support the diagnosis, 

barriers related to its use with infants in real-life circum-
stances [92].

Another important aspect to consider when using sensors 
suitable for IRI is their camera angle. Indeed, IRI applica-
tions primarily require an ecological environment in which 
the child is free to move without the restriction of being 
within the camera angle of the sensors. The field of view 
(FOV) of an optical sensor (i.e., the maximum area of a 
sample that a camera can image) is related to the focal length 
of the lens and the sensor size. The sensor size is determined 
by both the number of pixels on the sensor, and the size of 
the pixels. Whereas there are visible cameras that can cover 
overhead camera angle, thermal imaging camera’s FOV val-
ues can range from 7° to a maximum of 80°. Although these 
values are suitable for a wide range of applications, in stud-
ies that require a higher FOV e.g., overhead camera angle, 
the combined use of multiple sensors is preferable.

3.2  Assessing the Main Research Areas of Affective 
Computing in IRI Applications (RQ2)

As robots move into more infant-centric environments, 
methods to develop robots that can spontaneously inter-
act with infants are required. Robots must be capable of 
coordinated, timely behavior in response to social context 
and their interlocutor’s affective states in order to interact 
effectively with human users. This would require testing in 
the real world and addressing multidisciplinary challenges. 
Moreover, based on the analysis conducted on the papers 
reported in this section, to achieve a successful interaction 
with infants, robots need to pursue two main goals (1) to 
capture and (2) to maintain infants’ engagement. To this end, 
researchers have attempted to identify modes through which 
robots can recognize infants’ emotional states in order to 
socially and spontaneously interact with them. In fact, stud-
ies revealed that the success of robot acceptance lies in its 
capability to act as a social entity as well as its adaptability 
to differentiate behavior within appropriate response times 
and tasks [93]. At the same time, emotion recognition is a 
challenging task, especially when performed in a real-life 
IRI situation, where the scenario may differ significantly 
from the controlled environment in which most recognition 
experiments are conducted [94]. Based on the literature sur-
vey’s outcome, the IRI’s main applications that adopt emo-
tion recognition techniques can be divided into two research 
fields: (1) the use of robots for infant rehabilitation or skill 
improvement, also known as assistive robotics for infants, 
and (2) the use of social robots for infant interaction, which 
aims to investigate infants’ perception of the robotic sys-
tems. Each of the two major topics is covered in the follow-
ing sections and summarized in Table 1.
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that infants were more likely to be alert and engaged when 
the robot pursued an active interaction compared to when 
the robot was not active [96]. Furthermore, the robot’s 
social-communicative interaction capability also plays a 
key role in mediating infants’ behavioral state and their per-
ception of the robot. Indeed, Meltzoff et al. working with 
a group of 64 infants who were 18-month-old showed that 
it is not just the appearance of the robot, its physical fea-
ture, or even how it moves, but how it interacts with others 
and reacts that is important to the infants and drives infant 
perception of the robot [12]. These findings can have impli-
cations for the future design of humanoid robots and the 
field of social robotics in general. In addition, Michaud et 
al. designed a spherical robot, Roball, intending to study the 
impact of robotic interaction on infants, and investigating 

treatment, and understanding of developmental disorders 
such as autism [105].

3.2.2  Social Robotics for Infants’ Interaction

This second research area in IRI focused on the nature of 
the interaction between infants and robots by posing differ-
ent questions, such as: (i) How do infants perceive a robotic 
system, and (ii) how does this relate to the forms of con-
tingent interaction they are able to undertake with the sys-
tem [106, 107]. Demonstrating that the infants’ perception 
and categorization of a robot emerged and changed step by 
step depending on the form of interaction [106].The Infant’s 
attitude toward the robots appeared to change based on the 
robot interaction as well. In fact, Funke et al. demonstrated 

Research area Paper Robotic 
platform

Robot’s purpose of use Metrics employed

Assistive 
robotics for 
infants

Boyd et al. 
2017 [9]

NAO Detecting atypical kicking patterns 
in infants leg movements

Accelerometer data 
to compute infants’ 
kicking kinematics

Pulido et al. 
2018 [100]

NAO Encouraging infants to increase 
acceleration of their leg movement

Acceleration peaks 
in infants leg motion

Funke et al. 
2018 [96]

NAO Encouraging infants motor learning 
and adaptation

Eye gaze, Motion, 
Video recorded 
analysis

Fitter et al. 
2019 [8]

NAO Motivating infants’ motion Acceleration thresh-
old, Knee extension

Klein et al. 
2019 [11]

NAO Contingent learning of leg motions Eye Gaze location

Galloway et 
al. 2008 [101]

Custom 
made 
mobile robot

Helping infant to achieve self-gener-
ated locomotion

Percent of robot 
driving time, Dura-
tion of joystick 
activations

Chen et al. 
2011[102]

Custom 
made 
mobile robot

Training infant to safely drive 
indoors

Tracking algorithm

Social robot-
ics for infant 
interaction

Michaud et al. 
2005 [108]

Roball Obtaining infants’ attention and 
engaging them in interaction and 
learning

Eye Gaze Location, 
Physical Contact, 
Displacement

Arita et al. 
2005 [1]

Robovie Investigating how infants classify 
robot

Looking times

Michaud et al. 
2007 [95]

Roball Investigating infants’ interest, 
observing how infants interacted 
with the robot in unstructured famil-
iar setting

Eye gaze, Touch, 
and Imitation

Metlzoff et al. 
2010 [12]

HOAP-2 Engaging infant in communica-
tive, imitative games with an adult 
experimenter.

Eye gaze Location

Gilani et al. 
2018 [78]

Maki Engaging infants in multiparty artifi-
cial agent interaction and help them 
learn a visual language

Eye gaze Location, 
Thermal data profile

Scassellati et 
al. 2018 [109]

Maki Engaging deaf infants in a linguistic 
interaction

Eye gaze Location, 
Thermal data profile

Kokkoni et al. 
2020 [98]

NAO and 
Dash

Engage infants in imitation and chas-
ing games.

Visual attention 
to robot, Mov-
ing towards the 
robot, Ascending 
completion

Table 1  List of robotic platforms, 
the metrics employed and their 
purposes of use in infant-robot 
interaction research
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with artificial agents. In detail, authors differentiated five 
discrete values of the infants’ engagement: very negative 
(sustained decrease in attention), negative (non-sustained 
decrease in attention), very positive (sustained increase in 
attention), positive (non-sustained increase in attention), 
and a None signal which shows the signal’s absence because 
of not detecting a reliable signal from the baby [78]. The 
robotic platforms used for infant interaction purposes are 
listed in Table 1.

3.2.3  Metric used for Affective Computing

By reviewing the studies reported in Sect. 3.2.1 and 3.2.2, 
the metrics adopted to verify whether the robots have suc-
ceeded in their purpose to identify and elicit infant engage-
ment can be summarized in three types of measures, related 
to both behavioral and physiological analysis. In detail, 
the emotion recognition based on behavioral analysis is 
represented by the eye gaze metric and infant imitation 
occurrence.

Concerning the eye gaze, the studies analyzed revealed 
that robot eye gaze has been successful in acquiring visual 
attention across various settings. Furthermore, most of the 
research in IRI has employed eye gaze and looking time as 
an index to evaluate infant’s engagement and attention to 
the robot. In addition, since infants may direct their atten-
tion more quickly to stimuli, they previously found interest-
ing [111], this suggested that more complex or surprising 
stimuli may be more successful at acquiring and maintain-
ing infant visual attention. Therefore, the experimental pro-
tocol of the analyzed studies often incorporates some sort of 
surprising action.

Relating to infant imitation occurrence, this is a usually 
employed metrics to evaluate robot performance. It mainly 
concerns the child’s ability to imitate the same action that 
the robot performs. In fact, since motion demonstrations 
from a humanoid robot have several unique advantages 
for studying infant motion adaptation, this is widely used 
in IRI. Accelerometer data, as well as motion analysis of 
the infant’s action, inferred through video analysis, are the 
metrics used to evaluate the action completion by the infant.

On the other end, the emotion recognition based on 
physiological signals in the IRI field is currently mostly 
related to facial skin temperature modulation. Such a met-
ric is used to evaluate infants’ engagement toward the robot 
[78]. Thermal sensing has recently been used to identify 
distinct thermal patterns related to subtle changes in the 
infant’s internal state. For instance, the thermal feedback 
indicating an increased level of infants’ distress was found 
consistent with temperature decrease in peculiar regions of 
interest. Conversely increase in temperature was linked with 
infants’ interest and social engagement [109]. Specifically, 

the potential role of the robot in contributing to the devel-
opment of their language, affective, motor, intellectual and 
social skills [95, 108]. The robot was able to move autono-
mously and generate various interplay situations. Although 
the purposes and design of the study were interesting, the 
authors concluded that conducting trials with infants and 
robots is highly challenging. Inconclusive results can occur, 
especially because infants’ unpredictable mood can influ-
ence the interaction [108]. Thus, the need to further inves-
tigate the affective state of the infant while interacting with 
a robot. Finally, two studies that resulted from the literary 
survey were related to an innovative system called RAVE 
(Robot AVatar thermal Enhanced language learning tool). 
This is a dual-agent system that uses a virtual human and 
a physical robot to engage 6-to-12-month-old deaf infants 
in linguistic interactions (Fig.  3) [78, 109]. The tool was 
endowed with a perception system that could estimate infant 
attention and engagement through thermal IR imaging and 
eye-tracking. It was intended to be an augmentative learning 
tool to facilitate language learning, in particular, visual lan-
guage during one widely recognized critical developmental 
period for language (ages 6–12 months [110]). To this end, 
thermal IR imaging was used to determine the infants’ emo-
tional arousal and attentional valence during the interaction 

Fig. 3  Experimental environment and setup employed in [78, 109]. (a) 
robot, (b) screen showing the avatar, (c) thermal IR camera placed in 
front of the baby through a slit in a black curtain and (d) the related 
thermogram
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From RQ2 (i.e., Assessing the main research areas of 
affective computing in IRI applications) is possible to high-
light that the robots have been designed to interact with 
infants in a manner consistent with human psychology and 
following the guidelines and rules of social interaction. The 
study reviewed demonstrated that the interaction between 
robots and infants can prove highly effective in healthcare, 
especially in robot-assisted therapies. Besides, it has been 
shown that infants, have the ability to engage with robots 
and follow their gaze, based not much on the robot’s appear-
ance but rather on its capacity to interact with others [12]. 
However, still little is known about the infants’ affective 
states during the interaction with a robot or a social agent.

The metrics used to detect infants’ engagement and 
affective states in IRI’s applications resulted to be based on 
behavioral indices such as eye gaze or motion analysis and 
on physiological cues such as skin temperature modulation 
which can be revealed by thermal IR imaging. Indeed, com-
pared to other techniques for emotion recognition through 
physiological signals, thermal IR imaging has the advan-
tage of collecting thermal signals remotely. Such peculiarity 
would enable it to be integrated into a wide range of IRI 
settings and applications. Conversely, regarding the behav-
ioral index, i.e., the eye-gaze, it is a reliable and quick to 
process index, therefore suitable for real-time assessment. 
Moreover, such a metric can be easily integrated with other 
technologies used to recognize infants’ affective states. 
Combining different modalities would promote the future 
development of affective computing in the IRI field. Indeed, 
whereas existing literature tends to evaluate each of these 
algorithms in their own metric space the emotion recogni-
tion quality would benefit for global level markers. Table 2 
summarizes the focal points deduced from both RQs as well 
as the suggested future directions.

5  Research Challenges and Open Problems

The present study aimed to provide new perspectives 
towards a successful interaction between infants and robots. 
In this regard, future vision will be to endow the robot with 
the capability of assessing the infant’s affective state based 
on real-time emotion recognition techniques. Indeed, affec-
tive state recognition capability would provide robots with a 
degree of “emotional intelligence” that would permit more 
meaningful and spontaneous IRI. However, some open 
problems were identified in the reviewed studies, which 
highlighted that emotion recognition in IRI is currently still 
a challenge for many robotic applications.

Those problems mostly apply to the real-world IRI sce-
nario which is quite different from the laboratory setting. 
Previous studies used an experimental methodology and 

in Gilani et al. to calculate information about the infant’s 
affective state, authors used the nose tip’s average tempera-
ture, extracted in real-time from each frame [78]. The study 
revealed for the first-time insights into infants’ psychophys-
iological responses to artificial agents such as robots. The 
metrics used in the analyzed studies are listed in Table 1.

4  Discussion

An intriguing challenge in the field of IRI is the possibil-
ity to provide robots with emotional intelligence in order 
to make the interaction more genuine, and spontaneous. A 
crucial aspect in achieving this is the robots’ capacity of 
inferring and interpreting infants’ emotions. Emotion rec-
ognition has been widely investigated in the broader fields 
of HRI and affective computing. This review reported on 
emotion recognition techniques designed for infants’ stud-
ies, with particular regard to the IRI context. Our aim was 
to review currently adopted emotional recognition and robot 
interaction modalities for the infant population and offer our 
point of view on future developments and critical issues. 
The following paragraphs summarize considerations on the 
research questions addressed in this study as well as provide 
suggestions for future improvement. Finally, ethical con-
cerns of IRI are also discussed.

4.1  Discussions on the RQs Addressed

RQ1 (i.e., Examining the infants’ affective states recogni-
tion techniques and their relevance to IRI studies) helped us 
to identify relevant aspects of the affective computing tech-
niques used in literature useful for IRI applications. In detail, 
the most common and natural way to observe and recognize 
emotions in infants is the analysis of facial expressions. 
Quantitative evaluation of observational data typically con-
sists of manual coding, on a second-by-second basis, so that 
statistical techniques can be applied to data gathered from 
a test population. However, spontaneous robotic interaction 
would benefit from on-line emotion recognition, making 
automated methods preferrable. Automated approaches for 
infants’ facial expression identification are currently being 
developed. In particular, two of the studies reviewed in this 
paper used automated methods, with both achieving aver-
age accuracy of 80 and 81% in recognizing facial action 
units [88, 89]. Although such automated approaches have 
not yet been employed in IRI studies, their use is encour-
aged. By contrast, the contribution of thermal imaging in 
this area should not be underestimated. Indeed, it provides 
information about physiological parameters associated with 
the infant’s affective state in real-time and contactless.
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[113] and provide accurate cues for real-time infants’ emo-
tions recognition by the robotic system.

In addition, when dealing with infants, a successful 
emotional-aware robot should be able to recognize differ-
ent emotional states and be prepared to adjust its behavior 
based on the infant’s needs. As a result, it would be ideal, 
although challenging, to develop a database of the infants 
so that the robot can keep track of prior contacts and mood, 
as these aspects might influence social interactions with 
the infant. Moreover, a still open problem is the amount of 
infant data currently available for analysis. The database 
thus developed might potentially be used also to perform 
powerful machine learning algorithms that require a signifi-
cant amount of data.

Finally, recognizing and classifying infant emotions may 
be a viable step toward synthetic reproduction of human 
emotions by the robotic system, which is a current fascinat-
ing challenge for most researchers in IRI and developmental 
robotic fields.

5.1  Future Perspective On the Developmental 
Robotics Field

Reliable infants’ emotion recognition technique would 
also greatly benefit the developmental robotics (DR) field. 
Indeed, the DR field aims to develop sensorimotor and cog-
nitive capabilities in robots by drawing inspiration from 
child psychology and by modeling developmental changes 
[114]. Inspired by infants’ cognitive process, some research-
ers applied development theories into robotics. From these 
theories, researchers can understand the way infants build 
their structures of knowledge and develop their behaviors, 
language, and other complex skills [115]. Then let robots 
learn like human infants. DR is a rapidly growing research 
area having increasing interest, which constitutes an inter-
disciplinary approach to robotics, located at the intersec-
tion of developmental psychology and robotics [116]. It 
is, indeed, promoted by different driving forces: engineers 
seeking novel robotics advancements as well as neuroscien-
tists interested in gaining new insight from trying to embed 
their models into robots [117]. Until now, some advances 
in neuroscience research have been successfully used for 
robotic development, such as sensorimotor architectures, 
motion control strategies, and behavioral models [118, 119]. 
Whereas, understanding and reproducing the mechanism 
of human learning, emotions, and curiosity is still an open 
debate [120]. At the same time, for advanced robot develop-
ment, it is essential to make robots with anthropomorphic 
and diversified emotions in order to achieve efficient com-
munication with the environment and humans [118]. To this 
end, endowing the robot with the capability of the on-line 

paradigm within which affective computing was performed 
without being embedded into a realistic IRI environment. 
While this approach could provide a baseline metric/value, 
the drawback is that it may not be representative of real-
world IRI. The development of a reliable and accurate met-
rics to be used as a gold standard for affective computing in 
IRI could potentially allow overcoming such issues.

A second open problem is the accuracy achieved in 
the infants’ emotion recognition and the time it takes the 
affective algorithms to produce the emotional outcome. 
Real-world application indeed requires timely and accu-
rate analysis. To increase accuracy, a multimodal informa-
tion fusion system, rather than a single infant’s emotional 
states recognition technique, might be suggested as a future 
perspective. Indeed, advanced robots will benefit from inte-
grating capabilities to detect and interpret infants’ emotions, 
motions, gestures, and sounds in order to accomplish tasks 
in synergy with infants or humans in general. Data fusion 
for visual tracking has already been used for robotic interac-
tions with adults, involving the development of a real-time 
system for face/hand tracking and hand gesture identifica-
tion within the particle filtering framework [112]. More-
over, combining data from infrared cameras with data from 
visible cameras, in order to integrate behavioral and physi-
ological cues of the human interlocutor’s emotions was also 
proved effective in child-robot interaction applications [29]. 
A depth camera, in addition to infrared and visible cameras, 
can also be integrated into a multimodal data fusion system 
to improve the accuracy of motion and gestures analysis 

Table 2  Overview of the insight gained and suggested future direction
RQ Insight gained Future guidelines
RQ1:
Examining 
the infants’ 
affec-
tive states 
recognition 
techniques 
and their 
relevance to 
IRI studies

The techniques used in 
IRI studies for recogniz-
ing infant affective states 
are primarily focused on 
facial expression evaluation, 
eye-gaze, and non-invasive 
physiological signal analysis 
such as thermal IR imaging. 
Although these techniques 
are extremely valuable, they 
are rarely used in real time.

The use of automated 
technology should 
be prioritized over 
others. Indeed, the 
effectiveness of 
spontaneous robotic 
interaction would 
be greatly enhanced 
by online emotion 
recognition.

RQ2: Assess-
ing the main 
research areas 
of affective 
comput-
ing in IRI 
applications

The IRI applications that 
have been shown to produce 
better results are related 
to healthcare, specifically 
robot-assisted therapies. 
Interestingly, infants seems 
more responsive and 
attracted to robots with 
human interaction capabil-
ity than to their physical 
appearance

As future direction, it 
is important to imple-
ment innovative and 
accessible technolo-
gies, such as smart 
devices, as well as 
advances in computer 
vision or machine 
learning, in order to 
accelerate the devel-
opment of emotion-
aware robots.
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for accurate and timely outcomes. Future directions on this 
course include the employment of innovative and accessi-
ble technologies, such as depth cameras, and smart devices, 
along with advances in computer vision or machine learning 
that could lead to rapid developments of automated emotion 
recognition modalities and emotions-aware robots. Further-
more, the development of a robotic platform endowed with 
a multimodal emotion recognition system that integrates 
physiological signal analysis such as thermal imaging and 
visible domain analysis would make a significant contribu-
tion to science. To conclude, this review encourages and 
outlines guidelines for the use of affective computing in IRI 
applications as well as potentially provide support to future 
developments of emotion-aware robots.
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