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Abstract
In the last years, considerable research has been carried out to develop robots that can improve our quality of life during
tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist
people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate
communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and
control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the
evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades.
These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to
enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application
area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted
to action selection, an analysis not provided in similar reviews of behaviouralmodels for autonomous and social robots. Finally,
we present the future directions that these systems can take in the future.

Keywords Decision-making system · Action selection methods · Social robots · Autonomous robots · Human–robot
interaction

1 Introduction

The unceasing technological development of the last decades
has brought many advances to our society. Among these new
advances, the development of autonomous robots that operate
without human supervision opens a wide range of possibili-
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ties in tasks that can be dangerous for humans, are repetitive,
or where the workforce is scarce (e.g. nursing). In these sce-
narios, autonomous robots usually have to assist people and
interact with them, so endowing these machines with social
behaviour is essential.

According to [1], social behaviour can be defined as
“all behaviour that influences, or is influenced by, other
members of the same species”. Therefore, since social
robots are for interacting with and assisting people, emu-
lating human behaviour and decision-making to make these
systems autonomously fulfil their tasks enable better cooper-
ation between social robots and their users [2]. Nevertheless,
emulating biological functions in robots is not easy as many
concepts intertwine to shape human behaviour. However,
the artificial life community has typically addressed this
challenge using ethological (study of animal behaviour)
approaches where terms like perception, cognition, emotion
and affect, homeostasis, motivation, learning, or social inter-
action are widely used. Next, we define these terms to help
frame and understand the importance of these concepts on
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the autonomous and social behaviour of social robots, the
topic of this review.

• Perception: Human perception can be defined as our pri-
mary form of cognitive contact with the world around
us [3]. Therefore, in robotics, it refers to the capacity to
perceive the external environment.

• Cognition: This term refers to the human ability to know,
learn, and understand things [4]. Consequently, design-
ing cognitive systems implies making them capable of
reasoning about their actions.

• Emotion and affect: Emotions are mental states derived
from the situations that we experience that are sometimes
translated into physical responses [5]. Thus, emotions
and affect are typically used in robotics to emulate how
the robot feels due to its experiences.

• Homeostasis: The regulation by an organism of all
aspects of its internal environment [6]. In robotics, it
means emulating animal functions such as heart rate to
regulate internal functions.

• Motivation:Motivation iswhat urges anddrives behaviour
[7]. It is closely related to perception and physiological
needs as the basis of behaviour selection and execution.

• Learning: According to [6], learning implies gaining
knowledge from study and experience. In robotics, it
refers to improving the robot’s behaviour using past expe-
riences after interacting with the environment. In social
robots, the typical approach is Reinforcement Learning
(RL).

• Social interaction: Social interaction can be defined as
any process involving reciprocal stimulation or response
between two or more individuals [6].

Since the late 1990s, many social robots with autonomous
behaviour have been designed in areas such as education
[8,9], healthcare [10], companionship [11], or social interac-
tion [12–14] emulating many of the previous ideas. In social
scenarios, the interaction dynamics are typically unknown
and unpredictable, so robots working in these environ-
ments must have appropriate decision-making capabilities
to autonomously select their actions and successfully fulfil
the task for which they are intended [15].

Considering these facts, since the early 1990s, many
researchers have focused on investigating how to endow
robots with decision-making capabilities and have designed
many models, typically emulating animal behaviour [16].
Nowadays, autonomous and social robots are deployed in
many scenarios as promising systems aiming to improve our
lives quality. Nevertheless, to continue enhancing these sys-
tems’ capabilities, we believe that a deeper analysis of the
current situation of decision-making and control architec-
tures is necessary, assessing their evolution over the years
and framing their challenges and future goals. Previously,

Cao et al. [10] described state of the art in behavioural mod-
els for social robots in healthcare. However, we have not
found any review that addresses the evolution of decision-
making systems (DMSs) for autonomous and social robots.
For this reason, we propose this contribution that fills this
gap in the literature by providing a comprehensive overview
of control architectures for autonomous and social robots.

Thismanuscript reviews the evolution and trends ofDMSs
and control architectures for autonomous and social robots
in the last three decades. Moreover, we analyse how these
systems have evolved in their application to specific areas,
the duration of their operation, the included learning meth-
ods and the use of biologically inspired models that emulate
animal (human) decision-making. From this analysis, we
evaluate some of the principal challenges of DMSs and
control architectures to envision future work that may help
overcome some of their main limitations.

Thismanuscript is organised as follows. Section2 presents
the materials and methods followed during our study. Sec-
tion3 reviews the state of the art of DMSs and control
architectures for autonomous and social robots by area of
application. Next, Sect. 4 analyses the results of our survey in
the last three decades, attempting to study the tendencies thor-
oughly these systemshave experienced across decades. Then,
in Sect. 5, we go deeply into the challenges that autonomous
and social robots have to tackle, emphasising those aspects
that we have acknowledged in our prior study. Section6
addresses the future of DMSs for artificial embodied agents,
providing our own experience as designers. Finally, we pro-
vide comparative extensive tables of the work reviewed in
this manuscript related to each area in the “Appendix” sec-
tion.

2 Materials andMethods

This section presents the methodology, based on the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA), we followed during our study to select
the most appropriate contributions in control architectures
and DMSs for autonomous and social robots.

2.1 Study Selection Procedures

This manuscript analyses empirical studies in the last three
decades as the bulk of the contributions in the area were
carried out within this period. The bibliography database
we used to build our database and perform the analysis
was developed by searching in Google Scholar, Scopus, and
Web of Science electronic databases. These databases were
selected due to the ample number of publications they con-
tain and because they are used worldwide. Table 1 contains
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Table 1 List of keywords used for searching the contributions included in our analysis

Research keywords

(Decision-making* OR action* OR behavio*) AND (autonom*) AND (robot*)

(Control* OR action*) AND (method* OR strateg*) AND (robot*)

(Cognit* OR emotion* OR affect*) AND (model* OR system* OR architecture*) AND (robot*)

(Adapt* OR Autonom*) AND (behavio*) AND (robot*)

Biologically inspired AND (model* OR system* OR architecture*) AND (robot*)

Social AND (adapt* OR autonom*) AND (robot*)

Learning AND autonomous AND (robot*)

the queries employed for building the database used for con-
ducting our examination.

The use of these keywords results in 182 hits in Google
Scholar, 18 in Scopus, and 8 in Web of Science. The search
was first conducted in Google Scholar, then Scopus, and
finally Web of Science, obtaining 208 hits without dupli-
cates. Unfortunately, we could not obtain the full-text of 5
works from this list, leading to a final number of 203 works
to be screened. After reading the title and abstract of these
works, we excluded 31 papers because (i) they were not writ-
ten in English or (ii) the architectures presentedwere for fully
teleoperated robots. Consequently, 172 full-text articles were
assessed for eligibility.

Finally, we selected 148 works out of 172 possibilities
because they fulfil our final requirements. These require-
ments were (i) describing the action selection or decision-
making method for generating autonomous behaviour, (ii)
involving humans in the decision-making process, (iii) indi-
cating if they have been applied in real robots or just
in simulation, and (iv) describing the system application.
Figure1 shows the process of identification, screening, eli-
gibility, and inclusion in the analysis.

3 Review

The following review thoroughly describes autonomous and
social agents’ outstanding decision-making and control sys-
tems in the last three decades. After carrying out an extensive
review of contributions describing DMSs and exploring the
areas where these systems are applied, we opted to review
and narrate the works in the following categories:

• Research: In this category, we classify those publications
that present decision-making and control systems as con-
ceptual models not applied to any specific domain but
purely designed for research.

• Manufacturing: This category clusters contributions that
present decision systems used in manufacturing and pro-
duction environments, such as factories.

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram [17] that represents the process
carried out in our analysis. The records out of scope refer to those
articles that present social robots but do not describe their DMS. We
excluded 23 articles after evaluating their full-text because either: they
addressed decision-making from a conceptual point of view without
presenting a model (15), no DMS was presented (5), or the study was
not about the control of autonomous and social robots (3)

• Healthcare: We classified the publications where a robot
with autonomous decision-making improves people’s
healthcare.

• Education: This category includes contributions that pro-
mote people’s learning by using autonomous and social
robots.

• Entertainment: The contributionswhere decision-making
and control architectures are used for the users’ entertain-
ment are in this category.
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• Companionship: This category contains publications
where DMSs are integrated into robots that provide com-
panionship to vulnerable sectors of society, such as older
adults.

• Assistance and service: In this area,we present those pub-
lications concerned with assisting people and providing
them with essential services to facilitate their tasks.

Then, Sect. 4 studies the number of works per decade and
area, the evolution of the action selection and learning meth-
ods, if theseworks use bioinspiration, theHRI duration of the
experiment where the architecture is integrated, and whether
they applied on real scenarios and a real robot. These classes
were selected to provide an accurate vision of the evolu-
tion and challenges of these systems. Besides, we use them
in the comparative tables included in this manuscript in the
“Appendix” section.

3.1 Decision-Making Systems in Research

In the last thirty years, many contributions have described
decision-making and control systems for robots. Since the
term social robot was not coined until the 1990s, as Fig. 2
shows, our review starts with action selection architectures
intended for autonomous robots. Then, with the rise of social
robots, we provide a more detailed vision of architectures
designed explicitly for social contexts and, more specifically,
for Human–Robot Interaction (HRI). A comparative analysis
of the works described in this section is in “Appendix A”.

3.1.1 The 1990 s: Initial Research Models

We begin this survey with the work carried out byMeyer and
Wilson [18] at the beginning of the 1990s, who presented a
book about making robots intelligent and autonomous, pro-
viding insights about how to replicate human behaviour in
robots using ideas previously published by Lorenz [19] and
Tinbergen [20].

One year later, Maja [21] designed a framework for the
autonomous navigation of mobile robots. The robot uses
a compass and sonars as well as if–then rules to accom-
plish its navigation goals. Similarly, Mahadevan and Connell
[22] proposed the autonomous control of a robot, but this
time, using Q-learning combined with statistical clustering
to select actions. They were the first to use Reinforcement
Learning (RL) in autonomous robots, a widespread tech-
nique nowadays. In the same year, Elliot [23] designed a
multi-agent virtualworld to simulate the emotional behaviour
of autonomous agents. Each agent presented their personal-
ity generated from the model of emotion due to Ortony et
al. [24]. The behaviour of the agent depends on the agent’s
personality. The study aimed to analyse the role of emotion
in decision-making and behaviour.

Dorigo and Schnepf [25] designed a conceptual robot con-
troller that can adapt to a dynamic environment. The robot
incorporates Genetic Learning [26] to update its behaviour
depending on the state of the environment as perceived by
the robot’s sensors. Then, using an arbitration system, a set
of rules selects an action. Like the previous paper, Hayes and
Demiris [27] presented a model based on learning by imita-
tion, where a robot selected its behaviour by perceiving the
actions of a teacher robot. The novelty resides in knowing
when to carry out learning depending on the usefulness of
the teacher’s action. Continuing in the design of autonomous
mobile robots, Nolfi et al. [28] analysed in 1994 how to
conceptually design autonomous mobile robots using evo-
lutionary approaches, providing different neural controllers
to evaluate the behaviour exhibited by the robot in each sit-
uation and obtain the best solution depending on the robot’s
situation. In similar scenarios, García et al. [29] explored in
1995 how to make autonomous robots work in navigation
tasks, focusing on obtaining a scalable and modular model
based on rules organised in decision trees.

By themid-1990s, the tendency started to change,with the
development models inspired by nature. This does not mean
that researchers abandonedprobabilistic and rule-basedmod-
els, but the number of publications emulating biological
functions in robots grew notably. In this line, Steels [30]
explored how to address autonomy and intelligence in arti-
ficial agents from a biologically inspired perspective. The
author stated that biologically inspired decision-making is
essential for the agents’ survival to make more capable
robots. Deepening this concept,Webb [31] presented in 1995
a publication concerning emulating the behaviour of crickets
so as to be implemented by a robot. The study’s goal was
to understand better animal ethology and the sensorimotor
problems of animal robots. The decision-making consisted
of selecting the best action depending on the robot’s state.

During those years, many authors started their research
careers in autonomous robots. Some of these authors con-
sidered the work of Velásquez [32] in 1996 as a model for
representing emotion andmotivation in autonomous artificial
agents. The architecture includes many essential biological
aspects of humans, characterizing how we perceive the envi-
ronment to make decisions. The dissertation presents great
insights about making emotional and intelligent agents. In
addition, the system was tested in the social robot Simon to
work in HRI.

A couple of years later, in 1998, Velásquez [33] devel-
oped a new model for the autonomous decision-making of
artificial emotional agents. The model simulates internal
deficits that originate with the emotional responses to per-
ceptions. Then, emotions, perceptions, and deficits influence
the robot’s decision-making to produce appropriate actua-
tion commands. The system was tested in different robots
to explore the role of emotions in selecting actions. Using

123



International Journal of Social Robotics (2023) 15:745–789 749

some of Velásquez’s ideas, Webster [34] introduced in 1997
the basics of emotional computing and intelligent processing
to attain autonomous behaviour, positing that autonomous
agents require reasoning and emotion to adapt to dynamic
and complex situations. Like Webster, Arkin [35] studied
how to endow a robot with autonomous behaviour, but from a
more motivational perspective, addressing important aspects
of human behaviour such as socialization, adaptation, and
perception, from the perspective of both deliberative and
reactive processes.

Cañamero presented in 1997 one of her first publica-
tions [36] in autonomous artificial agents with biologically
inspired behaviour, describing a newborn living in a virtual
world, whose primary goal is to survive. The model shapes
essential functions like physiological deficits, motivations,
and emotion, allowing the agent to exhibit a fully autonomous
behaviour. In addition, the agent needs to interact socially
with other virtual agents to reduce social needs and obtain
the resources to incorporate learningmechanisms. The action
selection consists of reducing the deficit associated with the
motivational state with the highest level of intensity. As we
will present later, this author updated this initial model on
many occasions, applying it to HRI scenarios.

Moving back to fuzzy control and mobile robots, Tun-
stel et al. [37] presented in 1997 a DMS based on fuzzy
rules for autonomous navigation. The fuzzy rules evaluate the
robot’s goal and the sensory information to generate appro-
priate behaviours and fulfil the predefined task. Similarly,
El-Nasr and Skubic [38] proposed a DMS based on fuzzy
control and emotion for autonomous mobile robots. The sys-
tem evaluates the robot’s internal and external state, allowing
it to react to unexpected situations. The model explored the
significant role of emotion in decision-making, paying partic-
ular attention to negative emotions such as fear, pain, or anger.
Continuing in this line, Arsene and Zalzala [39] designed in
1999 a fuzzy controller for autonomous navigation in com-
plex environments. The robot’s decision-making combines a
deliberative task planner based on fuzzy rules with a reactive
layer for collision avoidance.

As did the previous authors,Matarić [40] explored in 1998
how mobile robots should produce autonomous behaviour
based on biologically inspired concepts such as learning
and adaptation. The paper identifies coordinating multiple
behaviours and working in multi-agent environments as sig-
nificant challenges of mobile robots. In this line, Reif and
Wang [41] also presented one year later a DMS for the dis-
tributed motion control of mobile robots working in groups.
The decisions of each robot are based on potential fields,
so the action taken by a robot depends on the position and
potential field of the other robots. The field could be attrac-
tive or repulsive, depending on the social relations between
the robots. Additionally, to the previous literature, Ishig-
uro et al. [42] also presented in 1999 a robot controller for

autonomous mobile robots. In this case, the action selec-
tion depended on a planner situated module that generated
appropriate paths for navigating safely using the information
provided by the sensors.

In 1999, the term autonomous social robot started to
appear in the literature frequently. Billard and Dautenhahn
[43] designed a DMS for robots to imitate the behaviour
of other robots in social tasks. Similar to and contempo-
rary with the previous two publications, Rooney et al. [44]
developed adecision-maker for social robotsworking inHRI.
The architecture contains a deliberative layer and a reactive
layer. While the deliberative layer makes long-term plans,
the reactive layer produces fast reflex behaviour reacting to
stimuli. Like the previous publication, the architecture pro-
posed by Gadanho in her PhD thesis [45] also combined
deliberative and reactive processes supported by learning,
adaptation, and emotion. All processes were based on bio-
logical animal functions. The systemwas tested in simulation
in long-term trials and is considered a noteworthy advance
in including RL with autonomous decision-making. Some
years later, in 2003, Gadanho [46] updated her architecture,
including perceptions, needs, emotions, and RL, to select the
most appropriate behaviour to maintain optimal well-being.
The emotion system modulates action selection and learn-
ing, including a cognitive system that depends on the robot’s
goals and internal state.

3.1.2 The 2000 s: The Rise of Social Robots

Already in the 2000s, Webb [47] proposed a theoretical
overview of how robots with biologically inspired behaviour
can improve our understanding of animal behaviour. In
line with Webb, Bryson [48] also reviewed bioinspired
theories for endowing artificial agents with autonomous
and intelligent behaviour. Their survey describes decision-
making architectures based onmodular systems, deliberation
and reactiveness, and evolutionary theories. Both addressed
decision-making from a conceptual point of view but pro-
vided brushstrokes about biologically inspired action selec-
tion methods for artificial systems.

Moving back to architectures applied in real agents, Estlin
et al. [49] presented in 2001 a novel two-layered DMS for
controlling robots. The top level generates plans, and the low
level works as an interface to command the robot’s actuators.
Decisions are based on a set of rules that evaluate the robot’s
state and goals. The model allowed action blending and con-
tinuous operation in lengthy tasks. Scheutz [50] designed in
2002 an action selection architecture for autonomous robots.
The architecture was developed so as to be integrated into
different robots. The decision-making process considers the
robot’s emotional state and an arbitration method to select
the most appropriate behaviour. Also, in real applications,
Nakauchi and Simmons [51] presented in 2002 a system
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Fig. 2 Relevant publications in
the area of research presenting
DMSs and control architectures
for autonomous and social
robots

for social robots acting in crowded scenarios. The system
allows a robot to successfully obtain resources by recognising
people’s social behaviour and navigation. Then, it generates
appropriate behaviours using visual information and proba-
bilistic estimations.

The work of Cañamero over the last decades is ample
and provides an accurate representation of action selection
methods emulating human biological functions. In 2003, she
[52] explored how to simulate emotions in artificial agents
for action selection, providing notions about the essentials of
modelling emotion and how they affect decisions. One year
later, Cañamero worked with Ávila-García [53] on how to
modulate action selection using hormones. Their model con-
templated essential aspects of human behaviour to endow
robots with autonomy, emulating key processes such as
homeostasis (autonomous control of internal body functions)
and motivation [54]. Their Action Selection Architecture
(ASA) computes the robot motivational states and, using a
winner-take-all approach [55], selects the behaviour linked
to the motivation with the highest intensity. The behaviour
selection aims to maintain the robot’s internal milieu in the
best possible condition. In 2005, they continued [56] their
previous research in adaptive systems studying the role of
artificial hormones on motivated behaviour, investigating
how autonomous artificial agents’ social behaviour varies
by modulating two hormones, influencing how we perceive
necessary resources (stimuli) for surviving.

Unlike the previous literature, the framework of Duffy
et al. [57] in 2005 was intended both for Human–Robot
and Robot–Robot interaction in humanoid and navigation
domains. TheDMScontains deliberative, reactive, and social
components to produce the most appropriate decision based
on the robot’s goal, the information gathered from the envi-
ronment, and structured rules. Konidaris and Barto [58]
designed in 2006 an action selection method based on RL.
The model emulates physiological functions in the robot
and its deficits (drives). Then, a priority system determines
the most urgent drive to define motivated behaviour. Conse-

quently, the robot aims to learn a behaviour policy tomaintain
an optimal internal state.

Following with the use of RL in decision-making, Malfaz
and Salichs [59] proposed in 2006 a system for autonomous
social robots. The model simulates physiological functions
like thirst or hunger, and the deficits originate in these
variables with time. The robot’s goal is to maximize its well-
being by learning which behaviour to execute depending
on its internal and external situation. Moreover, the model
incorporates the emotions of happiness, fear, and sadness to
represent the well-being state of the robot and reinforce the
learning. In 2010, they [60] extended their previous work by
designing a DMS for autonomous social agents. The model
grounds biological functions such as drives, motivation, and
learning (RL) to allow agents to survive in a virtual world.
Finally, they moved in [61] to a system more focused on the
emotional component of decision-making and expressive-
ness.

Since 2005, several architectures have been developed for
HRI. In this line,Michalowski et al. [62] introduced in 2006 a
model for representing the engagement of people interacting
with a social robot. Depending on the user’s spatial position
and head pose, the robot generates a profile that determines
their level of engagement. Then, the robot chooses its subse-
quent behaviour based on that level to continue engaging the
user in the interaction. In 2008, Walters [63] presented his
PhD thesis about generating behaviour in non-verbal human–
robot communicative scenarios. The study contains a large
set of HRI experiments where the robot chooses its actions
based on the non-verbal information provided by the user
during the interaction, so as to attain a well-defined social
behaviour. Mohammad and Nishida [64] designed in 2009
a robotic architecture for social robots working in HRI. The
system draws on neuropsychology to create complex action
selection mechanisms that provide autonomous behaviour,
selecting the most optimal action considering sensory infor-
mation and specifically selected plans. Balkenius et al. [65]
studied in 2009 the interaction between motivation, emotion,
and attention in social robots. They designed a control model
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to learn how to autonomously behave using the influence of
stimuli such as objects of attention, emotion, and motivated
behaviour. The model emulates cortical brain functions to
represent essential aspects of human decision-making in a
robotic head to learn how tomap specific situations to actions.

3.1.3 The 2010 s and Present: Cognitive Models for HRI

By the beginning of the 2010s, the main goal of these
architectures continued to be improving HRI. Scheutz and
Schermerhorn [66] developed an emotional architecture for
the autonomous control of social robots. The selection of
an action is grounded on each action’s utility value defined
from the evaluation of environmental cues. Thus, the goal
and action selection of the robot depend on evaluating the
benefits/drawbacks of executing a specific action in each sit-
uation using RL. Those authors [67] presented in 2015 a
newdecision-maker that acknowledges the violation of social
norms by including predefined rules about how social robots
should behave.

Like these two publications, the architecture developed
by Shi et al. [68] proposes a method for creating dialogues
for a social robot to communicate during HRI verbally. The
system uses a tag-based method to generate appropriate sen-
tences and coherent dialogue. Castro et al. [69] also designed
in 2010 a DMS for the social robot Maggie [70]. The system
uses biologically inspired functions to represent the robot’s
internal deficits and external state by perceiving the envi-
ronment. Then, the robot’s motivational states grow to urge
behaviour using Boltzmann’s equation and RL.

Floreano andKeller [71] researchedDarwinianEvolution-
ary Methods to endow robots with autonomous behaviour.
Their idea was to build more and more capable robots by pri-
oritizing the information of those agents that perform better.
This proposal is applied to collision avoidance in naviga-
tion tasks. Action selection occurs with random mutation
based on neural networks. Also, for mobile robots, Buendía
et al. [72] presented in 2012 a controller for the task of fol-
lowing a person. The engine combines selecting a strategy
for the navigation and a perception system that uses objects
to generate the strategy.

Arkin et al. [73] developed in 2011 a DMS based on eth-
ical and moral judgments for social robots. The behaviour
selection module evaluates at every moment the agent’s per-
ceptions and an interface that stores responsibilities and
constraints to avoid unethical behaviour. Leite [74] addressed
in 2015 how to maintain positive feelings in users during
HRI. The robot’s decision-making is based on the inferred
emotion of the user and on adaptive mechanisms to pro-
mote positive social behaviours in lengthy interactions. The
decision-maker proposed by Scheidler et al. [75] in 2015was
intended to allow swarms of robots to operate in navigation
tasks successfully. The model usesMonte Carlo RLmethods

[76] to produce the most accurate performance and fast exe-
cution time and feedback. Themodel presented byQureshi et
al. [77] in 2016 allowed a social robot to exhibit autonomous
behaviour by learning social skills during HRI. The method
usesDeepRL to obtain feedback about the robot’s action and,
using trial and error, learn the best combination of actions in
each situation.

By the mid-2010s, there was a new tendency in the mod-
els: biologically inspired methods represent more complex
cognitive functions than previously. The CAIO architecture
developed byAdam et al. [78] is a clear example of this trend.
This architecture consists of a deliberative loop that generates
emotions and plans and a sensorimotor loop that evalu-
ates external information and produces appropriate reactions.
Cervantes et al. [79] proposed decision-making based on eth-
ical behaviour. The selection of an action depends on the
agent’s preferences, good and bad experiences, ethical rules,
and current emotional state, drawing on studies in neuro-
science and psychology. Vallverdú et al. [80] expanded the
Lövheims model [81] to a more complex system in which
emotional states influence the agent’s behaviour. The neuro-
transmitters dopamine, serotonin, and norepinephrine affect
important brain regions involved in emotion and the selec-
tion of actions, varying the emotional behaviour of the agent
[81].

Following the ideas previously presented by Cañamero,
Cos et al. [82] designed in 2013 a homeostatic adaptivemech-
anism based on RL to modulate the internal deficits of a
social agent. The model simulates physiological functions
that evolve over time and adapt to the situation. The robot’s
goal is to maintain its good physiological condition by learn-
ing which action produces the best result in each situation.
Three years later, Lewis and Cañamero [83] investigated in
2016 the role of pleasure in decision-making. Using their
previously presented architecture, theymodel a pleasure hor-
mone that modulates their internal needs based on perceived
stimuli. Then, action selection occurs using a winner-take-
all approach [55]. Like the previous works, Lones et al. [84]
studied in 2017 the role of epigenetic mechanisms in endow-
ing an autonomous robotwith adaptive behaviour. Themodel
shapes the influence of different artificial physiological pro-
cesses that control the energy or temperature of the robot. The
errors of such variables translate into motivated behaviour.

Influenced by Cañamero’s ideas, Maroto-Gómez et al. [7]
proposed in 2018 an RL model to allow autonomous social
robots to learn how to behave in a dynamic environment.
The robot had to learn how to maintain an optimal inter-
nal state by reducing its internal needs. The decision-making
is grounded on the robot’s motivations psychological states
that represent the robot’s needs. Then, three years later, in
[85], they updated their previous model with Dyna-Q+, an
RL algorithm that allows autonomous agents to speed up the
learning process by representing amodel of the environment.
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In this case, the robot’s goal is to behave while maintain-
ing its internal deficits in good condition motivationally. The
decision-making process uses autonomous action selection
to reduce the most prominent deficit.

Kowalczuk and Czubenko have presented systems for
general-purpose social robots in designing decision-making
architectures. In an initial contribution, they [86] designed
in 2011 a robot controller modelling biological functions
such as emotion, personality, needs, and motivation. The
decisions are made using fuzzy rules that also reflect the
agent’s emotional state, considering the effect of external
stimuli. Then, in 2018, they [87] presented ISD (Intelligent
System for Decision-making), a cognitive architecture for
autonomous robots. Decisions depend on the perception of
stimuli, past experiences stored in long-termmemory, and the
robot’s artificial needs. In addition, the model includes emo-
tional factors, such as emotion and mood, influencing how
the robot perceives objects. Finally, Kowalczuk et al. [88]
developed in 2020 a fuzzy control system for autonomous
emotional, social robots. Emotions and mood arise from the
stimuli the robot perceives, defining its emotional state. Then,
the emotional state modulates the selection of actions using
the ISD cognitive architecture applied to driving scenarios.

Moving back to specific HRI domains, Romero et al. [89]
used utility functions based on probabilistic rules to gener-
ate the appropriate plans of a social robot. The utility model
builds upon a motivational model that represents the cogni-
tive functions of the robot.DuringHRI, robots should explain
their actions proactively. Stange et al. [90] addressed this
issue in 2019. They presented an architecture that allows
social robots to explain themselves during HRI scenarios.
The robot uses verbal communication to proactively let the
user know its needs and intentions. The robot’s explanations
arise by considering the user’s behaviour and the robot’s
needs derived from motivational processes.

Esteban and Insua [91] presented a decision-maker for
social robots based on emotion generation. The robot’s
emotional state depends on the interaction with people,
modulating at the same time the scores associated with a
set of actions. In the final step, the action with the high-
est score is selected to improve the robot’s performance in
HRI scenarios. Cunningham et al. [92] presented in 2019
a multi-policy decision-making architecture for allowing a
social robot to navigate autonomously in dynamic, multi-
agent environments. The novelty of the work lies in the
planning of the trajectory selected from a predefined set of
close-loop behaviours whose utility is previously calculated
using a simulation process that considers complex interac-
tions among the possible actions of the robot. Martins et
al. describe in [93] a DMS based on partially observable
Markov decision processes (POMDP), reward shaping, and
RL. The POMDP deals with the fact that some information is
not available when making decisions, using transition prob-

abilities to select the best alternative. The reward function
considers the impact of the robot’s action on the user on the
fly, supposing a novel technique that had not been used pre-
viously. Lastly, the RL system lets the robot know the best
action to execute considering its state. Decisions are planned
considering a user model and a context model that situates
the robot in the environment. Compared to many other algo-
rithms, the system provides good results in HRI tasks with
different levels of complexity.

Various contributions have been presented in HRI and
modelling cognitive development in the last three years. In
this line, Man and Damasio [94] studied in 2019 the role of
homeostasis [54] in the self-regulation of artificial functions
in robots. Their study proposes a biological model where the
robot is built using soft materials, and the way it selects its
actions is oriented towards self-regulating its internal body
and consciously feel the consequences of these actions. Con-
sequently, the selection of an action incorporates biological
mechanisms based on the model of its mind to produce nat-
ural behaviour.

Then, Augello et al. [95] worked in 2020 on modelling a
somatosensory system for cognitive robots, emulating how
humans perceive stimuli and how these stimuli affect our
selection of an action. The model uses an RL algorithm to
learn the optimal behaviour to maintain the best possible
internal state during HRI. The LIDA architecture devel-
oped by McCall et al. [96] in 2020 is based on motivated
behaviour for the control of autonomous robots, proposing a
well-defined internal system that allows the robot to behave
by emotionally combining planned activities with reactive
behaviours. The model uses Machine Learning to map the
robot’s state to specific actions to maintain an optimal inter-
nal state without forgetting the robot’s goals.

In 2020, Hong et al. [97] treated the problem of engaging
people in human–robot scenarios, introducing a model that
estimates the user’s emotional state and uses visual and audi-
tory cues to create the robot’s emotional state. Then, using
a predefined set of rules and learning based on Bayesian
computing, the robot decides how to sustain engagement in
bidirectional conversations. The cognitive architecture devel-
oped in 2020 byMartín-Rico et al. [98] promotes the learning
of a person’s face during HRI. The action selection evalu-
ates the situation and matches it with knowledge stored in
the robot’s memory that defines its behaviour. Finally, Kim
and Bodunkov [99] designed a robot architecture that makes
autonomous decisions in situations where the information is
not sufficient: to overcome the lackof information, the robot’s
decisions are based on estimations from the robot’s situation.
These estimations consider the probabilities of executing spe-
cific actions for attaining the goal during navigation tasks,
using entropy as the selection criterion.
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Fig. 3 Relevant publications for
manufacturing applications
containing DMSs for
autonomous and social robots

3.2 Manufacturing

In the manufacturing sector, autonomous systems are essen-
tial in several tasks, such as logistics or production lines.
However, when talking about autonomous and social robots,
the literature is not as extensive as for other areas, as Fig. 3
shows. A comparative analysis of the works described in this
section is in “Appendix B”.

In these scenarios, the first publication we found was by
Agrawal et al. [100], who in 1991 presented a decision-
making architecture for robots working in factories. The
architecture addressed the problem of making decisions
using a finite set of alternatives and different configuration
attributes that affect how the task is performed. The system
was implemented in a real application to make industrial
robots work autonomously. In a similar application, Wang et
al. [101] proposed in 1996 a behaviour-based model for con-
trolling robots in factories. Its novelty resided in a DMS that
considers the actions of other robots to execute a predefined
task cooperatively.

From the end of the 1990s, it is possible to find many
models for the autonomous control of robots that act jointly
with humans. Kalenka and Jennings [102] presented in 1999
a mathematical model for the autonomous social decision-
making of robots working in a warehouse, including social
norms and attributes in multi-agent domains, unlike previous
work. Shah et al. [103] proposed in 2002 a task controller
for the autonomous and intelligent movement of vehicles
and robots. The DMS combines planned actions based on
a heuristic search and a database representing the world’s
dynamics and reactive responses generated from the percep-
tion system.

Clodic et al. [104] presented in 2007 a DMS for human–
robot collaborative scenarios. The framework is used to
synchronise the communication between a social robot and
a human worker during a fetch-and-carry task. The DMS
uses predefined rules that evaluate the robot’s situation and
the human’s speech. Czubenko et al. [105] applied the ISD
architecturementioned in the previous section to autonomous

driving scenarios. The architecture emulates essential aspects
of the road by replicating human drivers’ needs and moti-
vations. To conclude with the manufacturing sector, in
the context of autonomous robots and lengthy interactions,
O’Brien and Arkin [106] developed a circadian system to
work in agricultural tasks. The circadian functions evolve as
timers to represent the system’s daily needs. Then, the action
selectionmethoduses suchfluctuations in the circadian needs
to execute actions using a kind of winner-take-all approach
[55].

3.3 Healthcare

Among the many areas where autonomous and social robots
have been applied, the healthcare sector contains decision-
making architectures in real scenarios, as depicted in Fig. 4.
A comparative analysis of the works described in this section
is in “Appendix C”.

In healthcare,most of thework has been concentrated over
the last twenty years, mainly applied to children, older adults,
and assisting caregivers during therapies.

Working with children, Dautenhahn and Billard [107]
studied the effect of an autonomous social robot in healthcare
applications. The robot works with children with autism in
gaming and educational sessions. In relatedwork, Feil-Seifer
and Mataric [108] presented in 2008 a robot architecture for
engaging children with autism disorder. Behaviour selec-
tion considers predefined behaviours with the perceptions
observed from the child’s behaviour. Also, in robot–children
interactions, Senft et al. [109] introduced in 2015 a new
model for social robots working in child therapy. The robot
uses a set of rules, and a homeostatic signal [54] repre-
senting the children’s engagement and previous interactions
to select actions that serve the therapist during exercises.
Those authors [110] updated their previousworkwith aDMS
to assist therapists during sessions with autistic children.
The method of selecting an action evaluates external stim-
uli and the context of the interaction to produce autonomous
behaviour under the therapist’s supervision.
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Fig. 4 Relevant DMSs for
autonomous and social robots
working in healthcare
applications

There has been much work on assisting caregivers to
conduct therapy. For example, Hiolle et al. [111] in 2014
presented a ‘baby’ robot that adapts its emotional behaviour
depending on its needs. The aim of the study was to inves-
tigate the responsiveness of a caregiver to these needs. The
robot explored and learned from the environment during its
life using neural networks. The robot’s selection of an action
uses the perceptions and needs to define the arousal/comfort
system that determines which action to take to maintain its
comfort. Another example is Lones et al. [112], who pre-
sented in 2014 a hormonal system for the adaptive behaviour
of social robots in HRI with a caregiver, proposing an adap-
tivemechanism tomodulate the robot’s selection of an action
depending on the stimuli perceived, the valence value defined
by the impact and type of stimuli, and biological functions.
The model accurately represents essential biological func-
tions behind the behaviour, providing a robust biological
basis for autonomous behaviour.

Following this line of research,Cañamero andLewis [113]
designed an adaptive framework for social robots assisting
in healthcare. The robot Robin (NAO) can teach children to
manage their diabetes using different activitieswhile present-
ing their internal needs. The selection of an action is based
on a winner-take-all approach [55] where the robot’s motiva-
tions compete to urge specific behaviours. In 2019, Lewis and
Cañamero [114] presented a research model for how stress
leads to compulsory behaviour. The model emulates physi-
ological functions that are modulated by an artificial stress
hormone. The deficits of these functions and the perception of
resources define the robot’s motivation. Finally, these moti-
vations urge the selection of behaviour. The robot’s stress
is a function of the other hormones, which evolve depend-
ing on the robot’s deficits. Consequently, the study explores
behavioural changes depending on the robot’s stress levels.
The architecture designed by González et al. [115] in 2017
used a three-level hierarchical decision to build personalised
therapies in rehabilitation scenarios. In the first place, the

robot generates a personalised therapy. Then, it modulates
the activity using online perceptions. Finally, it translates
abstract actions into specific motor commands.

Cao et al. [116] introduced in 2017 a collaborative archi-
tecture to support children and caregivers during therapy. The
behaviour selection combines a hierarchical approach with
parallel execution. The model generates its emotional state
basedon its internal needs and stimuli using avalence-arousal
space. Then, each emotion is tied to a specific behaviour
triggered when the corresponding emotion has the highest
intensity. The architecture designed by Lazzeri et al. [117]
in 2018 attempted to replicate human minds in social robots.
The concept of decision-making consisted of perceiving the
environment, evaluating the situation, and deciding on the
most suitable action. The model was tested with children
with autism disorders, conducting sessions oriented to pro-
vide entertainment and companionship. Park et al. [118]
presented in 2019 a model-free emotional architecture for
social robots working in education. The system uses verbal
and non-verbal cues to learn engagement promoting lengthy
interactions. Using its learning capabilities, the robot selects
the most relevant stories for each child, personalizing the
interaction.

Many social robots with decision-making capabilities
have been designed in the last few years in healthcare appli-
cations. The social robot Pepper has been used in healthcare
to autonomously retrieve information from patients in a
hospital [119]. During this task, the robot was guided by
nurses to improve the questions that the robot asked the
patients. The dialogue with the patient included questions
about the patients’ home situation, general health, use of
medicines, smoking, alcohol use, dental issues, weight, defe-
cation, activities for daily living, sleep, cognition, possible
stress due to recently experienced severe life events, poten-
tial problems at home or work due to their admission, and
religion or belief. The idea of deploying the robot in this
scenario was to make the process more interactive and eas-
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ier to follow than questionnaires or nurses’ time. The results
showed favourable acceptance rates of the robot by both men
and women (the study did not yield significant statistical dif-
ferences between genders).

The social robot Mario [120] was created in 2020 to work
in residential care, assisting elderly people with dementia.
The robot includes a software architecture that allows it to
perform autonomous social behaviour while engaging such
adults with different activities. As in previous work, it com-
bines deliberative and reactive layers to develop plans and
reactions to unexpected situations. The social robot Mini
[121] was created to assist caregivers during cognitive stimu-
lation therapies. This robot has a fully autonomous DMS for
generating personalised therapies for each user. The action
selection combines RL with predefined rules that assign pri-
orities to different possibilities, such as executing planned
events or reacting to stimuli.

For the iCub robot, Tanevska et al. [122] designed in 2020
a framework to maximise the pleasantness during HRI. The
robot can personalise its behaviour while assisting caregivers
by learning the effects of its action on users using their social
signals and its internal needs defined as motivational urges.
In a recent study, Foster et al. [123] developed, in 2020,
a social robot designed to alleviate children’s pain during
medical assistance. The system’s goal was to decide on the
appropriate behaviour with which to distract the child from
the intervention and avoid painful and panic situations. The
action selection method employs the user’s state and action
to decide on the best action.

To conclude our reviewof the healthcare sector,wepresent
two up-and-coming applications to more specialised scenar-
ios. Robinson et al. [124] used in 2020 a social robot to
reduce the caloric intake of people and promote a healthy
diet. The robot could perceive the consumption of snacks
and analyse if it was desirable to avoid binge eating. Asprino
et al. [125] designed in 2022 a software architecture for
the autonomous control of the social robot Mario. This
robotworks in healthcare applicationswith people presenting
dementia. The behaviour selection evaluates the perception
of the robot and a knowledge database containing infor-
mation about the object and their influence to modulate
behaviour execution learning to personalise HRI.

3.4 Education

As Fig. 5 shows, many DMSs have been realised in the
educational environment in the last decades. A comparative
analysis of theworks described in this section is in “Appendix
D”.

We begin our review with Dautenhahn [126], who studied
in 1999 the influence of a social robot on autistic children.
The robot teaches the children to perform specific activities,
supervising this in such a way that each task is fulfiled.

Breazeal [127,128] in 2003 presented the social robot
Kismet, an expressive anthropomorphic robot head intended
for HRI. The robot includes mechanisms to improve social
abilities and cope with complex social environments. Its
decision-making involves evaluating its goals and the peo-
ple’s speech to build a coherent dialogue based on predefined
rules that favour learning in educational contexts. Kismet can
express emotional cues.

Another platform applied to education is the iCat robot
[129]. It was designed in 2005 as an autonomous robot that
works in education and HRI. It incorporates a DMS that
merges the information generated by an animation engine
with a series of predefined scripts that contain gestures and
activities that the robot executes. Similarly, the software of
the social robot PaPeRo [130], presented in 2006, contains
a DMS that allows it to execute autonomous behaviour in
educational scenarios with children. The selection of actions
merges planned activities personalised to the audience using
the robot with reactive behaviours elicited from the percep-
tion of stimuli.

In 2008, Mitnik [131] presented a line of research for
deploying autonomous social robots in educational sessions.
Unlike the previous literature, the robot can teach students
different subjects, such asmaths or geography, by performing
a set of activities together. The sessions are predefined and
involve the children by promoting their participation. Ushida
[132] introduced in 2010 a mind model based on emotional
responses for the autonomous control of social robots. The
model was intended for HRI in educational environments,
containing deliberative and reactive actions to build a natural
behaviour using fuzzy logic. Like the previous work, using a
mental model, Strohkorb and Scasselatti [133] developed in
2016 a reasoning architecture for human–robot collaboration
in educational settings. The model focuses on maintaining a
collaborative strategy while updating and optimizing it by
gathering information from the environment. In addition, the
action selection alternates the exploitation of the best alter-
native with exploring new strategies.

The following publications are examples of the impres-
sive effects of using social robots in educational scenarios.
Coninx et al. [134] presented an adaptive model for engag-
ing children during educational sessions.Behaviour selection
consists of adapting the behaviour by creating a specific
profile for each child. This profile is built from feedback
obtained during the execution of the exercises. Egido-García
et al. [135] presented in 2020 the use of NAO robots in edu-
cational sessions with children. The model fuses the needs
of the children, the caregiver, and the robot itself, to produce
autonomous and personalised activities to improve the chil-
dren’s logopedic skills. Mascarenhas et al. [136] designed in
2021 a new function for the FAtiMA toolkit, a model for the
autonomous behaviour of socio-emotional robots in educa-
tional settings about bullying. The model makes decisions

123



756 International Journal of Social Robotics (2023) 15:745–789

Fig. 5 Relevant publications
containing DMSs in educational
domains

Fig. 6 Relevant publications
describing DMSs for
autonomous and social robots
applied to entertainment

based on the exercise to be executed, the child’s emotional
state, and a knowledge-based memory that stores rules link-
ing situations to actions.

Ahmad et al. [137] introduced in 2021 an RL for improv-
ing the engagement and vocabulary learning of children.
The decision-making uses social signals and memory-based
knowledge to determine the best action to execute during the
session. Kaptein et al. [138] addressed in 2021 the design of
a DMS for lengthy interactions for educating children about
healthy lifestyles using games. The action selection occurs in
two stages, using an ontology-based system and evaluating
the best action according to the robot’s current situation. In
addition, the system includes learningmethods to personalise
each child’s activities to improve performance.

3.5 Entertainment

Somework has used social robotswith autonomous decision-
making in entertainment, as shown in Fig. 6. A comparative
analysis of theworks described in this section is in “Appendix
E”.

Gu et al. [139] proposed in 2003 a DMS based on fuzzy
logic for humanoid mobile robots in entertainment scenar-
ios like the RoboCup. Kok et al. [140] presented in 2003
a DMS based on coordination graphs for robots working
in multi-agent entertainment domains. The decision of each
robot depends on the decisions and actions of the others,
producing a coordinated sequence of behaviours. Using a
biologically inspired model, Manzotti and Tagliasco [141]
developed in 2005 a decision-maker based on motivations
for robots. Unlike the previous literature, the motivations do
not emerge from purely biological functions, but from the
robot’s goals. The robot, intended for entertainment, gener-
ates motivated behaviour from the stimuli perceived from the
environment and rules stored in a memory.

Four engaging autonomous platforms were designed for
children’s entertainment. Kozima et al. [142] presented
Keepon in 2009 as a social robot for research, entertain-
ment, and therapy. The robot includes a decision-making
module that evaluates its situation and the actions of people
to produce autonomous decisions adapted to the interaction
procedure. The social robot Pleo [143]was conceived in 2010
by Fernaeus et al. as a toy robot for children’s entertainment.
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Fig. 7 Relevant publications
describing decision-making
architectures for companion
robots over the last three
decades

It presents an autonomous action selection mechanism based
on predefined rules adapted to external stimuli. In a simi-
lar scenario, the social robot Maggie [144] was also used
as a gaming platform with children. The social robot MiRo
[145] appeared in 2015 as a research platform for entertain-
ment. The robot incorporates multiple sensors to navigate
the environment, executing various expressive behaviours
autonomously. Its action selection consists of predefined
rules that map external stimuli to specific behaviours.

Kaupp et al. [146] introduced in 2010 a decision-making
framework for human–robot interactive collaboration. The
goal of the model is to appropriately decide what and
when to communicate with the human operator to com-
plete semi-teleoperated navigation tasks successfully. After
assessing environmental stimuli and the operator’s com-
mands, decisions are made using probabilistic formulae.
Bicho et al. [147] presented in 2011 a DMS for HRI based
on neural networks. The system is intended for entertain-
ment activities like building a toy in a cooperative task. The
action selection uses the robot’s perceptions and goals to
decide on the HRI flow. Schneider et al. [148] proposed in
2017 a controller for a social robot working in HRI. The sys-
tem encourages people to exercise for more extended periods
by promoting motivational behaviour. The action selection
depends on a set of rules that combine the features of the
people and the inputs of the perception system.

Bagheri et al. [149] presented in 2021 a framework based
on RL to motivate users during human–robot entertainment
activities. The robot’s action selection depended on the emo-
tional state inferred from the participant to be emphatic and
improve the users’ confidence and satisfaction. Saunderson
and Nejat [150] presented in 2022 a hybrid hierarchical
decision-maker to persuade people to do their daily exercises.
The robot uses different RL algorithms and user identifica-
tion to personalise the exercises of each user during lengthy
HRIs depending on their emotional state. Maroto-Gómez
et al. [151] presented in 2022 a DMS for the social robot
Mini working in entertainment. The model uses estimations

based on Preference Learning to propose that the robot uses
its favourite activities. Action selection uses the Boltzmann
equation, which balances selecting the user’s favourite activ-
ities with exploring new alternatives.

3.6 Companionship

The use of autonomous social robots to provide older adults
with companionship has been explored since the beginning
of the century, as Fig. 7 shows. A comparative analysis of the
works described in this section is in “Appendix F”.

Undoubtedly the most famous robot in this application is
PaRo [152], a robot for physical and emotional interaction
with people with mental impairments. The robot’s decision-
making works as a reactive system that produces actions
after evaluating the perceptions sensed from the environ-
ment. Similarly to PaRo, Arkin et al. [153] presented in 2003
a promising model for the intelligent decision-making of the
social robot Aibo. The model emulates the physiological
and emotional processes occurring in a dog, thus provid-
ing the robot with an intelligent and autonomous behaviour
to provide companionship working as a cybernetic pet. The
robot’s goal is to maintain homeostasis and regulate its inter-
nal deficits [54] to survive in a changing environment. In
addition, the robot incorporates learningmechanisms to asso-
ciate objects with certain biological variables (e.g. food with
hunger) and identify people’s faces. Saldien presented in
2009 the social robot Probo [154], an autonomous agent for
entertaining people in hospitals and providing them compan-
ionship. Its behaviour can be manually tuned using a friendly
interface with spontaneous reactions.

Turning now to decision-making architectures developed
for companion robots, Samani and Saadatian [155] devel-
oped an action selection architecture for social robots based
on the Probabilistic Love Assembly (PLA) emotional model.
The selection of an action is based on the evolution of arti-
ficial hormones, yielding different emotional states. These
hormones evolve depending on social interaction with the
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user, making the robot adapt its emotion and establish a
social relationship with the user based on love. Grigore et
al. [156] designed in 2015 a motivational model for the
adaptive autonomous behaviour of social robots working as
companions. The action selection mechanism is based on RL
and chooses appropriate actions depending on a user model
representing daily goals.

3.7 Assistance and Service

The literature review presented in this manuscript has shown
that there is a wide range of applications where autonomous
social robots assist humans in different tasks. A comparative
analysis of theworks described in this section is in “Appendix
G”.

Most of the previous work describes DMSs that facilitate
humans’ execution of different tasks to a lesser or greater
extent. Now we will focus on systems providing a purely
assistive behaviour working as tour guides, bartenders, or
office assistants. Figure8 shows the evolution of the most
important work in assistance and service in the last three
decades.

The social robot Minerva [157] was created in 1999 by
Thrun et al. as a robot tour guide. It exhibited autonomous
social behaviour combined with a user interface where vis-
itors could indicate to the robot what to do (e.g. visiting
a specific location). Jung and Zelinsky [158] proposed in
1999 an action selection method for two cooperative robots
executing cleaning tasks. The action selection uses dynamic
generation of paths depending on the previous action and a
set of rules that actively inhibit the robot’s possible alterna-
tives. That same year, Van der Loos et al. [159] developed
a controller for a manipulator assisting people with a phys-
ical disability. Using probabilistic rules autonomously, the
controller enables a robotic arm to help the user.

Lisetti et al. [160] designed in 2004 a decision-making
architecture for HRI. The system was integrated in the ser-
vice robot Cherry, which could express different emotions
to improve its social abilities with people while assisting
them by working as an office assistant. The decision making
evaluates the robot’s emotional state to make the most appro-
priate decision. Similarly, the social robot Maggie [70] was
designed in 2006 to work in multiple domains, such as enter-
tainment, assistance, and education. In addition, it served
as a research platform to study HRI. Its DMS combines a
deliberative layer that plans based on the robot’s goal and a
reactive layer to respond to environmental stimuli. The robot
also employs learning, adaptive, and emotional mechanisms
to improve its performance and engage users.

Hollinger et al. [161] proposed in 2006 a decision-maker
for mobile social robots based on emotion. The robot was
designed to work in conference assistance using predefined
functions that mapped stimuli to emotional actions. The goal

of this system was to improve HRI by including reactive
behaviour to engage users and improve people’s acceptance.
LikeMinerva [157], the robotUrbano [162]was born in 2008
to work as a museum tour guide. Its decision-making con-
sists of three heuristic search algorithms combinedwith fuzzy
rules to produce the best possible presentation to the audi-
ence. Shiomi et al. [163] designed in 2009 a DMS to control
the action of a group of robots assisting users in a shopping
mall. The system generates appropriate instructions based
on predefined rules for each robot to provide information
about routes and recommendations by estimating the users’
behaviours. Therefore, the decision-maker coordinates each
robot’s HRI and navigation to approach different users.

Alili et al. [164] introduced in 2009 a decision planner for
human–robot collaborative scenarios. The action selection is
based on a probabilistic model that evaluates the robot’s goal
and the perception system (including the human intention)
to make appropriate decisions in different assistive tasks.
In 2014, Foster et al. [165] showed how a bartender robot
could autonomously work in complex scenarios with cus-
tomers. This time the action selection consisted of learning
an RL policy to meet the customer’s needs. Petrick and Fos-
ter [166] presented in 2016 their work about autonomous
planned action selection in HRI. The robot acts as a bar-
tender requesting the user’s petitions. Actions are selected
based on perceiving such petitions and comparing them with
a predefined set of rules that indicate how the robot behaves.

Liu et al. [167] showed in 2018 how a robot could learn
proactive behaviour using neural networks and user feed-
back during HRI. The robot controller generates both motion
and speech actions using associations created by the learn-
ing model. Similarly, Malviya et al. [168] developed in 2020
a navigation system for social robots based on a finite state
social machine. The robot operates as a tour guide, using
its embodied sensors to produce suitable state transitions
to exhibit a fully autonomous behaviour. To conclude our
review, in 2021, Hedblom et al. [169] presented an action
selection method based on image schema. The system evalu-
ates logical rules that allow the agent to decide how to behave
to attain a specific goal. The architecture allows autonomous
social robots to work in everyday housework activities.

4 Analysis

In this review of DMSs and control architectures for
autonomous and social robots, we evaluated 148 (from 208
screened) publications derived from our study depicted in
Fig. 1. We are aware that there is more literature in this area,
but we believe that these publications accurately represent
the evolution of these software architectures over the last
thirty years. As Fig. 9 shows, the number of publications has
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Fig. 8 Important publications
with autonomous DMSs applied
to assistance and services
domains
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increased over the years, constituting an unceasing growth
of autonomous and social robots in our society.

In the upcoming sections, we investigate this evolution
regarding:

• Area of application.
• Action selection method.
• Duration of the HRI experiments (if specified).
• Biologically inspired models included (if any).
• Learningmethod used to produce decisions (if included).
• Number of publications concerning real scenarios.
• Number of publications concerning a specific robotic
platform.

In all of these analyses, we first study the global distribu-
tion of the items in each category over the last three decades
and then deepen our analysis, providing a detailed vision
decade by decade.

4.1 Area of Application

In this study, we assessed the area where each work was
applied. We classified the publication into one of the seven
categories presented in Sect. 3. Although some work could
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Fig. 11 Number of publications per area of application and decade.
Applications to research are predominant in all decades. However, the
number of publications where DMSs are applied to other areas has
significantly increased over the last decade

belong to several categories, we opted to add each paper to its
most relevant category to analyse if the areas of application
have varied over the last three decades.

Figure10 shows that of the 148 publications studied, 77
concerned applications to purely research purposes (52%),
19 to healthcare (∼ 13%), 14 to entertainment and assis-
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tance/services (∼ 9%), 12 to education (∼ 8%), 7 to the
manufacturing sector (∼ 5%), and 5 to robot that provide
companionship (∼ 3%).

If we deepen our analysis and review the last three decades
(the 1990s, 2000s, and 2010s to present) in detail, we obtain
impressive results. As Fig. 11 shows, in the 1990s,mostwork
was not applied to a particular area, although some of them
were applied in manufacturing, production, or assistance.
However,with the rise of social robots,weobserved thatwork
has taken a more specific turn, especially towards healthcare,
entertainment, and education. This does not mean a lack of
work in research, since many systems are still applied in this
context.

4.2 Action SelectionMethod

It is important to emphasise that we have been reviewing
decision-making and control systems for autonomous and
social robots in the last three decades. These systems are
characterised by their presenting action selection methods to
produce such autonomous decisions. In our study, we recog-
nise four main types of action selection:

• Biologically inspired methods: We include in this cate-
gory those methods that take inspiration from biology by
using emotions, homeostasis, or motivation to influence
action selection.

• Probabilistic and classical algorithms: In this field, we
added those methods that based their action selection on
probabilistic algorithms and classical approaches that do
not imply learning (e.g. heuristics, genetic, or support
vector machines).

• Learning methods: Those contain some kind of learning,
such asRL,DeepLearning,NeuralNetworks, or learning
by demonstration/imitation are in this category.

• Fuzzy control and predefined rules: We classified in this
category systems that use fuzzy logic andpredefined rules
(e.g. if–then rules) tomake autonomous decisions to fulfil
the system’s task.

Figure12 shows the distribution of the publications
included in our review by the action selection method. It
is noteworthy that all use at least one of the action selection
methods studied but can incorporate more than one in spe-
cific cases. In this sense, the most used approach is the use
of biologically inspired models (70 of 148) to drive action
selection, followed by learning methods (63). Almost one-
third of the publications (47) include probabilistic and classic
approaches to decide which action the social robot should
execute and 36 base this decision on fuzzy control or prede-
fined rules.

The analysis by decade shown in Fig. 13 evidences some
valuable dynamics. On the one hand, the number of pub-
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Fig. 12 Number of publications using each action selection method.
There is no clear difference between each action selection method,
although biologically inspired models (∼ 47%) are the most used
technique, followed by learning (∼ 43%), probabilistic and classical
methods (∼ 32%), and fuzzy and rule-based methods (∼ 24%)
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Fig. 13 Number of publications using each action selectionmethod per
decade. Both the learning and biologically inspired approaches have
been gaining importance in recent years, although more classical meth-
ods such as fuzzy logic and probabilistic models are still used

lications basing the action selection on learning methods
has significantly increased in the last years, probably due
to the expansion and development of Machine Learning
and Artificial Intelligence. On the other hand, since the
1990s, biologically inspired methods have become a pow-
erful source of inspiration for developers. Modelling animal
(human) biological functions is always a widespread tech-
nique, primarily if the robot works in HRI. Lastly, the
metrics for more classical approaches, such as probabilistic
or fuzzy/rules control, do not vary over time, always being a
good alternative for developers.

4.3 HRI Experiment Duration

In addition to the previous analysis, we investigated the dura-
tion of the HRI interactions occurring in the experiments
included in these publications. It is worth noting that some
publications did not include experiments or specify their
duration. In this regard, our analysis finds that 114 of 148
publications specified the duration of their HRI interactions
while 34 of 148 did not validate the model in HRI or indi-
cated the experiment duration. Based on this, we opted for
dividing them into three types:

123



International Journal of Social Robotics (2023) 15:745–789 761

HRI duration

N
um

be
r o

f p
ub

lic
at

io
ns

0%

20%

40%

60%

80%

Short Moderate Long

Fig. 14 Number of publications per HRI duration type.Most work uses
DMSs only in short interactions (∼ 55%), some use moderately long
interaction (∼ 17%), and few are used for long interactions (∼ 5%). The
rest of works do not specify the duration or test their models (∼ 23%)

• Short: Experiments with a single interactionwhich lasted
less than an hour.

• Moderate: Experimentswith interactions that lastedmore
than an hour but occurred on the same day.

• Long: Experiments that included HRIs on different days
with an average duration greater than one hour.

In this assessment, represented inFig. 14,weobserved that
most publications only reference short HRIs (81 of 119) and
only some involve moderate scenarios (25). It stands out that
there is alack of systems (7) working in real scenarios where
lengthy HRIs are required. We believe that if autonomous
and social robots are to be deployed in real environments,
exhibiting autonomousbehaviour for longperiods is essential
since otherwise, the investment and development that these
systems require is not worth it.

Analysing the previous results by decade (Fig. 15), it is
possible to perceive how short interactions predominate.
Although some publications are oriented to moderately long
interactions and a few to lengthy interactions, it is impossible
to perceive any tendency suggesting that DMSs and control
architectures are extending their usability in this regard.

4.4 Use of Biologically InspiredModels

In the previous section, we saw that many publications (a
total of 70) employ biologically inspired models to shape
the decision-making. This section explores these biologically
inspired models, further investigating how animals’ biologi-
cal functions are emulated in autonomous and social robots.
The literature review presented in Sect. 3 allows recognizing
four different kinds of biologically inspired models:

• Homeostatic model: the emulation of animal (human)
biological functions to influence decision-making, such
as neuroendocrine responses, homeostatic and allostatic
control [54], or physiological variables (e.g. heart rate).
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Fig. 15 Number of publications per HRI duration type per decade.
Although moderately long interactions have gained importance over
the last two decades, it seems that long interactions are not gaining
enough importance to deploy robots in real scenarios
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Fig. 16 Number of publications implementing each type of biologically
inspired model. As shown, the distribution is very equal since many
works combine more than one model

• Motivational model: the use of motivations as psycho-
logical states that impel the agent’s behaviour.

• Affective model: emotional models based on emotion,
mood, andpersonalitywhich influencehow the autonomous
robot makes decisions.

• Cognitive model: modelling cognitive and mental func-
tions in robots.

Figure16 shows the distribution of publications present-
ing biologically inspired models to select actions. Of the 70
publications that included at least one of these models, 39
(∼ 26%) include a homeostatic internal model that emu-
lates physiological functions, another 39 (∼ 26%) include
an affective model where decisions depend on the emotional
state of the autonomous agent, 32 (∼ 22%) use motivations
to urge behaviour selection, and 23 (∼ 16%)model cognitive
functions typically inspired by the functions of the brain and
mental models. This suggests that most systems implement
one model depending on the goal they want to reach, but just
a few publications attempt to study the relations between
cognitive and emotional functions.

If we focus on analysing the previous results by decade,
we can observe the huge increase in using cognitivemodels in
the last ten years, over the two previous decades. The internal,
motivational, and affectivemodels all present a homogeneous
pattern where no one stands out above the others.
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for action selection. RL is by far the most used technique (∼ 26%),
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approaches (∼ 8%)

4.5 Use of Learning

Manyof the publications (a total of 63) included in this review
present learning models to improve the system’s decisions.
This section explores the methods most used to gain expe-
rience and improve performance during autonomous action
selection. Since some systems may combine different learn-
ing methods, each system can be classified into more than
one of the following categories.

• Reinforcement learning (RL): the decision-making is
affected by learning from trial and error and past experi-
ences.

• Neural networks (NNs): systems that use neural networks
to learn action selection, including Deep Learning, con-
volutional networks, and similar techniques.

• Learning by imitation/demonstration: the systems gain
knowledge for action selection by imitating other agents
or after seeing a demonstration.

• Other techniques: those systems that include learning
methods to improve the action selection but using differ-
ent methods, such as genetic programming or heuristic
search.
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Fig. 19 Number of publications using each kind of learning technique
for action selection per decade. As expected, RL is the most used tech-
nique in the last decade, although in the early 1990s, learning was
carried out using other methods based on probabilities or genetic algo-
rithms
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Fig. 20 Number of publications concerning real scenarios. In the last
three decades, most results (∼ 58%) have been tested in real scenarios

The distribution of publications by learning methods rep-
resented in Fig. 18 shows that RL wins by a landslide. 38
publications (∼ 26%) of the publications include RL to
improve decision-making, something we believe is closely
related to the spread of social robots in the last two decades.
Regarding the other alternatives, neural networks are also
much used since 13 works of 148 (∼ 9%), followed by other
approaches, such as genetic programming (∼ 8%). Lastly,
a few publications use learning by imitation and demonstra-
tions (5 of 148, ∼ 3%), two techniques that are not very
common in social robotics.

Our previous hypothesis about the spread of social robots
and RL techniques is reinforced if we analyse the distribu-
tion by decade. As Fig. 19 shows, the number of publications
using RL in the last decade has increased significantly. In this
graph, it is also possible to see an increase in the number of
publications using some kind of learning, probably due to the
expansion of Machine Learning and Artificial Intelligence in
the last two decades.

4.6 Application to Real Scenarios

This section analyses whether the work reviewed in this
manuscript has been employed in real scenarios or concep-
tual design and simulation.

Figure20 shows that ∼ 58% of the publications have
presented tests in real scenarios in the last three decades.
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cific robot. Most results are designed for general platforms (∼ 63%)
instead of for a particular system (∼ 36%)

Deepening the analysis, Fig. 21 shows that the initial trend
has reversed. In the 1990s, most architectures were used in
simulation or as conceptual designs (18 vs 15). However, in
the 2000s, most architectures were tested in real scenarios
(18 vs 20). Finally, from the 2010s to the present, there have
been twice as many architectures tested in real scenarios as
in simulations (52 vs 26). This suggests that most decision-
making and control architectures are currently tested in real
scenarios where people participate. These results align with
the fact that current systems are applied to more specific
tasks.

4.7 Systems Designed for Specific Platforms

This section investigates if the decision-making and control
architectures reviewed in this survey have been specifically
designed for a robot or, on the contrary, are general architec-
tures designed to work in multi-system domains.

As Fig. 22 shows, most of the architectures are designed
to be integrated into general platforms (∼ 63%) rather than
specific ones (∼ 37%). The analysis per decade supports the
general results. In this case, the applicability of DMSs and
control architectures to general platforms follows the same
tendency, winning over the alternative of developing these
systems for specific robotic platforms.
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Fig. 23 Number of publications where the DMS is designed for a spe-
cific robot per decade. The tendency of the last three decades is to design
DMSs that work in general domains and not only for a specific robot

5 Challenges to Autonomous and Social
Robots

The literature review and previous analysis have provided
a concise vision of the benefits of social robots in different
domains. However, these architectures also face important
challenges that should be addressed to continue developing
more and more capable systems.

5.1 Engagement in Lengthy Interactions

Ourprevious analysis showsa clear tendency touse autonomous
and social robots in lengthy interactions. The design of an
autonomous system for lengthy interactions has been scarce
in the last three decades. Although it seems that social robots
are starting to work in real scenarios assisting people in lots
of services [15], our results indicate that most research only
focuses on testing these systems in controlled environments
where the HRI only last a few minutes. In this regard, most
recent work addresses how to engage users in the interaction,
principally during the realization of cognitive stimulation,
physical activities, and educational exercises to avoid fatigue.

We believe that researchers in Artificial Intelligence who
are working on designing robust control architectures for
social robots should be aware of this issue and concentrate on
designing novel action selection architectures for extended
periods rather than for customised sessions. Thus, testing
these architectures in real and unpredictable environments
over long periods is essential to measure their real applica-
bility and usability.

5.2 Multi-applicability

In line with the previous challenge, our study suggests that
the application of DMSs has taken a more specific nature in
the last decades. Initially, most proposals concerned control
architectures with conceptual designs that were not applied
to any specific area. Nonetheless, the number of publica-
tions that describe applications of autonomous behaviour in
healthcare or education has significantly increased in the last
years. Although we can see this applicability as a positive
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fact, we are still far from developing robust systems that can
be used in multiple and diverse domains. Consequently, a
significant challenge that researchers will face in the upcom-
ing years is to design intelligent machines with autonomous
action selectionmethods that can be used in specific tasks and
in a wide repertoire of activities to assist people. Thus, we
believe that these robots’ potential customers will increase
their potential if they are oriented to a broader target popu-
lation.

5.3 Adaptation and Learning

Reinforcement learning has become the most used learning
technique in the last decade [170]. The possibility of learn-
ing how to behave from trial and error opens a wide range of
possibilities to build capablemachines.More andmore publi-
cations are presenting control architectures that incorporate
some kind of learning or adaptive system in this context.
However, most of them only focus on adapting to those users
for whom the system has predefined information. However,
adaptation is not fulfiled when the robot faces unknown users
or requires lengthy training times.

In these situations, we propose generalization methods
based on predictions that, after dynamically obtaining the
necessary information from the user using HRI, can estimate
essential features and attributes to start the assistance with
some degree of adaptivity and not from scratch. Then, during
subsequent interactions, the system canmake an autonomous
action selection combining the initial estimates with new
adjustments that accurately represent the user preferences
to improve the quality of the HRI and meet the initial goals.
In this sense, the challenge of DMSs is integrating recent and
adaptive learning methods to improve the robot’s behaviour
selection.

5.4 Lack of General Models of Shared Knowledge

Lastly, we would like to highlight a significant problem that
is typically overlooked but affects these systems’ evolution.
As we saw in Sect. 3, there is a large number of publications
that present DMSs for autonomous and social robots exe-
cuting a wide range of behaviour. However, in most cases,
the researchers design their approaches without considering
integrating the models of other researchers into their own
models taking advantage from the previous research. This
issue is probably due to a significant lack in sharing knowl-
edge and publicly freeing our codes. Although it seems that
there is a tendency for new researchers to share their DMSs
to improve scalability and modularity, we believe we are still
far from developing software solutions (in this case, DMSs
for social and autonomous robots) that can be generally and
easily implemented in different platforms to speed up tech-
nological growth.

6 Conclusion: The Future of DMSs

This manuscript started with a thorough review of the evolu-
tion of DMSs and control architectures for autonomous and
social robots over the last thirty years. Then, we analysed
the most important trends of this work to provide a concise
representation of the fundamental challenges on which we
still need to continue working to deploy these systems in real
and lengthy applications.

We believe that social robots can providemultiple benefits
to society, alleviating the payload and facilitating the execu-
tion of tasks by themost vulnerable sectors of society, such as
older adults, children, or disabled people. Additionally, the
aging of the population of the developed countries puts for-
ward the necessity of developing intelligent and autonomous
machines with robust behaviour to overcome the possible
lack of workforce in specific positions related to healthcare
or education.

These challenges push us to continue investigating along
these research lines to provide solutions that can improve
people’s quality of life.
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40. Matarić MJ (1998) Behavior-based robotics as a tool for synthe-
sis of artificial behavior and analysis of natural behavior. Trends
Cognit Sci 2(3):82–86

41. Reif JH, Wang H (1999) Social potential fields: a distributed
behavioral control for autonomous robots. Robot Autonom Syst
27(3):171–194

42. Ishiguro H, Kanda T, Kimoto K, Ishida T (1999) A robot architec-
ture based on situated modules. In Proceedings 1999 IEEE/RSJ
international conference on intelligent robots and systems. human
and environment friendly robots with high intelligence and emo-
tional quotients (Cat. No. 99CH36289), vol 3, pp 1617–1624.
IEEE

43. Billard A, Dautenhahn K (1999) Experiments in learning by
imitation-grounding and use of communication in robotic agents.
Adapt Behav 7(3–4):415–438

44. Rooney C, O’Donoghue R, Duffy BR, O’Hare GMP, Collier R
(1999) The social robot architecture: towards sociality in a real
world domain. In: Towards intelligent mobile robots (TIMR99),
Bristol, UK, 1999

123



International Journal of Social Robotics (2023) 15:745–789 785

45. Gadanho SC (1999) Reinforcement learning in autonomous
robots: an empirical investigation of the role of emotions. PhD
thesis, University of Edinburgh. College of Science and Engi-
neering

46. Gadanho SC (2003) Learning behavior-selection by emotions and
cognition in amulti-goal robot task. JMachLearnRes 4(Jul):385–
412

47. Webb B (2000)What does robotics offer animal behaviour? Anim
Behav 60(5):545–558

48. Bryson J (2000) Cross-paradigm analysis of autonomous agent
architecture. J Exp Theor Artif Intell 12(2):165–189

49. Estlin TA, Volpe R, Nesnas I, Mutz D, Fisher F, Engelhardt B,
Chien S (2001) Decision-making in a robotic architecture for
autonomy. In: 6th international symposium on artificial intelli-
gence, robotics and automation in space

50. Scheutz M (2002) Affective action selection and behavior arbi-
tration for autonomous robots. In: IC-AI, pp 334–340

51. Nakauchi Y, Simmons R (2002) A social robot that stands in line.
Auton Robot 12(3):313–324

52. Cañamero L (2003) Designing emotions for activity selection in
autonomous agents. Emot Hum Artifacts 115:148–168

53. Avila-Garcia O, Cañamero L (2004) Using hormonal feedback
to modulate action selection in a competitive scenario. In: From
animals to animats 8: proceedings of the seventh [ie Eighth] inter-
national conference on simulation of adaptive behavior, vol 8, pp
243–253. MIT Press

54. Ramsay DS, Woods SC (2014) Clarifying the roles of home-
ostasis and allostasis in physiological regulation. Psychol Rev
121(2):225–247

55. Weisbuch M (2019) Winner-take-all as a collective action prob-
lem. JL Pol 35:67–93

56. Avila-Garcia O, Canamero L (2005) Hormonal modulation of
perception in motivation-based action selection architectures. In:
Proceedings of the symposium on agents that want and like,
SSAISB

57. Duffy BR, Dragone M, O’Hare GMP (2005) Social robot archi-
tecture: a framework for explicit social interaction. In: Android
science: towards social mechanisms, CogSci 2005 Workshop,
Stresa, Italy, pp 3–4

58. Konidaris G, Barto A (2006) An adaptive robot motivational
system. In: International conference on simulation of adaptive
behavior, pp 346–356. Springer

59. Maria Malfaz and Miguel Angel Salichs (2006) Using emotions
for behaviour-selection learning. Font Artif Intell Appl 141:697–
699

60. Malfaz M, Salichs M (2010) Using muds as an experimental
platform for testing a decision making system for self-motivated
autonomous agents. Artif Intell Simul Behav J 2(1):21–44

61. Malfaz M, Castro-González Á, Barber R, Salichs MA (2011) A
biologically inspired architecture for an autonomous and social
robot. IEEE Trans Autonom Mental Dev 3(3):232–246

62. Michalowski MP, Sabanovic S, Simmons R (2006) A spatial
model of engagement for a social robot. In: 9th IEEE interna-
tional workshop on advanced motion control, 2006, pp 762–767.
IEEE

63. Walters ML (2008)The design space for robot appearance and
behaviour for social robot companions. PhD thesis, University of
Hertforshire

64. Mohammad Y, Nishida T (2009) Toward combining autonomy
and interactivity for social robots. AI Soc 24(1):35–49

65. Balkenius C, Morén J, Winberg S (2009) Interactions between
motivation, emotion and attention: from biology to robotics. In:
Proceedings of the ninth international conference on epigenetic
robotics

66. Scheutz M, Schermerhorn P (2010) Affective goal and task selec-
tion for social robots. In: Social computing: concepts, methodolo-
gies, tools, and applications, pp 2150–2163. Springer

67. Scheutz M, Malle B, Briggs G (2015) Towards morally sensi-
tive action selection for autonomous social robots. In: 2015 24th
IEEE international symposium on robot and human interactive
communication (RO-MAN), pp 492–497. IEEE

68. Shi C, Kanda T, Shimada M, Yamaoka F, Ishiguro H, Hagita N
(2010) Easy development of communicative behaviors in social
robots. In: 2010 IEEE/RSJ international conference on intelligent
robots and systems, pp 5302–5309. IEEE

69. Castro-González Á, Malfaz M, Salichs MA (2010) Selection of
actions for an autonomous social robot. In: International confer-
ence on social robotics, pp 110–119. Springer

70. Salichs MA, Barber R, Khamis AM, Malfaz M, Gorostiza JF,
Pacheco R, Rivas R, Corrales A, Delgado E, Garcia D (2006)
Maggie: a robotic platform for human-robot social interaction. In:
2006 IEEE conference on robotics, automation andmechatronics,
pp 1–7. IEEE

71. Floreano D, Keller L (2010) Evolution of adaptive behaviour in
robots by means of darwinian selection. PLoS Biol 8(1):1–8

72. Buendia A, Granata C, Bidaud P (2011) Interactive person fol-
lowing for social robots. In: CLAWAR 2011, 11th international
conference on climbing and walking robots and the support tech-
nologies for mobile machines, pp 11–26

73. Arkin RC, Ulam P, Wagner AR (2011) Moral decision making
in autonomous systems: enforcement, moral emotions, dignity,
trust, and deception. Proc IEEE 100(3):571–589

74. Leite I (2015) Long-term interactionswith empathic social robots.
AI Matters 1(3):13–15

75. Scheidler A, Brutschy A, Ferrante E, Dorigo M (2015) The k-
unanimity rule for self-organized decision-making in swarms of
robots. IEEE Trans Cybern 46(5):1175–1188

76. Hammersley J (2013) Monte Carlo methods. Springer Science
and Business Media, Berlin

77. Qureshi AH, Nakamura Y, YoshikawaY, Ishiguro H (2016) Robot
gains social intelligence through multimodal deep reinforcement
learning. In: 2016 IEEE-RAS 16th international conference on
humanoid robots (Humanoids), pp 745–751. IEEE

78. Adam C, Johal W, Pellier D, Fiorino H, Pesty S (2016)
Social human-robot interaction: a new cognitive and affective
interaction-oriented architecture. In International conference on
social robotics, pp 253–263. Springer

79. Cervantes J-A,RodríguezL-F, LópezS,RamosF,Robles F (2016)
Autonomous agents and ethical decision-making. Cogn Comput
8(2):278–296

80. Vallverdú J, Talanov M, Distefano S, Mazzara M, Tchitchigin A,
Nurgaliev I (2016) A cognitive architecture for the implementa-
tion of emotions in computing systems. Biol Inspir Cognit Archit
15:34–40

81. Lövheim H (2012) A new three-dimensional model for emotions
and monoamine neurotransmitters. Med Hypotheses 78(2):341–
348

82. Cos I, Canamero L, Hayes GM, Gillies A (2013) Hedonic
value: enhancing adaptation for motivated agents. Adapt Behav
21(6):465–483

83. Lewis M, Canamero L (2016) Hedonic quality or reward? a study
of basic pleasure in homeostasis and decision making of a moti-
vated autonomous robot. Adapt Behav 24(5):267–291

84. Lones J, Lewis M, Cañamero L (2017) A hormone-driven epi-
genetic mechanism for adaptation in autonomous robots. IEEE
Trans Cognit Dev Syst 10(2):445–454

85. Maroto-Gómez M, González R, Castro-González Á, Malfaz M,
Salichs MÁ (2021) Speeding-up action learning in a social robot
with dyna-q+: a bioinspired probabilistic model approach. IEEE
Access 9:98381–98397

123



786 International Journal of Social Robotics (2023) 15:745–789

86. Kowalczuk Z, Czubenko M (2011) Intelligent decision-making
system for autonomous robots. Int J Appl Math Comput Sci
21(4):671–684

87. ZdzisławK,Michał C (2018) An intelligent decision-making sys-
tem for autonomous units based on the mind model. In 2018 23rd
international conference on methods and models in automation
and robotics (MMAR), pp 1–6. IEEE

88. Kowalczuk Z, Czubenko M, Merta T (2020) Interpretation and
modeling of emotions in the management of autonomous robots
using a control paradigmbased on a scheduling variable.EngAppl
Artif Intell, 91

89. Alejandro R, Francisco B, Abraham P, Richard JD (2018) Utility
model re-description within a motivational system for cognitive
robotics. In 2018 IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), pp 2324–2329. IEEE

90. Stange S, Buschmeier H, Hassan T, Ritter C, Kopp S (2019)
Towards self-explaining social robots. verbal explanation strate-
gies for a needs-based architecture. In: AAMAS 2019 workshop
on cognitive architectures for HRI: embodied models of situated
natural language interactions (MM-Cog)

91. Esteban PG, Insua DR (2019) A model for an affective non-
expensive utility-based decision agent. IEEE Trans Affect Com-
put 10(4):498–509

92. Cunningham AG, Galceran E, Mehta D, Ferrer G, Eustice
RM, Olson E (2019) Mpdm: multi-policy decision-making from
autonomous driving to social robot navigation. In: Control strate-
gies for advanced driver assistance systems and autonomous
driving functions, pp 201–223

93. Pomdp-based user-adaptive decision-making for social robots
(2019) Gonçalo S Martins, Hend Al Tair, Luís Santos, and Jorge
Dias. αpomdp. Pattern Recogn Lett 118:94–103

94. Man K, Damasio A (2019) Homeostasis and soft robotics in the
design of feeling machines. Nat Mach Intell 1(10):446–452

95. Augello A, Infantino I, Gaglio S, Maniscalco U, Pilato G, Vella
F (2020) An artificial soft somatosensory system for a cognitive
robot. In: 2020 Fourth IEEE international conference on robotic
computing (IRC), pp 319–326. IEEE

96. McCall RJ, Franklin S, Faghihi U, Snaider J, Kugele S (2020)
Artificial motivation for cognitive software agents. J Artif Gener
Intell 11(1):38–69

97. Hong A, Lunscher N, Hu T, Tsuboi Y, Zhang X, dos Franco
RAS, Nejat G, Benhabib B (2021) A multimodal emotional
human-robot interaction architecture for social robots engaged in
bidirectional communication. IEEE Trans Cybern 51(12):5954–
5968

98. Martin-Rico F, Gomez-Donoso F, Escalona F, Garcia-Rodriguez
J, Cazorla M (2020) Semantic visual recognition in a cogni-
tive architecture for social robots. Integr Computer-Aided Eng
27(3):301–316

99. KimNV, Bodunkov NE (2021) The autonomous social robot con-
trol based on the situation analysis. J Phys Conf Ser 1958:012022

100. AgrawalVP,Kohli V,Gupta S (1991) Computer aided robot selec-
tion: the ‘multiple attribute decision making’ approach. Int J Prod
Res 29(8):1629–1644

101. Wang Z-D, Nakano E, Matsukawa T (1996) A new approach to
multiple robots’ behavior design for cooperative object manipu-
lation. Distrib Autonom Robot Syst 2:350–361

102. Kalenka S, Jennings NR (1999) Socially responsible decision
making by autonomous agents. In: Cognition, Agency and Ratio-
nality, pp 135–149

103. Shah HK, Bahl V, Martin J, Flann NS, Moore KL (2002) Intel-
ligent behavior generator for autonomous mobile robots using
planning-based ai decision making and supervisory control logic.
In: Unmanned ground vehicle technology IV, vol 4715, pp 161–
177. International Society for Optics and Photonics

104. Clodic A, Alami R, Montreuil V, Li S, Wrede B, Swadzba A
(2007) A study of interaction between dialog and decision for
human-robot collaborative task achievement. In: RO-MAN 2007-
The 16th IEEE international symposium on robot and human
interactive communication, pp 913–918. IEEE

105. Czubenko M, Kowalczuk Z, Ordys A (2015) Autonomous driver
based on an intelligent system of decision-making. Cogn Comput
7(5):569–581

106. O’BrienMJ, Arkin RC (2020) Adapting to environmental dynam-
ics with an artificial circadian system. Adapt Behav 28(3):165–
179

107. Dautenhahn K, Billard A (2002) Games children with autism can
play with robota, a humanoid robotic doll. In: Universal access
and assistive technology, pp 179–190. Springer

108. Feil-Seifer D, Mataric MJ (2008) B 3 IA: a control architecture
for autonomous robot-assisted behavior intervention for children
with autism spectrum disorders. In:RO-MAN 2008-the 17th IEEE
international symposium on robot and human interactive commu-
nication, pp 328–333. IEEE

109. Senft E, Baxter P, Kennedy J, Belpaeme T (2015) When is
it better to give up? towards autonomous action selection for
robot assisted asd therapy. In: Proceedings of the tenth annual
ACM/IEEE international conference on human-robot interaction
extended abstracts, pp 197–198

110. Senft E, Baxter P, Belpaeme T (2015) Human-guided learning
of social action selection for robot-assisted therapy. In: Machine
learning for interactive systems, pp 15–20. PMLR

111. Hiolle A, Lewis M, Cañamero L (2014) Arousal regulation and
affective adaptation to human responsiveness by a robot that
explores and learns a novel environment. Front Neurorobot 8:1–
17

112. Lones J, Lewis M, Cañamero L (2014) Hormonal modulation of
development and behaviour permits a robot to adapt to novel inter-
actions. In: ALIFE 14: the fourteenth international conference on
the synthesis and simulation of living systems, pp 184–191. MIT
Press

113. Cañamero L, LewisM (2016)Making new new ai friends: design-
ing a social robot for diabetic children from an embodied AI
perspective. Int J Soc Robot 8(4):523–537

114. Matthew L, Lola C (2019) A robot model of stress-induced
compulsive behavior. In: 2019 8th international conference on
affective computing and intelligent interaction (ACII), pp 559–
565. IEEE

115. González JC, Pulido JC, Fernández F (2017) A three-layer plan-
ning architecture for the autonomous control of rehabilitation
therapies based on social robots. Cognit Syst Res 43:232–249

116. Cao H-L, Gómez EP, De Albert B, Simut R, Van de Perre G,
Lefeber D, Vanderborght B (2017) A collaborative homeostatic-
based behavior controller for social robots in human-robot inter-
action experiments. Int J Soc Robot 9(5):675–690

117. Lazzeri N, Mazzei D, Cominelli L, Cisternino A, Rossi DED
(2018) Designing the mind of a social robot. Appl Sci 8(2):302–
320

118. Park HW, Grover I, Spaulding S, Gomez L, Breazeal C (2019)
A model-free affective reinforcement learning approach to per-
sonalization of an autonomous social robot companion for early
literacy education. In:Proceedings of the AAAI conference on arti-
ficial intelligence, vol 33, pp 687–694

119. Van der Putte D, Boumans R, Neerincx M, Rikkert MO, De Mul
M (2019) A social robot for autonomous health data acquisition
among hospitalized patients: an exploratory field study. In: 2019
14th ACM/IEEE international conference on human-robot inter-
action (HRI), pp 658–659. IEEE

120. Mannion A, Summerville S, Barrett E, Burke M, Santorelli A,
Kruschke C, Felzmann H, Kovacic T, Murphy K, Casey D et al
(2020) Introducing the social robot mario to people living with

123



International Journal of Social Robotics (2023) 15:745–789 787

dementia in long term residential care:Reflections. Int J SocRobot
12(2):535–547

121. Miguel AS, Álvaro C-G, Esther S, Enrique F-R, Marcos M-G,
Juan José G-M, Sara M-V, José CC, Fernando A-M, Maria M
(2020) Mini: a new social robot for the elderly. Int J Soc Robot
12(6):1231–1249

122. Tanevska A, Rea F, Sandini G, Cañamero L, Sciutti A (2020) A
socially adaptable framework for human-robot interaction. Front
Robot AI, 121–137

123. FosterME,Ali S, Litwin S, Parker J, PetrickR, SmithDH, Stinson
J, Zeller F (2020) Using AI-enhanced social robots to improve
children’s healthcare experiences. In: International conference on
social robotics, pp 542–553. Springer

124. Robinson NL, Connolly J, Hides L, Kavanagh DJ (2020) Social
robots as treatment agents: pilot randomized controlled trial to
deliver a behavior change intervention. Int Interv 21:100320

125. Asprino L, Ciancarini P, Nuzzolese AG, Presutti V, Russo A
(2022) A reference architecture for social robots. J Web Semant,
72

126. Kerstin D (1999) Robots as social actors: aurora and the case
of autism. In: Proceedings of the CT99, the third international
cognitive technology conference, August, San Francisco, vol 359,
pp 374–390. Citeseer

127. Breazeal C, Scassellati B (1999) A context-dependent attention
system for a social robot. In:Proceedings of the 16th international
joint conference on artificial intelligence, 255(3)

128. Breazeal C (2003) Toward sociable robots. Robot Auton Syst
42(3–4):167–175

129. van Breemen A, Yan X, Meerbeek B (2005) ICAT: an animated
user-interface robot with personality. In:Proceedings of the fourth
international joint conference on Autonomous agents and multi-
agent systems, pp 143–144

130. Osada J, Ohnaka S, Sato M (2006) The scenario and design pro-
cess of childcare robot, PaPeRo. In:Proceedings of the 2006 ACM
SIGCHI international conference on Advances in computer enter-
tainment technology, pp 80–es

131. Mitnik R, Nussbaum M, Soto A (2008) An autonomous educa-
tional mobile robot mediator. Autom Robot 25(4):367–382

132. Ushida H (2010) Effect of social robot’s behavior in collaborative
learning. In: 2010 5th ACM/IEEE international conference on
human-robot interaction (HRI), pp 195–196. IEEE

133. Strohkorb S, Scassellati B (2016) Promoting collaboration with
social robots. In: 2016 11th ACM/IEEE international conference
on human-robot interaction (HRI), pp 639–640. IEEE

134. Coninx A, Baxter P, Oleari E, Bellini S, Bierman B, Henke-
mans O, Cañamero L, Cosi P, Enescu V, Espinoza R et al (2016)
Towards long-term social child-robot interaction: using multi-
activity switching to engage young users. J Human-Robot Interact

135. Egido-García V, Estévez D, Corrales-Paredes A, Terrón-López
M-J, Velasco-Quintana P-J (2020) Integration of a social robot
in a pedagogical and logopedic intervention with children: a case
study. Sensors 20(22):6483–6502

136. Mascarenhas S, Guimarães M, Prada R, Santos PA, Dias J, Paiva
A (2022) Fatima toolkit - toward an accessible tool for the devel-
opment of socio-emotional agents. ACMTrans Interact Intell Syst
12(1):1–30

137. AhmadMI,GaoY,Alnajjar F, Shahid S,MubinO (2021) Emotion
and memory model for social robots: a reinforcement learning
based behaviour selection. Behav Inform Technol, 1–27

138. Kaptein F, Kiefer B, Cully A, Celiktutan O, Bierman B,
Rijgersberg-peters R, Broekens J, Van Vught W, Van BekkumM,
Demiris Y et al (2021) A cloud-based robot system for long-term
interaction: principles, implementation, lessons learned. ACM
Trans Human-Robot Interact (THRI) 11(1):1–27

139. Gu D, Hu H, Reynolds J, Tsang E (2003) Ga-based learning in
behaviour based robotics. In: Proceedings 2003 IEEE interna-

tional symposium on computational intelligence in robotics and
automation. computational intelligence in robotics and automa-
tion for the New Millennium (Cat. No. 03EX694), vol 3, pp
1521–1526. IEEE

140. Kok JR, Spaan MTJ, Vlassis N et al (2003) Multi-robot decision
making using coordination graphs. In Proceedings of the 11th
international conference on advanced robotics, ICAR, vol 3, pp
1124–1129

141. Manzotti R, Tagliasco V (2005) From behaviour-based robots to
motivation-based robots. Robot Auton Syst 51(2–3):175–190

142. KozimaH,MichalowskiMP,NakagawaC (2009)Keepon:Aplay-
ful robot for research, therapy, and entertainment. Int J Soc Robot
1:3–18

143. FernaeusY,HåkanssonM, JacobssonM,Ljungblad S (2010)How
do you play with a robotic toy animal? a long-term study of Pleo.
In: Proceedings of the 9th international conference on interaction
design and children, pp 39–48

144. Gonzalez-Pacheco V, Ramey A, Alonso-Martín F, Gonzalez AC,
Salichs MA (2011) Maggie: A social robot as a gaming platform.
Int J Soc Robot 3(4):371–381

145. Collins EC, Prescott TJ, Mitchinson B, Conran S (2015) MIRO:
a versatile biomimetic edutainment robot. In: Proceedings of the
12th international conference on advances in computer entertain-
ment technology, pp 1–4

146. Kaupp T, Makarenko A, Durrant-Whyte H (2010) Human-robot
communication for collaborative decision making-a probabilistic
approach. Robot Auton Syst 58(5):444–456

147. Bicho E, Erlhagen W, Louro L, Silva EC (2011) Neuro-cognitive
mechanisms of decision making in joint action: a human-robot
interaction study. Hum Mov Sci 30(5):846–868

148. Schneider S, Goerlich M, Kummert F (2017) A framework for
designing socially assistive robot interactions. Cogn Syst Res
43:301–312

149. Bagheri E, Roesler O, Cao H-L, Vanderborght B (2021) A rein-
forcement learning based cognitive empathy framework for social
robots. Int J Soc Robot 13(5):1079–1093

150. Saunderson S, Nejat G (2022) Hybrid hierarchical learning for
adaptive persuasion in human-robot interaction. IEEE Robot
Autom Lett 7(2):5520–5527

151. Maroto-Gómez M, Castro-González Á, Castillo JC, Malfaz M,
Salichs MA (2022) An adaptive decision-making system sup-
ported on user preference predictions for human-robot interactive
communication. User Model User Adapt Interact

152. Shibata T, Tanie K (2001) Physical and affective interaction
between human and mental commit robot. In: Proceedings 2001
ICRA. IEEE international conference on robotics and automation
(Cat. No. 01CH37164), vol 3, pp 2572–2577. IEEE

153. Arkin RC, FujitaM, Takagi T, Hasegawa R (2003) An ethological
and emotional basis for human-robot interaction. Robot Auton
Syst 42(3–4):191–201

154. Saldien J, Goris K, Yilmazyildiz S, Verhelst W, Lefeber D (2008)
On the design of the huggable robot Probo. J Phys Agents 2(2):3–
11

155. Hooman Aghaebrahimi Samani and Elham Saadatian (2012)
A multidisciplinary artificial intelligence model of an affective
robot. Int J Adv Rob Syst 9(1):1–6

156. Grigore EC, Pereira A, Scassellati B (2015) Modeling motiva-
tional states for adaptive robot companions. In: 2015 AAAI fall
symposium series

157. Thrun S, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox
D,Hahnel D, Rosenberg C, RoyN, Schulte J et al (1999)Minerva:
a second-generation museum tour-guide robot. In: Proceedings
1999 IEEE international conference on robotics and automation,
vol 3. IEEE

123



788 International Journal of Social Robotics (2023) 15:745–789

158. Jung D, Zelinsky A (1999) An architecture for distributed coop-
erative planning in a behaviour-based multi-robot system. Robot
Auton Syst 26(2–3):149–174

159. Van der Loos HFM, Wagner JJ, Smaby N, Chang K, Madrigal O,
Leifer LJ, Khatib O (1999) Provar assistive robot system archi-
tecture. In: Proceedings 1999 IEEE international conference on
robotics and automation (Cat. No. 99CH36288C), vol 1, pp 741–
746. IEEE

160. Lisetti CL, Brown SM, Alvarez K, Marpaung AH (2004) A social
informatics approach to human-robot interaction with a service
social robot. IEEE Trans Syst Man Cybern Part C (Appl Rev)
34(2):195–209

161. Hollinger GA, Georgiev Y, Manfredi A, Maxwell BA, Pezze-
menti ZA, Mitchell B (2006) Design of a social mobile robot
using emotion-based decision mechanisms. In: 2006 IEEE/RSJ
international conference on intelligent robots and systems, pp
3093–3098. IEEE

162. Rodriguez-Losada D, Matia F, Galan R, Hernando M, Montero
JM, Lucas JM(2008) Urbano, an interactive mobile tour-guide
robot. IntechOpen, Rijeka

163. Shiomi M, Kanda T, Glas DF, Satake S, Ishiguro H, Hagita N
(2009) Field trial of networked social robots in a shopping mall.
In: 2009 IEEE/RSJ international conference on intelligent robots
and systems, pp 2846–2853. IEEE

164. Alili S, Alami R, Montreuil V (2009) A task planner for an
autonomous social robot. In:Distributed autonomous robotic sys-
tems, vol 8, pp 335–344. Springer

165. Foster ME, Keizer S, Lemon O (2014) Towards action selec-
tion under uncertainty for a socially aware robot bartender. In:
Proceedings of the 2014 ACM/IEEE international conference on
Human-robot interaction, pp 158–159

166. Petrick RPA, Foster ME (2016) Using general-purpose planning
for action selection in human-robot interaction. In: 2016 AAAI fall
symposium series

167. Liu P, Glas DF, Kanda T, Ishiguro H (2018) Learning proactive
behavior for interactive social robots. Auton Robots 42(5):1067–
1085

168. Malviya V, Reddy AK, Kala R (2020) Autonomous social robot
navigation using a behavioral finite state socialmachine. Robotica
38(12):2266–2289

169. HedblomMM, PomarlanM, Porzel R,Malaka R, BeetzM (2021)
Dynamic action selection using image schema-based reasoning
for robots. In: Proceedings of the joint ontology workshops

170. Akalin N, Loutfi A (2021) Reinforcement learning approaches in
social robotics. Sensors, 21(4)

171. Velásquez JD (1998)When robotsweep: emotionalmemories and
decision-making. In: AAAI/IAAI, pp 70–75

172. Arbib MA, Fellous J-M (2004) Emotions: from brain to robot.
Trends Cognit Sci 8(12):554–561

173. Tanevska A, Rea F, Sandini G, Cañamero L, Sciutti A (2019) A
cognitive architecture for socially adaptable robots. In: 2019 joint
IEEE 9th international conference on development and learning
and epigenetic robotics (ICDL-EpiRob), pp 195–200. IEEE

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

MarcosMarotoGómez is an Assistant Professor at Carlos III of Madrid
University. He obtained his B.Sc degree in Industrial Electronics and
Automation Engineering from the University of Castilla-La Mancha,
Toledo, Spain, in 2015 and the M.Sc. and Ph.D. in Robotics and
Automation from the Carlos III University of Madrid, Madrid, Spain,
in 2016 and 2022. His research lines are autonomous decision-making,

human-robot interaction, adaptive behavior, affective computing, and
artificial intelligence, all applied to social robots.

Fernando Alonso Martín is an Associate Professor of the Systems
Engineering and Automation Department at the Carlos III University
of Madrid (UC3M). His research fields are personal robots, human-
robot interaction, dialogues, and other related issues. He has been
involved in several research projects, such as RobAlz, a project born
from the collaboration between the Spanish Alzheimer Foundation and
the RoboticsLab. The aim was to develop robots that assist in the
daily tasks of caregivers to people with Alzheimer’s. The MOnarCH
(Multi-Robot Cognitive Systems Operating in Hospitals) project was
a European Union FP7 project aimed at developing a network of het-
erogeneous robots and sensors in the pediatric area of an oncological
hospital.

María Malfaz is an Associate Professor of the Systems Engineering
and Automation Department at the Carlos III University of Madrid.
María Malfaz received her degree in Physics Science at La Laguna
University in 1999. In October 2001, she became a MSc in Control
Systems at the Imperial College of London. She received the Ph.D.
degree in Industrial Engineering in 2007 and the topic was “Decision
Making System for Autonomous Social Agents Based on Emotions
and Self-learning”. Her research area follows the line carried out in her
thesis and, more recently, she has been working on the use of social
robots to improve the elderly’s quality of life. She belongs to several
international scientific associations: IEEE-RAS (IEEE Robotics and
Automation Society), IFAC (International Association of Automatic
Control), and CEA (Comité Espanol de Automática). Moreover, she
is also a member of research networks such as EURobotics (European
Robotics Coordination Action) and HispaRob (Plataforma Tecnológ-
ica Espanola de Robótica).

Álvaro Castro González is an Associate Professor of the Systems
Engineering and Automation Department at the Carlos III Univer-
sity of Madrid. He received a B.Sc. degree in Computer Engineering
from the University of León, León, Spain, in 2005 and the M.Sc.
and Ph.D. degrees in Robotics and Automation from the Carlos III
University of Madrid, Madrid, Spain, in 2008 and 2012, respectively.
He is a Member of the RoboticsLab Research Group, where he has
been involved in several national, European, and corporate sponsored
research projects. Her current research lines are related to human-
robot interaction, social robots, expressiveness in robots, decision-
making, and artificial emotions.

José Carlos Castillo holds an M.Sc. degree in Advanced Computer
Technologies (2008) and a Ph.D. in Computer Science (2012) from
Castilla-La Mancha University, Spain. From 2006 to 2012, he worked
at the natural and artificial Interaction Systems (n&aIS) group at the
Albacete Research Institute of Informatics, Spain, focusing on com-
puter vision techniques to detect human activities and frameworks for
intelligent monitoring and activity interpretation. From October 2012
to September 2013, he worked as a postdoctoral researcher at the Insti-
tute for Systems and Robotics (ISR), Instituto Superior Técnico (IST)
of the Technical University of Lisbon (UTL), where he focused on
networked robot systems, robotics and computer vision and intelligent
control systems. In September 2013, he moved to the RoboticsLab of
the Universidad Carlos III de Madrid, where he is an Associate Pro-
fessor working on social robotics and computer vision techniques for
human-robot interaction.

123



International Journal of Social Robotics (2023) 15:745–789 789

Miguel A. Salichs is a Full professor of the Systems Engineering
and Automation Department at the Carlos III University of Madrid
(UC3M). He received the Electrical Engineering and Ph.D. degrees
from the Polytechnic University of Madrid. His research interests include
autonomous social robots, multimodal human-robot interaction, mind
models, and cognitive architectures. He was Vicerrector of the UC3M,
a member of the Policy Committee of the International Federation of
Automatic Control (IFAC), Chairman of the Technical Committee on
Intelligent Autonomous Vehicles of IFAC, responsible of the Span-
ish National Research Program on Industrial Design and Production,
President of the Spanish Society on Automation and Control (CEA),
and the Spanish representative at the European Robotics Research
Network (EURON). He is currently the Coordinator of the Spanish
Robotics Technology Platform (HispaRob), President of the Founda-
tion of the Spanish Society on Automation and Control, and President
of Area at the Spanish Research Agency.

123


	A Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Study Selection Procedures

	3 Review
	3.1 Decision-Making Systems in Research
	3.1.1 The 1990s: Initial Research Models
	3.1.2 The 2000s: The Rise of Social Robots
	3.1.3 The 2010s and Present: Cognitive Models for HRI

	3.2 Manufacturing
	3.3 Healthcare
	3.4 Education
	3.5 Entertainment
	3.6 Companionship
	3.7 Assistance and Service

	4 Analysis
	4.1 Area of Application
	4.2 Action Selection Method
	4.3 HRI Experiment Duration
	4.4 Use of Biologically Inspired Models
	4.5 Use of Learning
	4.6 Application to Real Scenarios
	4.7 Systems Designed for Specific Platforms

	5 Challenges to Autonomous and Social Robots
	5.1 Engagement in Lengthy Interactions
	5.2 Multi-applicability
	5.3 Adaptation and Learning
	5.4 Lack of General Models of Shared Knowledge

	6 Conclusion: The Future of DMSs
	Acknowledgements
	References




