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Abstract
With the increasing abilities of robots, the prediction of user decisions needs to go beyond the usability perspective, for
example, by integrating distinctive beliefs and trust. In an online study (N = 400), first, the relationship between general
trust in service robots and trust in a specific robot was investigated, supporting the role of general trust as a starting point for
trust formation. On this basis, it was explored—both for general acceptance of service robots and acceptance of a specific
robot—if technology acceptance models can be meaningfully complemented by specific beliefs from the theory of planned
behavior (TPB) and trust literature to enhance understanding of robot adoption. First, models integrating all belief groups were
fitted, providing essential variance predictions at both levels (general and specific) and a mediation of beliefs via trust to the
intention to use. The omission of the performance expectancy and reliability belief was compensated for by more distinctive
beliefs. In the final model (TB-RAM), effort expectancy and competence predicted trust at the general level. For a specific
robot, competence and social influence predicted trust. Moreover, the effect of social influence on trust was moderated by the
robot’s application area (public > private), supporting situation-specific belief relevance in robot adoption. Taken together,
in line with the TPB, these findings support a mediation cascade from beliefs via trust to the intention to use. Furthermore,
an incorporation of distinctive instead of broad beliefs is promising for increasing the explanatory and practical value of
acceptance modeling.

Keywords Trust in robots · Acceptance modeling · Intention to use · Beliefs · Theory of planned behavior · UTAUT

1 Introduction

Service robots are rapidly advancing to the edge of broad
social dissemination in domains of public and private every-
day life. This ‘new breed’ of robots is more than automated
technology. They interact in social settings, react and adapt
to people and situations, and thus are subject to emotional
and social responses on the side of their human interaction
partners [1, 2]. In this, different users commonly perceive
robots differently (e.g., based on their robot-related atti-
tudes; [3–7]) and while certain users might accept and use
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a robot, others might reject it. Also, different application
areas—e.g., in private households vs. public spaces—and
levels of autonomy place additional demands on users and
human–robot interaction (HRI) design. Therefore, under-
standing the psychological processes of how people perceive
these new technical agents, build up attitudes and expecta-
tions, and arrive at decisions in interacting with robots is
meaningful to predict decision-making and acceptance in
HRI. This, in turn, provides a meaningful basis to inform
acceptable, efficient, safe, and human-centered design of
robot appearance and interaction strategies (e.g., [8–10]), as
well as dissemination strategies at a societal level.

The prediction of users’ intentions to interact with and
to use technology has been a research focus for many years
with essentially two predominant traditions: the technology
acceptance models (the different versions of the technol-
ogy acceptance model, TAM; e.g., [11–14]) and frameworks
incorporating trust as a main antecedent of technology-
related behavior (e.g., [15, 16]).While these two perspectives
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share a common underlying theoretical tradition, they are
typically discussed separately. A theoretical integration of
the two perspectives is promising for better understanding
the psychological processes associatedwithHRI and to facil-
itate a positive integration. The shared underlying theoretical
approach are attitude-to-behavior models, which theoreti-
cally substantiated the study of the cascade from beliefs
over attitudes to behavioral intentions—particularly in the
theory of reasoned action (TRA; [17]) and the theory of
planned behavior (TPB; [18]) as an advancement of the for-
mer. The TPB focuses on psychological variables affecting
an intended behavior [17, 19]. The basic assumption is that
behavior is essentially influenced by the intention to perform
that behavior. This intention is assumed to build on the three
core constructs of theTPB—social norm, attitude towards the
behavior, and perceived behavioral control—which, in turn,
are based on associated beliefs. The TPB was transferred to
the domain of technology acceptance by the TAMand its var-
ious advancements. The Unified Theory of Acceptance and
Use of Technology (UTAUT) is a recent and widely used
derivation of the TAM tradition. However, it is the result of
a scientific process over several decades, in which theoriz-
ing developed away from the original idea of attitude-based
behavior prediction in the sense of the TPB.

Presently, only a partially coherent conglomerate of tech-
nology acceptance models exists that are not well integrated
in terms of modeled constructs, underlying definitions, and
measurement of constructs. Especially, at this point, there
is no systematic investigation of the belief structure that
underlies the adoption of robots. If constructs are not well-
defined and theoretically integrated, acceptance models like
the UTAUT provide only restricted value for understand-
ing the psychological foundation of decisions in HRI (see
also [20]). This hinders deriving meaningful design impli-
cations, reliable prediction of user behavior, and cumulative
improvements of the scientific understanding of technology
acceptance. A promising direction here is replacing overlap-
ping, atheoretical beliefs with more distinct and theoretically
founded ones and integrating these in the beliefs-attitudes
cascade from theTPB to predict the intention to use. Thereby,
a meaningful extension is the inclusion of trust as a mediator.

1.1 Goal and Contribution of this Research

Against this background, this research aims at an integration
of beliefs from different theoretical streams (TAM, UTAUT,
trust) into the original theoretical structure of the TPB. In
doing so, the general assumption of attitude-based defini-
tions of trust in automation (e.g., [15]) that trust mediates
the relationship between beliefs about technology and the
intention to use is empirically tested.

As a first step in understanding the relevance of trust for
robot adoption, this study investigates how general trust in

service robots affects trust in and the intention to use a newly
introduced robot. Also, the relevance of beliefs and compara-
bility of the beliefs structure in these two levels of specificity
of trust (general trust in service robots and trust in a spe-
cific robot) and the intention to use is explored. From this, an
integrated economic trustworthiness beliefs model for robot
acceptance (TB-RAM), maximizing both model parsimony
and predictivity, is empirically explored, optimized, and val-
idated in a two-part online study. In this, subjects evaluated
their perceptions of (a) service robots in general as a category
and (b) a specific assistance robot. Additionally, the moder-
ation of the relationship between the identified beliefs and
trust in automation by situational variables and robot char-
acteristics was explored. More specifically, the role of social
influence in different social settings (private vs. public) and
of perceived behavioral control in different levels of robot
autonomy (partly vs. fully automated) was experimentally
investigated.

This work contributes to clarify the role of beliefs from
three theoretical streams (UTAUT, trust beliefs, TPB) for
trust and the intention to use robot. In addition to previous
research, by modeling specific instead of overarching beliefs
to predict acceptance and investigating their relative predic-
tive power in different settings and for different robots, this
research builds a foundation for human-centeredHRI design.
Moreover, focusing on trust—a theoretically differentiated
and empirically well-studied variable—as a psychological
mediator between the formation of beliefs about robots and
the intention to use them, offers insights in psychological pro-
cesses during robot familiarization. Based on this, we discuss
challenges of acceptancemodeling inHRI, propose strategies
to overcome these, and apply these strategies for modeling
the acceptance of service robots in general as well as specific
robots in two application contexts.

2 Theoretical Background

In the tradition of technology acceptance modeling, numer-
ous studies have been conducted that predicted behavioral
decisions in the interaction with technology on the basis of
intentions. Acceptance of technology is commonly defined
as the intention to use (or interact with) a robot (e.g., [21]).
As the acceptance of robots is a central prerequisite for their
adoption, the psychological process in which acceptance is
formed and the variables affecting this process are of central
interest for a human-centered HRI design. In the following,
related literature is reviewed along a) technology acceptance
models, b) trust in automation and robots, and c) integrated
trust-acceptance models.
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2.1 Technology Acceptance Modeling: the TAM
and the UTAUT

To predict usage behavior (i.e., acceptance) or rejection
of new technology and increase usage frequency, to date,
numerous competing models have been developed (e.g. [12,
14, 22–24]). Most models are based on the TAM [11–13],
describingmotivational processes thatmediate between tech-
nology characteristics and user behavior originally in the
domain of information systems in organizational contexts.
The basic assumption of the TAM is that the intention to
use technology is based on two fundamental determinants:
the perceived usefulness—the assessment of the expected
outcomes of the technology—and the perceived ease of
use—whether users believe that they have the necessary skills
and resources to use the technology successfully [11–13].

To formulate a consensus among the numerous accep-
tance models that emerged after the TAM, Venkatesh and
colleagues [14] proposed the UTAUT with four subjec-
tive variables influencing the intention to use a system.
Performance expectancy largely coincides with perceived
usefulness from the TAM and is defined as "the degree to
which an individual believes that using the system will help
him or her to attain gains in job performance" ([14], p. 447).
The construct reflects external motivational factors affecting
task accomplishments and outcomes through expected use-
fulness and benefits.Effort expectancy, defined as "the degree
of ease associated with the use of a system" ([14], p. 450), is
composed of three constructs from different models, one of
which is the perceived ease of use. Social influence reflects
"the degree to which an individual perceives that important
others believe he or she should use the new system" ([14],
p. 451). The fourth predictor of the UTAUT—facilitating
conditions—refers to beliefs about the organizational and
technical infrastructure supporting system use [14].

The application contexts of the models span a wide
range of different technologies, including word processors
[13], telemedicine technologies [25], gerontechnology [26],
online banking [27], and vehicle monitoring systems [28].
Severalmeta-analyses quantified the predictive validity of the
TAM and the UTAUT supporting substantial variance expla-
nation for the intention to use technical systems [29–35]. The
TAMwas also transferred to HRI for investigating the accep-
tance and usage of specific types of robots, for certain tasks
and contexts as well as for specific user groups (e.g., [20,
36–45]). Examples are the Almere model [36], the persua-
sive robots acceptance model (PRAM, [44]), and the robot
acceptance model for care (RAM-care, [38]).

In this, state of the art research methods on robot accep-
tance modelling are quite heterogeneous. While some of
the mentioned studies apply online surveys with pictures or
videos of robots as stimulus material (e.g., [36–38]), others

investigated robot acceptance of first encounters in labora-
tory studies with real robots (e.g., [44]) or the development
of acceptance over time (e.g., [36]). Based on the TPB, the
usual procedure of deriving those models is to first select
relevant beliefs for the particular application domain of the
robot, present a robot stimulus, and then query the determi-
nants of the TAM in the form of self-report questionnaires.
Also, commonly, in these studies, the original model is mod-
ified and supplemented by additional factors specific for HRI
and the application area (e.g., social presence, compliance,
reactance, or perceived technology unemployment).

2.2 Restricted Applicability of the TAM/UTAUT to HRI
and Directions for Enhancing theValue
of Acceptance Modeling in HRI

The variety of modifications of the TAM and UTAUT in
the field of HRI indicates that the variables of the original
models are not specific enough and therefore their value
for enhancing the understanding of underlying processes
of decision-making in the interaction with robots might be
restricted (see e.g., [20, 46, 47]). This is not surprising asHRI
is considerably more dynamic, social, and interactive than
the original application areas of the TAM and UTAUT. Also,
both models aim to maximize model economy, using only
a small number of variables to predict technology adoption
instead of increasing the understanding of the characteris-
tic of the systems and psychological processes leading to it
(e.g., [46]). Accordingly, based on these and other reasons,
these models have restrictions that make theoretically sound
derivations for the design of complex AI-based technologies
and scientific knowledge gain fairly difficult [46, 47].

The current need for improvement of acceptance model-
ing in HRI relate to three challenges a) the restricted number
of determinants of use and related to this b) overly broad and
inflexible definitions of these determinants, and c) the limited
theoretical integration of technology acceptancemodels with
their original psychological foundations in the TPB. These
challenges are elaborated in the following along four gen-
eral strategies to overcome them by deriving, building, and
empirically validating acceptance models in HRI:

1. Modeling distinctive, theoretically meaningful beliefs
instead of broad, statistically derived beliefs.

2. Ordering the predictors for acceptance and behavior in
accordance with the theoretical structure of the TPB.

3. Developing acceptance models at different levels of
specificity.

4. Integration of attitudes towards robots as a mediating
level (e.g., trust) between the level of beliefs and the
intention.
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Modeling distinctive and theoretically meaningful beliefs.
Regarding the first and second challenge, the restricted num-
ber of determinants of technology use results in the models
being too inflexible to be practically relevant [46], especially
for more sophisticated, autonomous technologies like ser-
vice robots outside the work and organizational context [20].
This is reflected in the large number of modified models for
specific contexts, technologies, and user groups, to which
various variables have been added to (successfully) increase
the explained variance of technology use (e.g., [20, 36, 41,
42, 48–50]). As service robots can be viewed as interac-
tion partners with socially adaptive capabilities beyond mere
technological tools, the proposed determinants of technology
use might not satisfactorily explain the processes leading to
(affective) user responses, technology adoption, acceptance,
and a positive user experience in HRI. Although the predic-
tive power of the constructs is indisputable, it is difficult to
assess and interpret their meaning because of the concep-
tual difficulty in distinguishing them from each other and
from outcome variables. This criticism applies in particular
to performance expectancy,which can hardly be theoretically
separated from the overlapping acceptance of a system due
to its broad definition and its measurement with items that
are not easily distinguishable from acceptance scales. This
is related to the point raised by Straub and Burton-Jones
[52] that a reasonable person would rather not indicate to
use a system which s/he does not find useful. Accordingly,
the authors themselves acknowledge an overlap and shared
variance between the UTAUT-constructs (e.g., facilitating
conditions and effort expectancy, [14, 53]). Also, facilitating
conditions appear to be only vaguely defined and so system-
and domain-specific that the items are difficult to answer and
apply practically.

Given the wide range of applications and functionalities,
the beliefs underlying user acceptance need to be reconsid-
ered in terms of their meaningfulness and informativeness
for AI-based technology like service robots. In this regard,
beliefs like performance expectancy might be too global to
provide value for understanding the origin of technology
acceptance in psychological processes and thus be replaced
by more specific beliefs from psychological theory like the
TPB and trust literature.

Ordering the predictors for acceptance and behavior in
accordance with the theoretical structure of the TPB. The
TAM originally evolved from attitude-to-behavior models
(TRA and TPB; [17–19, 54]), which assume that the inten-
tion to engage in a behavior is essentially influenced by
beliefs and the attitude towards the behavior. While with the
transfer of the TPB to the TAM several theoretical assump-
tions were changed, with the additional modifications of the
UTAUT, the theoretical basis was further diluted (e.g., [46]).
This is reflected in (data-driven) model modifications, in

which neither the inclusion of additional variables nor their
placement in the process are always theoretically sufficiently
justified (e.g., [36, 37, 39, 40, 42]). Essentially, attitudeswere
removed from the original TPB cascade, leaving the essential
differentiation between attitudes and beliefs in psychological
research behind [55–57]. As the three-step mediation cas-
cade of the TPB (beliefs-attitudes-behavioral intention) is an
essential theoretical contribution of the model, the omission
of the mediating attitude level might be one explanation for
the reported small effect sizes of the relationship between
UTAUT variables and the intention to use (except for per-
formance expectancy; see e.g., in the meta-analysis by [51]).
Therefore, the (re)integration of attitudes as a mediator at a
more global and affective level and ordering the variables
again at the three original levels of the TPB might increase
insight into psychological processes of HRI adoption and
has repeatedly been called for (e.g., [30, 31]),—even by the
authors of theUTAUT [58]. In linewith this, there are already
approaches in the field of robotics integrating formerly not
included TPB constructs (e.g., social norm, attitude, and per-
ceived behavioral control) to predict the intention to use and
acceptance of robots (e.g., [20, 36, 38, 39, 42–44, 59]).

Developing acceptance models for different levels of speci-
ficity.Attitudes vary in their generality vs. specificity depend-
ing upon the object they refer to [60, 61].While, for example,
the attitude toward the future is rather general as it refers to a
whole class of objects, events or stimuli, the attitude toward a
certain technology (e.g., robots) can be considered as compa-
rably specific. Beyond that, there may be even more specific
attitudes for a particular representative of this category, such
as for a specific privately-owned robot. In HRI, a prominent
attitude variable that has often been investigated is negative
robot attitudes (e.g., NARS; [3–6, 62]). Also, trust in automa-
tion has prominently been conceptualized as an attitude [15].
Therefore, trust might constitute a promising mediating vari-
able to gain an understanding of the psychological processes
between the construction of beliefs about robots and actually
deciding how to interact with them. In this research, trust
towards service robots is investigated at two levels of speci-
ficity: (a) general for the category of service robots and (b)
specific for a certain assistance robot.

Integrating trust as a mediating attitude. Several authors
found a relationship between trust and the intention to use
and good (or improved)model fits for acceptancemodels that
included trust (among other variables, e.g., [28, 58, 63–65]).
Therefore, the integration of trust and antecedent trust beliefs
might contribute to the theoretical foundation and mean-
ingful applicability of acceptance models to understand and
predict behavior in HRI. In this work, on the basis of an inte-
gration of the UTAUT, the TPB, and trust, the intention to use
service robots in general and the intention to use a specific
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robot are predicted by a model with the three levels beliefs,
attitudes, and intention to use. In the following, the relevance
of trust for understanding the adoption of robots is discussed.

2.3 Trust in Automation and Trust in Robots

Mayer and colleagues [66] define trust as "thewillingness of a
party to be vulnerable to the actions of another party based on
the expectation that the other will perform a particular action
important to the trustor, irrespective of the ability to monitor
or control that other party" (p. 712). Trust has been trans-
ferred to human-technology interaction since the late 80s
(e.g., [67, 68]). The perspective on trust in automation as an
attitude has gained momentum in recent years (e.g., [15, 69,
70]). In particular, the definition of Lee and See [15] is often
referred to in this context, defining trust "as the attitude that
an agent will help achieve an individual’s goal in a situation
characterized by uncertainty and vulnerability" (p. 51). Trust
was hypothesized to be based on expectations and beliefs
about how the trustee will behave (e.g., [16, 66, 71]). Mainly,
these are built up by perceived characteristics constituting the
perceived trustworthiness of the trustee (e.g., [72]). In this
regard, trust in robots has been conceptualized as a subjec-
tive variable that is established in the psychological learning
process, in which expectations are built up from provided
information about a robot prior to and during the interaction
(e.g., [3, 16, 73]) and has been found to be a potent subjective
predictor of behavioral outcomes in HRI (e.g., [74, 75]).

For facilitating an effective, safe, and comfortable inter-
action with automated technology, e.g., robots, a calibrated
level of trust—a situation in which the degree of trust is
in line with the actual capabilities of the technology [67,
76]—represents an important design goal. But not only the
degree of trust (no trust—some trust—a lot of trust) but also
the specificity of trust is subject to trust calibration (e.g.,
[15]). For example, trust can be related to all members of
a category of technological systems (e.g., service robots in
general), a specific representative of such a category (e.g., a
specific robot), or a certain function of a robot (e.g., grasping
an object with a manipulator). At this point, the role of gen-
eral trust for service robots as an overarching category for
the formation of trust in specific robots (exemplars of this
category) has not been investigated sufficiently and thus is
addressed in this research.

A manifold of variables have been found to affect trust in
robots (e.g., robot-, human- and context-based; [69, 77]). In
face of the manifold of influencing variables and although
trust has been widely recognized as a central construct
in explaining human interaction with technology, few the-
oretically grounded models explaining the formation and
development of trust and its relation to behavioral decisions
have been presented—and even fewer have been empirically
validated. Similar to the TAM, the transfer of the TRA to

explain the formation of trust as a specific attitude towards
technologywasbrought forwardby [15]). In theirmodel, they
simplify and adapt the TRA-interrelations to explain trust-
based decisions in the interactionwith automated technology.
Themain assumptions of themodel have been extended (e.g.,
[70]), integrated, and in part empirically supported (e.g.,
[16]). Yet, at this point, there has been no integrative inves-
tigation of the central proposed beliefs-trust cascade and the
role of trust beliefs for the emergence of the trust attitude in
the technical domain.Based on thework in interpersonal trust
by Rempel and colleagues [78] and trust in automation (e.g.,
[67, 79]), this research investigates the relative role of trust
and antecedent trust beliefs for the explanation of the inten-
tion to use of service robots in comparison to the UTAUT
beliefs.

Several studies integrated trust into the TPB, TAM and
UTAUT [24, 28, 58, 59, 63–65, 80]. For example, Buckley
and colleagues [81] showed that trust explained additional
variance in the intention to use an automated vehicle, both
over the TAM and TPB constructs. In a meta-analytic
approach, Wu and colleagues [34] showed high correlations
of trust and the TAM predictors. In the same manner, trust
was integrated as a predictor for robot usage and acceptance
in HRI. However, some studies support an effect of trust on
the intention to use a robot (e.g., [37–40, 58]), while oth-
ers do not [36, 38]. These contradicting findings might be
explained by the widely varying structure and placement of
trust in the models. While some authors model trust as a
direct antecedent of the intention to use, others model trust
as an antecedent of the TAM beliefs or along with constructs
from the TPB such as attitudes. In line with the definition
of Lee and See [15] of trust as an attitude and the original
TAM-trust models (e.g., [28, 65, 80]), this study investigates
the role of trust as a mediator between beliefs about robots
and intention to use service robots.

Over the years, a manifold of different models and
structures of trust beliefs in different research streams on
trust-related behavior have been proposed (e.g., [67, 68, 71,
72, 79]). Prominently, Mayer and colleagues [66] differenti-
ate ability, benevolence, and integrity as factors influencing
trust. This differentiation is in line with the traditional view
that trust is built on the basis of different belief facets cap-
turing the competence of the trustee on the one hand and
the trustee’s character on the other hand (e.g., [72, 82]).
This research focuses on ability-based trustworthiness beliefs
about the trustee’s performance based on its "capabilities,
knowledge, or expertise" ([79], p.1244). This facet of trust-
worthiness beliefs is best captured by the performance level
of trust attributions,whichLee andMoray [79] propose based
on the work of Rempel and colleagues [78] andMuir [67, 68]
as the expectation of a system’s "consistent, stable, and desir-
able performance or behaviour" ([79], p. 1246). In line with
the discussion in Lee and See [15], who define this factor
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as referring "to the current and historical operation of the
automation and includes characteristics such as reliability,
predictability, and ability […] [m]ore specifically, […] to the
competency or expertise as demonstrated by its ability to
achieve the operator’s goals" ([15], p.59), in this study, the
expected reliability, understandability, and competence are
included as trust beliefs (see also [68, 83–85]).

Reliability was defined by Stowers and colleagues [86] as
the consistencywithwhich someone completes tasks.Dragan
and colleagues [87] explained predictability as a character-
istic of robots to make their "intentions clear to its human
collaborator". Understandability—which is closely related
to predictability—was defined by Madsen and Gregor [83]
as the extent to which "the human supervisor or observer
can form a mental model and predict future system behav-
ior" (p.11). Competence describes the perceived ability of
a robot to perform its task correctly and efficiently. McK-
night and colleagues [88] model systems predictability and
competence to affect trust. Merritt and Illgen [89] found that
trustworthiness beliefs mediate the relationship of automa-
tion characteristics and trust in the systems. In this study,
the included trust beliefs are used to extend the perspective
of the UTAUT by trust as a variable that might shed more
light on the psychological processes in which learning about
robots and building expectations and beliefs about them leads
to decisions in the interaction with robots. Thereby, relia-
bility is—comparably to performance expectancy—viewed
as a belief that conceptually is very closely related to trust.
It describes the perceived trustworthiness of a technologi-
cal system on a very general level covering both aspects of
"can-do" and "will-do" expectations (possible jingle-jangle
fallacy). Therefore, in this study, it is investigated if the two
other modeled trust beliefs (competence and understandabil-
ity) are sufficient to predict trust.

2.4 Influences of Situational Variables and Robot
Characteristics

A broad array of robot characteristics and situational char-
acteristics have been found to affect trust (e.g., [69, 77]) and
acceptance (e.g., [21, 90]). In the same manner, they might
also affect the relative importance of beliefs for both out-
comes. This is in line with basic theorizing of the TRA
and TPB, postulating that the relative importance of pre-
dictors can vary across situations and behaviors [91]. It can
be concluded that the effects of specific beliefs on attitudes
towards robots can vary for different types of robots, tasks,
or user groups (e.g., [21, 41, 92]), which is also empha-
sized in reviews on variables affecting robot acceptance (e.g.,
[48–50, 90]). Also, trust is essentially conceptualized as a
variable affecting decision-making and behavior under cer-
tain situational circumstances—namely situations in which
the trustor feels uncertain and vulnerable (e.g., [93]). While

many of the relationships between beliefs about technology
and trust might be generalizable, the role of some beliefs for
trust might change depending on the character of the task and
robot under consideration (similar to moderation effects of
user characteristics, e.g., [14, 94]). In the context of HRI, this
might especially be the case for the two TPB beliefs, social
influence, and perceived behavioral control, as their relative
relevance might change over settings and combinations of
robots and tasks.

Social influence The importance of the interaction context
of HRI has been underlined in research in the domains of
care robots [38], social robots [20], service robots [45], and
public robots [8, 37]. In this study, it is investigated if the
relationship of social norms and trust changes as a function
of the interaction context. If the process and outcome of an
HRI task is not publicly visible, the perception of the robot
might not be as strongly affected by what others think about
it (the social influence belief). Accordingly, the importance
of social influence should be higher in contexts in which
relevant others can observe and judge HRI. Therefore, in the
present study, the application context (public vs. private) was
manipulated as a possible moderator of the relative impor-
tance of social influence for trust.

Perceived behavioral control Additionally, it was investi-
gated if the role of the belief about the perceived behavioral
control—defining the scope of influence the user has on the
task outcome with their behavior—is affected by the level of
autonomy of a robot. While, in general, systems providing
some kind of control seem to be trusted more [70, 95], at this
point, no simple relationship between trust and automation
levelwas coherently supported (e.g., [96, 97]). In a studywith
a hospital transport robot, higher perceived control was pos-
itively related with patients’ trust and intention to use it [73].
This points into the direction that, beyond the objective pos-
sibility of intervention, the perception of control might help
to gain a better understanding of the nature of the relation-
ship between automation level, trust and the intention to use
a robot. In this sense, more negative attitudes towards robots
were found in situations in which people perceived to have
lower control over a robot with high agency [98]. While in
low autonomy robots (e.g., teleoperation), the users’ behav-
ior strongly influences the robot’s task outcome, this is not
the case for highly autonomous robots. It is assumed that the
perception of the own ability to control the interaction with
the robot has a higher relevance for trust in robots with lower
levels than higher levels of autonomy.

2.5 Investigated Trust Beliefs Model

The presented study starts from the basic idea of taking the
UTAUT back to its theoretical basis in the TPB and to inte-
grate trust as an attitude in a stronger theoretical manner.
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Fig. 1 Investigated trustworthiness beliefs model for robot acceptance (TB-RAM)

To overcome the above-mentioned limitations, a trustwor-
thiness beliefs model integrating the TPB, UTAUT, and
trust perspectives is proposed (see Fig. 1). In line with the
TPB, attitudes are assumed to be established substantially by
beliefs, which can be understood as the subjective represen-
tation of probabilities that certain attributes are linked to a
specific object (e.g., the object ‘robot’ has the attribute ‘com-
petent’; [60, 91]). Well-established trust beliefs (reliability,
competence, understandability) are integrated along with
core constructs of UTAUT beliefs (performance expectancy,
effort expectancy, social influence) and the TPB (social
influence and perceived behavioral control). In accordance
with the original TPB structure, all beliefs are modeled to
directly influence trust, which in turn mediates the relation-
ship between beliefs and the intention to use service robots in
general and the specific robot investigated. In contrast to pre-
vious models, a small number of discrete beliefs was aimed
for that can be generalized to various robots and application
contexts. To this end, in addition to using very simple robot
stimuli (prototype sketch of a mechanical service robot), the
model was validated at two different specification levels and
tested in two different application contexts (public vs. pri-
vate) with a considerably large sample.

As a first step in the model evaluation, the individual rel-
evancy and combined predictive power of the beliefs of each
theoretical stream were inspected separately (at both levels
of specificity). In a second step, the full model, integrating

all beliefs for the prediction of trust and the intention to use,
was investigated. In amodel iteration, the twobroad andover-
lapping beliefs performance expectancy and reliability were
omitted from the model to allow for a more specific, infor-
mative, and parsimonious beliefs structure. As an important
criterion for the value of this enhanced model, its predictive
power was compared to that of the full model. Additionally,
to further explore the fit and adequacy of integrating trust as
a mediator in the model structure, the direct paths from the
beliefs to the intention to use were estimated in another iter-
ation. Finally, to provide an understanding of the situational
specificity of belief-trust relationships, it was investigated
if the relevancy of the belief social influence and perceived
behavioral control changes over situational settings and with
different robot abilities.

2.6 Hypotheses and Research Questions

In line with the theoretical considerations and the proposed
model, the following hypotheses were tested:

Hypothesis 1 (H1) General trust in service robots predicts
trust in a specific robot in the early familiarization process.

Hypothesis 2 (H2) Trust predicts the intention to use service
robots in general (H2.1) and the intention to use a specific
assistance robot (H2.2).
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Hypothesis 3 (H3) The effect of general trust on the inten-
tion to use a specific robot is mediated by specific trust in the
robot.

Hypothesis 4 (H4) UTAUT (H4.1), trust (H4.2), and control
belief(s) (H4.3) predict general trust in the category of service
robots and trust in a specific assistance robot (H4.4–6).

Hypothesis 5 (H5) UTAUT (H5.1), trust (H5.2), and control
belief(s) (H5.3) predict the intention to use service robots in
general and the intention to use a specific assistance robot
(H5.4–6).

Hypothesis 6 (H6) In line with the proposed mediation cas-
cade, the effect of beliefs on the intention to use is mediated
by trust in the general (H6.1) and the specific model (H6.2).

Hypothesis 7 (H7) The effect of the perceived behavioral
control on trust in a robot is stronger for a partly compared to
a fully automated robot (H7.1). The effect of social influence
is higher in a public compared to a private setting (H7.2).

Also, the following research questions were addressed:

Research question 1 (RQ1) Does removing performance
expectancy and reliability reduce variance explanation in
trust and the intention to use?

Research question 2 (RQ2) Which variance proportion
from beliefs to the intention to use is mediated by trust?

Research question 3 (RQ3) Which additional direct effects
from the beliefs to the intention to use do occur?

3 Method

To investigate the hypotheses and research questions, a
mixed-design online study was conducted in which beliefs,
trust, and intention to use were measured. A correlative and
a 2 × 2 experimental design were combined. In the latter,
a specific robot’s context of use (IV1: private household vs.
public space) and level of autonomy (IV2: partly vs. fully
automated) were manipulated.

3.1 Sample

The sample was recruited online with a professional panel
provider, who compensated participants monetarily. Prereq-
uisites for participation were German as native language and
a minimum age of 18 years. An equal distribution of gender
and age group (18–29, 30–49, 50–64, > 65 years) was aimed
at to reach a heterogeneous sample.

Participants with a processing time determined to be too
short (< 40% of median, med = 35.38 min, 17 participants),
with no variance (flatliners, 38 participants), andmultivariate

outliers (Mahalanobis distance > 38; 25 participants) were
excluded. The final sample consisted of N = 400 partici-
pants (51.50% female) with a mean age ofM = 49.71 years
(SD= 17.74). 19.80% indicated owning a robot (vacuuming,
cleaning, mowing, toys, and spoken dialogue assistance
robots).

3.2 Procedure, Experimental Design andMaterials

Data was collected with the online survey tool Unipark
(Questback GmbH, 2019). After informed consent and a sur-
vey on demographics, disposition questionnaires were filled
out (not part of this research). Subjects were then given a def-
inition and explanation of service robots (see supplementary
material). Subsequently, participants answered questions
about their beliefs, trust, and intention to use in regard to ser-
vice robots in general. Afterwards, subjects were presented
with seven specific examples of service robots (vacuum
robot, reception robot, learning robot, delivery robot, security
robot, mowing robot, and cleaning robot, see 4.2) in ran-
domized order for which they indicated their trust. After this,
subjects were introduced to an assistance robot and received
information on its appearance, sensors, and functionality
along with a sketch of the prototype (Fig. 2). Then, vignettes
were presented, containing information about the applica-
tion area and the robot’s autonomy level. In a pre-study
(N = 48), comprehensibility of the vignettes was rated,
M = 6.70, SD = 0.47; range: 1–7, as well as the robot’s
realism, M = 4.98, SD = 1.41, and conceivability,
M = 5.85, SD = 0.88. After the pre-study the vignettes were
slightly adjusted.

The application area of the robot was manipulated with a
list of different tasks suitable for private households or gro-
cery shopping in the supermarket (e.g., storing groceries).
The autonomy level of the robot was manipulated with dif-
ferent descriptions for high autonomy (fully autonomous
functioning without double-checking with the user) and
low autonomy (robot requires consent for each step in the
task). Additionally, three specific assistance tasks (carry over
objects for cooking, tidy up objects, and store objects) were
described in more detail for each application area and level
of autonomy (e.g., public/low autonomy: "You stand at the
checkout […]. The robot moves next to you and asks if it
can assist with your purchases. You can confirm the desired
action. Then the robot puts your purchases into your shop-
ping cart […]"). The descriptions between the two areas of
application were standardized in as many aspects as possi-
ble. All descriptions of the assistance robot can be found
in the supplementary material. Subsequently, all model con-
structs were measured again with reference to the described
robot prototype. At the end of the study, prior experience and
expertise as well as own ownership of a service robot were
measured.
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Fig. 2 Prototype information and sketch presented to participants with a human silhouette for size comparison

3.3 Study Questionnaires

To assess the model constructs, established scales from the
original models were used where available and adjusted to fit
the study context. The reference object was either changed
to ‘robots’ (in general) or to ‘the robot’. All constructs
were measured on a 7-point Likert-scale (1 = not agree at
all, 7 = totally agree). If no German translation was avail-
able, items were translated into German by two independent
translators.

The UTAUT constructs were measured with the items
from Venkatesh and colleagues [14] whereby some items
(one per subscale) were replaced or excluded to adjust the
scale to the context of HRI (e.g., "The senior management of
this business has been helpful in the use of the system." was
excluded). Trust beliefs were measured with scales based on
Madsen and Gregor ([83]; reliability and understandability)
and Gong ([99]; competence). The measurements of per-
ceived behavioral control and intention to use were adapted
from Taylor and Todd [22] and Forster and colleagues [100].
Learned trust was measured with the LETRAS-G [16]. All
scale reliabilities were in an acceptable range (α > .70, [101],
Table 1) except for social influence. As for the latter the two
items did not overlap, a single-item measure was used.

4 Statistical Analysis and Results

To test the study hypotheses and research questions, a combi-
nation of regression analyses, mediation analyses, structural
equation modeling (SEM), and moderation analyses based
on multigroup modeling was applied.

For the regression models, mean values were z-
standardized and robust R2 estimates were calculated. For
assessing multicollinearity, the variance inflation factor
(VIF), the eigenvalues, and the condition index scores were
inspected.

For the mediation and the exploration of the investigated
trustworthiness beliefs model, SEMwas applied. First, a full
model for general and specific robot usage intention was

estimated, followed by a reduced model. Additionally, all
models were fitted with direct effects. In a last step, the
external influencing variables (application area and level of
autonomy)were investigated asmoderators in amanifest path
model of the enhanced model for specific robot use. Robust
Maximum Likelihood estimation and test statistics, and cor-
rected SEs were used [102]. All constructs were modeled
as single factors. To rule out bias by non-normal distribu-
tions of indirect effects (e.g., [103]), percentile bootstrapped
95%-confidence intervals (CI)were calculated to evaluate the
significance of indirect effects (5000 iterations). RMSEAand
SRMR were used as primary indicators of model fit [104].

To investigate H7, multiple group CFAs were calculated.
In case of a significant difference in the fit of the model
between groups, a moderation is present. A precondition for
this is that before the regression coefficient is introduced
into the multigroup model, metric invariance is established
between the groups [105].

4.1 Data Preparation andManipulation Checks

Analyses were conducted with R version 4.0.3 and the
package lavaan [106]. Means, standard deviations, and
zero-order correlations of all included scales are provided
in the Appendix (A Table 6). There was no missing data and
multivariate outliers were excluded, hence for this, precon-
ditions for SEM were met. To test for group effects, a series
of general linear models predicting trust with the interaction
of each belief and the independent variables was conducted.
Except for performance expectancy and effort expectancy,
no such interactions were present. ANOVAs did not result in
anymean differences in trust and the intention to use between
the experimental groups. Regarding manipulation checks,
the experimental groups differed significantly for the
perceived autonomy of the assistance robot,
Mfully = 5.59, SDfully = 1.20 vs. Mpartly = 4.36,
SDpartly = 1.56, F(1,398) = 78.40, p < .001, and
the indication of the application area, Mpublic = 5.57,
SDpublic = 1.76 vs. Mprivate = 2.97, SDprivate = 1.88,
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Table 1 Number of items, Cronbachs’s α and item examples for used scales and constructs of the model, N = 400

Construct Source # Items Cronbach’s α Item example

General Specific

Perceived understandability [83] 4 .90 .94 It is easy to follow what the robot does

Competence [99] 6 .90 .94 incompetent – competent

Perceived reliability [83] 5 .83 .89 The robot responds the same way under the same
conditions at different times

Effort expectancy [14] 3 .80 .81 Learning to operate the robot is easy for me

Learned trust [16] 7 .92 .92 I trust the robot

Performance expectancy [14] 4 .91 .95 Using the robot increases my productivity

Perceived behavioral control [22] 3 .88 .89 I have control when using the robot

Social influence [14] 2* .40 .04 People who influence my behavior think that I
should use the robot

Intention to use [100] 4 .95 .96 I would use the robot if they were available

*Usage of one item for statistical analysis due to low reliability

F(1,398) = 204.5, p < .001 (semantic differential with
1 = private setting and 7 = public setting).

4.2 Relationship of Trust Variables and the Intention
to Use

To test the hypothesized relationships between general, spe-
cific trust and the intention to use (H1-2), latent zero-order
effects were investigated in regressions. In line with H1,
general trust in service robots positively predicted specific
trust in the assistance robot (β = 0.74, p < .001). Also, for
the seven specific service robots, general trust significantly
predicted the specific trust in those (Table 2). Similarly, gen-
eral trust in service robots predicted the general intention to
use, βgeneral trust = 0.74, p < .001, as well as specific trust in
the described assistance robot predicted the intention to use,
βspecific trust = 0.68, p < .001, supporting H2.

To test if the effect of general trust in service robots on the
intention to use a specific robot is mediated by specific trust
in the robot (H3), a latent mediation model was calculated
(Fig. 3). In support of H3, the indirect effect was significant,
β = 0.51, [0.37, 0.64].

4.3 Prediction of Trust by Belief Groups

To test H4 on the prediction of trust by the three beliefs
groups, four latent regressions were run each for the two trust
variables under investigation in the following order: (1) the
UTAUT beliefs: performance expectancy, effort expectancy,
and social influence, (2) beliefs from trust literature: reli-
ability, competence, and understandability, (3) perceived
behavioral control from the TPB, and 4) all beliefs in com-
bination. This procedure was chosen to get an understanding
of the predictiveness of the single beliefs groups (Table 3).

For general trust, the UTAUT and the trust beliefs both
explained 59% of variance, UTAUT: F(3, 396) = 192.0,
p < .001, trust beliefs: F(3, 396) = 191.1, p < .001. Per-
ceived behavioral control explained 44% of the variance,
F(1, 398) = 319.1, p < .001. The combined model explained
66.5% of the variance, F(7, 392) = 114.1, p < .001. In
the combined model, performance expectancy, β = 0.20,
p < .001, effort expectancy, β = – 0.23, p < .001, reliability,
β = 0.32, p < .001, competence, β = 0.11, p = .003, and
perceived behavioral control, β = 0.19, p < .001, signifi-
cantly predicted general trust. There was no indication of
multicollinearity.

For specific trust, in all three separate regression mod-
els all beliefs were significant predictors. The UTAUT
beliefs explained 59%, F(3, 396) = 194.3, p < .001, the
trust beliefs 63%, F(3, 396) = 228.8, p < .001, and the
perceived behavioral control 49%, F(1, 398) = 383.8,
p < .001, of the variance of trust. The combined
model increased prediction of trust considerably
with 68% explained variance, F(7, 392) = 124.5,
p < .001. In the combined regression model, again
performance expectancy, β = 0.15, p < .001, effort
expectancy, β = – 0.13, p = .012, reliability, β = 0.26,
p < .001, competence, β = 0.16, p < .001, and perceived
behavioral control, β = 0.24, p < .001, were significant
predictors. Again, none of the inspected indices suggested
serious multicollinearity between predictors.

4.4 Prediction of the Intention to Use Robots
by Belief Groups

For testing H5 on the role of the beliefs for predicting the
intention to use, the same procedure as for testing H4 was
applied (see Table 3).
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Table 2 Mean values, standard deviations, and standardized regression coefficients for several service robots with application area and task

Robot Vacuum 
robot

Reception 
robot

Learning 
robot

Delivery 
robot

Security 
robot

Mowing
robot

Cleaning 
robot

Stimulus

Application 

area

Private Public Public Public Public Private Public

Task
Floor

cleaning

Welcome 

assistance

Learning 

assistance

Order 

delivery

Monitoring

and 

security

Lawn

mowing

Cleaning of 

large areas

M SD M SD M SD M SD M SD M SD M SDSpecific

trust 5.59 1.55 4.56 1.80 4.65 1.72 4.44 1.81 4.08 1.83 5.68 1.50 5.83 1.24

Gen. trust →

spec. trust
β SE β SE β SE β SE β SE β SE β SE

.50*** .04 .50*** .04 .51*** .04 .45*** .04 .43*** .05 .43*** .05 .53*** .04

*p < .05, **p < .01. Vacuum robot: own photo. Reception robot: Pixabay. Learning robot: Babel et al., 2020, first published in International Journal
of Social Robotics, 13, p. 1489, 2020 by Springer Nature. Delivery robot: by J. M. Chase, 2019, iStock. Security robot: PAL Robotics. Mowing
robot: Pixabay. Cleaning robot: Adlatus Robotics

Fig. 3 Mediation model for
general trust on specific intention
to use via specific trust

Specific trust

R² = .63

General trust in 
service robots

Total effect: 0.62 [0.55; 0.69], p < .001**

Specific
intention to use

Indirect effect: 0.51 [0.37; 0.64], p < .001**

R² = .54

0.12 [- 0.05; 0.28], p = .161

For the general intention to use service robots, theUTAUT
beliefs explained 69% of variance, F(3, 396) = 302.1,
p< .001,with all predictors being significant. The trust beliefs
explained 55% of variance, F(3, 396) = 165.8, p < .001,
also with all beliefs significantly predicting the intention to
use. Perceived behavioral control explained 51% of variance,
F(1, 398) = 413.5, p < .001. The combined model explained
72.5%ofvariancewith significant pathweights of allUTAUT
beliefs and perceived behavioral control, F(7, 392) = 151.5,
p < .001. Multicollinearity was not detected.

For the intention to use the assistance robot, a similar pat-
tern of findings resulted. The UTAUT beliefs explained 75%,
F(3, 396)= 401.7, p < .001, and the trust beliefs 46% of vari-
ance, F(3, 396) = 112.3, p < .001. While all UTAUT beliefs
were significant predictors, among the trust beliefs, under-
standability was not significant. Perceived behavioral control
explained 31% of the variance in the specific intention to use,

F(1, 398) = 176.8, p < .001. The combined model explained
about 76% of the variance with all UTAUT beliefs, under-
standability, and perceived behavioral control as significant
predictors, F(7, 392) = 182.3, p < .001. Again, there was no
indication of multicollinearity.

4.5 Validation of the Trustworthiness Beliefs Model
for Robot Acceptance

To test H6 and RQ1-3 in regard to the general mediation
structure from beliefs through trust, the relative importance
of the investigated beliefs groups, and to develop an efficient
trustworthiness beliefs model for robot acceptance, a series
of SEMs were conducted (Table 4). For this, we specified
models in which the intention to use was explained by trust,
which in turn was regressed on different sets of beliefs.
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Table 3 Regression models for different sets of beliefs on general and specific robot trust (left) and intention to use (right)

Predictor General trust Specific trust General ITU Specific ITU

β SE β SE β SE β SE

Model 1: UTAUT beliefs R2
adj = .59 R2

adj = .59 R2
adj = .69 R2

adj = .75

PE 0.38** 0.04 0.32** 0.04 0.51** 0.04 0.68** 0.03

EE − 0.45** 0.04 − 0.48** 0.04 − 0.35** 0.04 − 0.18** 0.03

SI 0.05 0.04 0.13** 0.04 0.11** 0.03 0.13** 0.03

Model 2: Trust beliefs R2
adj = .59 R2

adj = .63 R2
adj = .55 R2

adj = .46

R 0.49** 0.05 0.42** 0.06 0.32** 0.05 0.40** 0.07

C 0.15** 0.04 0.24** 0.05 0.11** 0.04 0.30** 0.06

U 0.23** 0.05 0.21** 0.05 0.40** 0.05 0.04 0.06

Model 3: TPB R2
adj = .44 R2

adj = .49 R2
adj = .51 R2

adj = .31

PBC 0.67** 0.04 0.70** 0.04 0.71** 0.04 0.56** 0.04

Model 4: All beliefs R2
adj = .67 R2

adj = .68 R2
adj = .73 R2

adj = .76

PE 0.20** 0.04 0.15** 0.04 0.44** 0.04 0.68** 0.04

EE − 0.23** 0.05 − 0.13* 0.05 − 0.15** 0.05 − 0.12** 0.05

SI − 0.00 0.03 0.07 0.04 0.07* 0.03 0.12** 0.03

R 0.32** 0.05 0.26** 0.06 0.06 0.05 0.04 0.05

C 0.11** 0.04 0.16** 0.05 0.03 0.03 − 0.02 0.04

U − 0.09 0.05 0.00 0.06 0.01 0.05 − 0.11* 0.05

PBC 0.19** 0.05 0.24** 0.05 0.26** 0.05 0.18** 0.04

R2
adj = adjusted R2, TPB = theory of planned behavior, ITU = Intention to use, PE = Performance expectancy, EE = Effort expectancy, SI =

Social influence, R = Reliability, C = Competence, U = Understandability, PBC = Behavioral control. * p < .05, ** p < .01

As a first step, a full model including the proposed beliefs,
trust, and the intention to use was fitted to the data for the
general and the specific intention to use (Fig. 4, Table 4,
full model). Both models showed a good fit to the data. In
both the general and specific model, the intention to use was
explained by trust to a considerable degree, which in turnwas
well explained by the antecedently ordered UTAUT and trust
beliefs (R2

adj-general trust = 0.84, R2
adj-specific trust = 0.82).

While in the general model, the performance expectancy
from the UTAUT as well as the reliability and understand-
ability were found to be significant predictors for trust, in the
specific model reliability predicted trust significantly. Taken
together, these findings support the role of the trust beliefs
as a meaningful addition to the UTAUT beliefs for the pre-
diction of robot acceptance at both levels of specificity.

4.6 Exploration of an Enhanced Trustworthiness
Beliefs Model for Robot Acceptance

In a second step, the performance expectancy and the reli-
ability were omitted from the SEMs to reduce suppressing
variance and to allow for an investigation of the relative rele-
vance of the remaining, more distinctive beliefs for trust and
the intention to use (Table 4, enhanced model). In a third
step, to get a better understanding of the extent of mediated

variance by trust, a model with direct paths from themodeled
beliefs to the intention to use was calculated (Table 5).

For themodel predicting general trust in service robots and
the intention to use, the omission of the two general beliefs
resulted in a model with comparable fit and only a slight
reduction of the explained variance in trust. The reduced
model in comparison to the full model had a considerably
decreased AIC and BIC, indicating improved parsimony
while keeping the prediction of trust and the intention to use
comparable. In the model, the two beliefs effort expectancy
and competence were significant predictors for trust. The
inclusion of direct paths in the third model led to a slight
increase in explained variance in the intention to use (from
66 to 73%) with social influence being a significant direct
predictor pointing in the direction of further mediating vari-
ables at the attitude level.

In the reducedmodel for predicting the intention to use the
assistance robot, the omission of the general beliefs perfor-
mance expectancy and reliability led to a somewhat reduced
explained variance in trust (8%) and the intention to use
(3%). However, model fit and parsimony were improved as
indicated by AIC and BIC. In this model, perceived compe-
tence of the robot and social influence significantly predicted
trust in the assistance robot. Also, the path weight from
effort expectancy to trust missed significance, β = -0.49,
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Table 4 Standardized path coefficients and confidence intervals of the SEMs for the full and enhanced trustworthiness beliefs model for service
robots in general and for a specific assistance robot

Full model

General Specific

T direct effect ITU indirect effect T direct effect ITU indirect effect

T → ITU 0.82 [ 0.78, 0.87]* 0.77 [ 0.71, 0.82]*

PE 0.19 [ 0.03, 0.35]* 0.16 [ 0.03, 0.29]* 0.15 [− 0.01, 0.31] 0.12 [− 0.01, 0.24]

EE − 0.37 [− 0.98, 0.25] − 0.30 [− 0.81, 0.20] 0.00 [− 0.93, 0.94] 0.00 [− 0.72, 0.72]

SI 0.01 [− 0.07, 0.08] 0.01 [− 0.06, 0.07] 0.06 [− 0.03, 0.15] 0.05 [− 0.02, 0.11]

R 0.54 [ 0.25, 0.82]* 0.44 [ 0.20, 0.68]* 0.59 [ 0.21, 0.98]* 0.46 [ 0.16, 0.75]*

C 0.06 [− 0.05, 0.17] 0.05 [− 0.04, 0.14] 0.11 [− 0.09, 0.31] 0.08 [− 0.07, 0.24]

U − 0.25 [− 0.48, − 0.01]* − 0.20 [− 0.40, − 0.01]* 0.08 [− 0.57, 0.42] − 0.06 [− 0.44, 0.32]

PBC 0.08 [− 0.25, 0.41] 0.07 [− 0.20, 0.34] 0.18 [− 0.15, 0.52] 0.14 [− 0.12, 0.40]

Enhanced model

General Specific

T direct effect ITU indirect effect T direct effect ITU indirect effect

T → ITU 0.81 [ 0.77, 0.85]* 0.75 [ 0.70, 0.80]*

EE − 0.78 [− 1.35, − 0.21]* − 0.63 [− 1.09, − 0.17]* − 0.49 [− 1.34, 0.37] − 0.37 [− 1.01, 0.28]

SI 0.08 [− 0.01, 0.17] 0.07 [− 0.01, 0.14] 0.17 [ 0.09, 0.25]* 0.13 [ 0.07, 0.18]*

C 0.25 [ 0.13, 0.38]* 0.20 [ 0.10, 0.30]* 0.39 [ 0.26, 0.53]* 0.29 [ 0.19, 0.40]*

U − 0.01 [− 0.35, 0.33] − 0.01 [− 0.29, 0.27] − 0.07 [− 0.65, 0.52] − 0.05 [− 0.49, 0.39]

PBC − 0.12 [− 0.44, 0.20] − 0.10 [− 0.36, 0.16] 0.05 [− 0.29, 0.39] 0.04 [− 0.22, 0.29]

Standardized regression weights (β). T = Trust, ITU = Intention to use, PE = Performance expectancy, EE = Effort expectancy, SI = Social
influence, R = Reliability, C = Competence, U = Understandability, PBC = Behavioral control. T ITU is the direct effect of trust on intention
to use. Trust columns contain direct effects of the beliefs on trust, intention to use columns contain indirect effects of beliefs on intention to use
mediated by trust. 95% CI were obtained using bootstrapping with 5000 iterations, * = significant

SE = 0.43, p = .264, although its magnitude indicated that
this effectmight bemeaningful. Again, the inclusion of direct
effects increased the explained variance of the intention to
use by 11%with a significant direct effect of social influence,
indicating that additional mediators might play a role.

4.7 Moderation of Beliefs-Trust Relationships
by Application Area and Robot Characteristics

As a precondition for the multiple group CFAs to test H7,
at least partial scalar measurement invariance for the two
models for each IV was indicated by non-significant χ2-
comparison tests. First, it was tested whether the influence
of perceived behavioral control on specific trust changes as
a function of the robot’s autonomy level. A comparison of
the two models with and without equated regression coef-
ficients revealed no significant difference, �χ2(1) = 1.05,
p= .305, opposingH7.1. Second, the effect of the application
area on the effect of social influence on trust in the assistance
robot was significant, as indicated by a χ2-difference test,
�χ2(1) = 12.11, p < .001. In line with H7.2, the effect of

social influence on trust in the robot was higher in the public,
β = 0.57, than in the private setting, β = 0.41.

5 Discussion

On the basis of an integration of three theoretical streams,
altogether seven beliefs from the TPB, the UTAUT, and trust
in automation literature were used to predict trust and the
intention to use service robots at two levels of specificity: a)
general for the group of service robots and b) for a specific
assistance robot that was introduced as a prototype either in
a public or private application area. Furthermore, the role of
the application context and the robot’s level of autonomy for
the relative importance of beliefs for trust was investigated.

5.1 Role of General Trust in Service Robots

In a first step, in support of H1, it was shown that trust in the
category of service robots predicted trust in the investigated
assistance robot and the other provided service robots with
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Fig. 4 Results for the SEMs with standardized path coefficients and
model fit indices for service robots in general (left column) and the assis-
tance robot (right column)—(1) full model with all beliefs, (2) enhanced

model, and (3) enhancedmodel with direct effects from beliefs on inten-
tion to use. Solid lines indicate positive effects, dashed lines indicate
negative effects
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Table 5 Standardized path coefficients and confidence intervals of the SEMs for the enhanced trustworthiness beliefs models with direct effects
from beliefs on the intention to use at both levels of specificity

Enhanced model with direct effects

General

T direct effect ITU direct effect ITU indirect effect

T 0.31 [0.09, 0.52]*

EE − 0.76 [− 1.27, − 0.24]* − 0.42 [− 1.08, 0.24] − 0.23 [− 0.39, − 0.08]*

SI 0.07 [− 0.03, 0.16] 0.13 [ 0.05, 0.20]* 0.02 [− 0.01, 0.05]

C 0.26 [ 0.14, 0.39]* 0.04 [− 0.06, 0.14] 0.08 [ 0.00, 0.16]

U − 0.01 [− 0.32, 0.30] 0.02 [− 0.27, 0.32] − 0.00 [− 0.10, 0.09]

PBC − 0.14 [− 0.44, 0.17] 0.07 [− 0.27, 0.41] − 0.04 [− 0.13, 0.04]

Specific

T direct effect ITU direct effect ITU indirect effect

T − 0.36 [0.11, 0.61]*

EE − 0.40 [− 1.14, 0.35] − 0.91 [− 2.01, 0.19] − 0.14 [− 0.36, 0.07]

SI 0.14 [ 0.06, 0.22]* 0.30 [0.19, 0.41]* 0.05 [ 0.00, 0.10]*

C 0.39 [ 0.26, 0.52]* 0.14 [− 0.05, 0.32] 0.14 [ 0.03, 0.25]*

U 0.00 [− 0.52, 0.52] − 0.60 [− 1.29, 0.08] 0.00 [− 0.19, 0.19]

PBC 0.08 [− 0.23, 0.38] − 0.19 [− 0.65, 0.27] 0.03 [− 0.09, 0.15]

Standardized regression weights (β). T = Trust, ITU = Intention to use, EE = Effort expectancy, SI = Social influence, C = Competence, U =
Understandability, PBC=Behavioral control. Trust columns contain direct effects of the beliefs on trust. 95%CI were obtained using bootstrapping
with 5000 iterations. * = significant

different application areas and tasks. Towards establishing
trust as amediator into the structure of technology acceptance
models, in a second step, it was shown that trust predicted
the intention to use for both service robots in general and the
specific service robot, corresponding with H2 and previous
research [37–40, 58]. In further support of the relevance of
general trust in service robots as a starting point for users’
decisions in HRI, its effect on the intention to use the inves-
tigated robot was mediated by specific trust (supporting H3).

The combined support of H1-3 underlines the notion that
trust formation and calibration starts before the actual interac-
tion with a specific robot and even before users know about a
specific robot (e.g., Kraus [16]). The individual learning his-
tory of users with a category of technological systems seems
to build a baseline expectation towards singlemembers of this
category, guiding information processing during the early
stages of learning to trust this specific system. This means
that for a newly introduced robot the accumulated knowl-
edge and derived beliefs and attitudes about service robots in
general might affect expectations and trust formation. This
is in line with work showing the influence of general robot
attitudes (e.g., [3, 107, 108]) or dispositional personality vari-
ables such as the propensity to trust automation (e.g., [3, 16,
89, 108-110] on trust. In the same manner, this resembles
reported associations between different levels and layers of

trust, for example, the propensity to trust, initial, and dynamic
learned trust [3, 110].

5.2 Relevance of Beliefs Groups

On the basis of empirical support for the role of trust for the
intention to use robots (e.g. [39, 40, 94], in this study, the
predictiveness of different groups of beliefs for trust and the
intention to use (at the twoaddressed levels of specificity)was
explored. In support of H4, in a series of regressions, it was
found that the three belief groups on their own predicted sub-
stantial proportions of the variances of general trust in service
robots and specific trust in an assistance robot. Also, as the
predicted variance proportions were substantially increased
in both the model for general and specific trust, the extension
of the UTAUT by trust and TPB beliefs seems worthwhile.

In the same manner as for trust, all three belief groups
were able to predict both levels of the intention to use—in
agreement with H5. The UTAUT beliefs performed better
for predicting the intention to use than the trust beliefs. Yet,
again the addition of the trust and TPB beliefs led to some-
what higher R2 for predicting the general intention to use.
The high prediction by performance expectancy for both lev-
els of the intention to use points into the direction of RQ1
that performance expectancymight be conceptually too close
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to acceptance (and the intention to use) to be meaningfully
distinguishable at a theoretical level. Therefore, in the fol-
lowing, the value of a reduced trust beliefs model integrating
the streams of TPB, UTAUT, and trust in automation for pre-
dicting the intention to use service robots was explored in
more detail.

5.3 Exploration of an Enhanced Trustworthiness
Beliefs Model

In all iterations of the model on the general level for the
category of service robots, trust was a strong predictor for
the intention to use. Additonally, effects of trustworthiness
beliefs on the intention to use the robot were mediated by
trust (in linewithH6.1). In the initial fullmodel, performance
expectancy and reliability significantly positively predicted
trust. Interestingly, understandability was negatively related
to trust (as opposed to its positive association in the simple
multivariate regression), pointing into the direction of a pos-
sible suppressing effect. After the omission of performance
expectancy and reliability, variance explanation in trust did
not essentially decrease (RQ1). In the enhanced model, gen-
eralized trust in service robots was significantly predicted by
effort expectancy (negatively) and the perceived competence
of the robot. In line with a possible suppression in the full
model, understandability of service robots was no longer a
significant predictor for trust. In themodel allowing for direct
effects, additionally, there was a direct effect of social influ-
ence on the intention to use service robots in general. Thus,
in this model, trust mediated a considerable part but not the
complete effect of the investigated beliefs on the intention to
use (RQ 2 + 3). Thereby, the direct effect of the social norm
on the intention to use might be explainable by the increased
observability and visibility of behavior as compared to trust
– which unlike objective behavior is a subjective perception.

In the specific model investigating the role of beliefs and
trust for the intention to use the assistance robot, trust pre-
dicted the intention to use very well and in a similar range
as in the generalized model. Also, in line with H6.2, trust
partly mediated the effect from the trustworthiness beliefs
to the intention to use. In the initial full model, only the
effect of reliability was significant. After omission of relia-
bility, the perceived competence of the robot and the social
influence significantly predicted trust in the assistance robot.
Also, the effort expectancy showed a comparably high beta
weight that did not reach significance. In the model allowing
for direct effects from trustworthiness beliefs to the inten-
tion to use, social influence showed a significant direct effect
on the intention to use the robot. The direct paths indicate
that besides trust other attitudes might be meaningful addi-
tional mediators in themodel structure, further enhancing the
understanding of psychological processes during familiariz-
ing with new robots.

In both models, no direct effects of perceived behavioral
control on trust or the intention to use could be found. This
could be explained by the conceptual closeness of perceived
behavioral control to the belief effort expectancy, which
might have resulted in suppression of variance of the per-
ceived behavioral control. It is possible that these variables
gain importance in direct interaction with robots which can
be addressed in future research by applying a more experi-
mental setup including direct interaction with a robot.

Findings show that, in both models, the perceived compe-
tence of robots predicts trust significantly. Thus, if users have
the belief that a robot is actually capable of performing well
in a task, they tend to trust it more. In our study, this belief
wasmore predictive for trust than all other included variables.
Also, it was found that the effort expectancy explains vari-
ance at the general level of trust. The negative relationship
illustrates that users do not only assess the actual character-
istics of robots but also their own capability of interacting
with it. This is also illustrated in findings from other stud-
ies supporting the relationship between effort expectancy or
ease of use and trust [65] or the role of self-perceptions for
trust in automated systems (e.g., [110]).

Also, social influence was a significant predictor for
trust in the model including specific trust. In addition to the
belief about the capabilities of the robot the interferences
others draw from the observation of the interaction with a
service robot are influencing trust. If users think that others
would approve of them using a service robot, they trust these
robots more. To conclude, trust in service robots is not only
a function of how the robot itself is perceived but rather,
also self-evaluative beliefs as well as its embeddedness in
a social context and the beliefs about what relevant others
think affect trust.

5.4 Theoretical Implications for Modeling Robot
Acceptance

Taken together, in support of H6, the good fits of both
full models support the meaningfulness of the TPB beliefs-
attitude cascade for integrating the UTAUT and trust per-
spective in the prediction of intention to use robots (see also
[15]). While related integrations were proposed and imple-
mented before (e.g., [24, 36–38, 38–40, 59, 63–65, 80]),
contradicting results hindered an integration of findings. In
this research, a clear theoretical structure was used to model
variables and overly broad beliefs theoretically not disjunct
from mediating and outcome variables (trust and the inten-
tion to use) were omitted.

In doing so, this research aimed to integrate different
research streams building on social cognitive attitude-to-
behavior theories strengthening the theoretical foundation of
robot acceptance modeling. Here through the integration of
trust, psychological theories on attitude formation processes
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can increase the understanding of how beliefs affect the inter-
action with robots. In this, the psychological mechanisms for
building up a mental model and beliefs about its scope of
functioning, capabilities, and limitations are starting points
to inform human-centered robot andHRI design. Essentially,
models on attitude formation and change like the TPB or the
Elaboration LikelihoodModel [111] or similar theories from
cognitive and social psychology are meaningful and promis-
ing directions for the derivation of hypotheses and study
designs in HRI research. These streams of research, in line
with theCASAparadigm [1],might help to further strengthen
the understanding of processes in which the perception of
robot characteristics and the observation of robots feed into
trust formation and the interaction with robots. This might
provide progress for HRI research in integrating findings
on robot characteristics like anthropomorphic robot design,
robot gender, speech, facial characteristics, movement, etc.
by providing an enhanced understanding for potential mod-
erator variables on the side of users or the situation in which
information is presented. This research underlines that the
consideration of complexity can indeed meaningfully extend
our understanding of trust processes and user behavior in the
interaction with robots.

In this research, the relative informativeness of beliefs
from different model families was investigated. Naturally,
the included beliefs share some variance as they are part
of the same processes. In line with our reasoning, it was
shown that in predicting trust in robots, unspecific, overlap-
ping beliefs can bemeaningfully replaced bymore distinctive
beliefs without endangering the predictive power of trust and
acceptance models. There, both the performance expectancy
from the UTAUT and the reliability were omitted, result-
ing in stronger associations of the remaining beliefs without
substantially reducing variance explanation. On a theoretical
level, performance expectancy is not clearly distinguishable
from acceptance. Subjective reliability cannot be measured
separately from trust.

The reduced models allow differentiated and, at the same
time, the economic prediction of trust and the intention to
use robots. In doing so, they enhance the theoretical embed-
dedness of the model in the attitude to behavior perspective,
allowing a more theoretically founded derivation of implica-
tions for trustworthy robot design and dissemination.

5.5 Role of Situational Variables and Robot
Characteristics for Beliefs-Trust Prediction

The study’s findings support that the application area of a
robot can affect the relevance of beliefs for trust formation,
partially supporting H7. This underlines the role of changing
environments for variances in the interpretation of the very
same information about robots. Also, it points in the direc-
tion that while a general meaningful structure of acceptance

modelsmight help to increase understanding of the formation
of user decisions and behavior in regard to different robots,
the relative relevance of beliefs for trust and the intention
to use might change over settings and for different robots.
This underlines the relevance of theoretical considerations
for the integration of variables in such models over a purely
data-driven rationale for variable inclusion or exclusion.

5.6 Practical Implications

This study’s findings support the mediation of the effect of
beliefs on usage intentions by trust and thereby underline the
relevance of considering individual trust processes inmaking
use of available information in building up expectations and
intentions to interact with robots. In our study, we found
strong evidence for a relationship between trust in service
robots as a general category and trust in specific robots.

This holds several implications for robot dissemination
and design practice. The sum of communication and experi-
ences about robots builds into trust formation in single robots.
In this regard, the availability and the content of media like
science fiction movies, computer games, or press articles in
which robots play a role might be essential for learning what
to expect from robots in general, and thismight be transferred
to new specific robots people get to know. Therefore, this
potential influence of theway robots are represented inmedia
should be considered by artists, press and those in charge of
programs. Responsibilities in this regardmight be on the side
of the government and robot manufacturers. In order to facil-
itate calibrated trust in (future) users of and interaction part-
nerswith service robots, the public needs to be addressedwith
objective and transparent information about the actual capa-
bilities, processes, and limitations of robots. This includes
advertisements (e.g., in social media), which should paint a
realistic picture of what robots can or cannot do.

In the enhanced trust beliefs models especially the rel-
evance of three beliefs was supported: competence, effort
expectancy, and social influence. This finding illustrates the
combined influences of three sources of information that
play a role for the perception of robots and the decision to
interact with them.

First, the relevance of competence underlines the well-
investigated role of perceived robot ability and performance
on trust. Perceived competence seems to be the most
essential consideration when being confronted with a new
robot. Therefore, to enhance a calibrated level of trust,
all communication about the robot’s features, ability, and
reliability—from external sources but also from the robot
itself—should be realistic.With this, a balanced usage behav-
ior and interaction of users is facilitated, neither leading
to distrust and inefficiently reduced robot reliance nor to
overtrust and an overly optimistic and risky usage pattern
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of the robot. Several studies report that trust is not neces-
sarily reduced by communication about possible errors of
automated systems or even the experience of such errors in a
long-term perspective (e.g. [112, 113]). Rather if they are not
associated with substantial danger and risk, such information
and experience might favor a realistic picture about the robot
and foster appropriate decisions during HRI.

Second, the relevance of effort expectancy for trust at a
general level sheds light on the relevance of self-evaluative
beliefs in the formation of trust in a specific robot. While
the role of self-evaluations for robot acceptance has been
discussed in HRI before, up to now there are no conclusive
results (e.g., [114, 115]). In other domains of the interaction
with automated technology, a positive relationship between
self-esteem and self-efficacy and trust in an automated driv-
ing system has been reported (e.g., [110, 116]). People who
perceive less complications and barriers for using service
robots successfully tend to trust them more in general as
well. For general communication about robots, information
about how common concerns and perceived problems for
using robots successfully can be overcome might consider-
ably help to increase trust and acceptance.

Third, following from the role of social influence in the
model for the specific intention to use, the interpersonal
visibility and contextual embeddedness of HRI should be
addressed in robot design and dissemination. People care
about what they communicate by using robots and what oth-
ers think about this. Therefore, the societal discussion about
what it means to use a robot on a normative level needs to
be extended and made visible as it considerably affects trust
levels and the adoption of robots. This is further substantiated
by the findings on the role of context for the relevance of the
effect from the belief to social influence to trust, indicating
a stronger effect in public as in private settings. As from a
perspective of technological readiness level service robots in
public are among the first robots people will interact with in
their daily lives, strategies for trust calibration and reduction
of normative concerns should be implemented in the public
sector as these are essential for raising acceptance levels.

5.7 Strengths, Limitations, and Future Research

This work contributes to the current state of research with
a theoretical review and (re)integration of different research
streams (acceptance models, TPB, and trust) and their
application in HRI. Considerable strengths of the study are
the integration of these theoretical streams, the theoretical
breakdown of the interrelationship of several groups of vari-
ables, a combination of a correlative and an experimental
approach, and a large, heterogeneous sample allowing for
sophisticated statistical analyses. While previous research
rather focused on the acceptance of single (specific) robots,

this work explicitly differentiated between the broad cate-
gory of service robots in general and a specific representative
robot of that category. Also, the model was applied in two
application contexts.

The presented study has limitations that need to be
addressed in future research. First of all, the study was con-
ducted online with vignettes without actual interaction with
a robot. Related to that, second, no actual behavioral mea-
sure was integrated. The online setting was chosen to make a
large sample possible needed to conduct the appropriate sta-
tistical methods for the investigated hypotheses and research
questions. Future studiesmight validate themodel in real-life
experiments and investigate its relevance for behavioral vari-
ables in actual HRI. Third, participants were from a merely
German sample and only had restricted prior experience with
robots. As culture might be an important factor influenc-
ing specifics in technology adoption, findings on the relative
importance of the investigated beliefs need to be validated in
sample in other cultures (e.g., in a Japanese sample). What-
soever, the basic contributions of this work in terms of the
psychological processes involved in the formation of trust
and the intention to use robots are likely to be robust to
culture-specific variances. In regard to the restricted prior
experiences of the sample, while common in most of today’s
studies, research on the role of this variable is encouraged
as it might be important to understand belief and attitude
formation. Fourth, in this research the trust beliefs model
was only investigated in regard to one specific robot. Poten-
tially, the role of single beliefs changes for different robots
and different contexts, which raises a number of challenging
research questions for future studies. Fifth, the situational
relevance of beliefs for trust and the intention to use might
be smaller in online settings and thus should be investigated
again in real-life experiments where stronger effects can be
expected. Sixth, the study used comparably short scales for
some of the investigated constructs. While this resulted from
the complex study design to guarantee economy and moti-
vation in participants, the findings should be validated. Also,
as many beliefs have been proposed as being meaningful
for understanding technology acceptance, this study could
not assess all beliefs. Especially, the role of "will-do" trust-
worthiness beliefs concerning motive and moral attributions
towards technology (i.e., integrity and benevolence) need fur-
ther investigation. The relative role of these ability-related
beliefs in different robots and interaction scenarios might
lead to additional insights in psychological trust processes in
HRI. In this regard, the role of top-down vs. bottom-up pro-
cesses is of interest, and future studies might investigate how
prior experience vs. the actual perception of robot charac-
teristics and abilities during the early interaction with robots
build into trust formation and calibration. Hereby, additional
mediation variables on the intention to use robots beside trust
and factors explaining differences of the interrelations of
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modeled variables at the general category level of service
robot and the specific level might be identified.

5.8 Conclusion

In this work we theoretically derived and validated a
generalizable acceptance model (TB-RAM) for service
robots including trust and trustworthiness beliefs. Based
on a thorough review, we first discussed the shortcomings
of current acceptance modeling and proposed strategies
to overcome them. Second, beliefs from three research
streams (acceptance models, TPB, trust in automation) were
(re)integrated into the structure of the TPB. Third, in a
large-scale online study, the TB-RAM model was applied to
two levels of trust—general trust in the category of service
robots and specific trust in a particular assistance robot—and
validated in two contexts—public and private—and two
levels of autonomy.

Results show that trust in service robots as a general cate-
gory predicts trust in specific robots as representatives of that
category, which, in turn, mediates the effect of generalized
trust on the intention to use a specific robot. This under-
lines the role of general for specific trust and, with this, the
substantial relevance of the sum of experiences with robots
for establishing expectations, beliefs, trust, and using newly
introduced robots.

Furthermore, the combination of beliefs from the TPB
(perceived behavioral control), the UTAUT (social influence,
performance expectancy, effort expectancy), and trust litera-
ture (reliability, competence, understandability) substantially
explained variance in general and specific trust, as well as the
intentions to use both service robots in general as well as the
focused specific robots. In line with the basic assumption of
this research, dropping the overlapping beliefs performance
expectancy and reliability did neither substantially reduce
explained variance in trust nor model fit. Taken together, the
reported findings support the meaningfulness of integrating
the three theoretical perspectives to enhance the understand-
ing of psychological processes involved in HRI and robot
adoption and, in this, aiming to model distinctive beliefs
instead of overlapping general beliefs. Also, this emphasizes
the role of trust as a mediator of the effect from robot-related
beliefs to the intention to use service robots, for both general
trust in service robots and specific trust for single represen-
tatives of this category.

Additionally, the findings underline situation-specific rel-
evance of beliefs for trust and the intention to use a specific
robot, as indicated by the higher social influence in the pub-
lic than in the private application context. This sheds light on
the processes in which both trust and behavioral intentions
in regard to robots are formed.

Taken together, this research provides a meaningful
theoretical extension of technology acceptance modeling in

the domain of HRI and other automated technology, which
allowed for the derivation of some general directions for
enhancing trustworthy and human-centered robot interaction
design.
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