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Abstract
This study scrutinizes the impacts of utilizing a socially assistive robot, the RASA robot, during speech therapy sessions
for children with language disorders. Two capabilities were developed for the robotic platform to enhance children-robot
interactions during speech therapy interventions: facial expression communication (containing recognition and expression)
and lip-syncing. Facial expression recognition was conducted by training several well-known CNN architectures on one
of the most extensive facial expressions databases, the AffectNet database, and then modifying them using the transfer
learning strategy performed on the CK+ dataset. The robot’s lip-syncing capability was designed in two steps. The first
step was concerned with designing precise schemes of the articulatory elements needed during the pronunciation of the
Persian phonemes (i.e., consonants and vowels). The second step included developing an algorithm to pronounce words
by disassembling them into their components (including consonants and vowels) and then morphing them into each other
successively. To pursue the study’s primary goal, two comparable groups of children with language disorders were considered,
the intervention and control groups. The intervention group attended therapy sessions inwhich the robot acted as the therapist’s
assistant, while the control group only communicated with the human therapist. The study’s first purpose was to compare the
children’s engagement while playing a mimic game with the affective robot and the therapist, conducted via video coding.
The second objective was to assess the efficacy of the robot’s presence in the speech therapy sessions alongside the therapist,
accomplished by administering the Persian Test of Language Development, Persian TOLD. According to the first scenario,
playing with the affective robot is more engaging than playing with the therapist. Furthermore, the statistical analysis of the
study’s results indicates that participating in robot-assisted speech therapy (RAST) sessions enhances children with language
disorders’ achievements in comparison with taking part in conventional speech therapy interventions.
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1 Introduction

Inclusive education is based on treating individuals with
diverse capabilities attentively through a perfect tutoring pro-
cedure [1, 2]. By way of explanation, inclusive education
provides an opportunity for learnerswith differentiating char-
acteristics to be educated in an equitable context and acquire
further training achievements. Several studies recently con-
ducted in the field of education revealed that the educational
process benefits from the relationship between educational
assistive tools and learners much more than the relationship
between tutors and learners [3].Hence, an important aspect of
teaching is utilizing appropriate educational tools to improve
the students’ acquisition and engagement. Social robots are
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novel educational assistive technologies that assist educators
by promoting learning efficiency [4].

Delayed Speech Development (DSD) is an incapac-
ity to deploy communicational skills in infancy [5]. This
disruptive delay is frequently accompanied by mental retar-
dation, which can influence toddlers’ socialization [6, 7].
Accordingly, these children face tremendous challenges in
expressing their thoughts and comprehending information
from their environment, leading them to be classified as
socially vulnerable children. Statistics indicated that 8–10%
of all preschoolers face DSD problems [8]. Ordinarily, the
disorder’s initial symptoms appear around 18 months when
a child does not make any effort to repeat the words they
hear. At 24 months, their vocabulary is restricted to sin-
gle words, and at 30–36 months, an apparent lack of skill
in making sentences can be observed. Generally, these chil-
dren are only able to use memorized phrases gathered from
games or animations [9]. Speech therapy sessions mitigate
some of the problems related to language disorders and hone
special needs children’s communicational and verbal skills.
In recent decades, employing audio and visual content dur-
ing speech therapy sessions has become very popular among
speech therapists due to their potential benefits in increasing
the efficiency of the interventions [10–12]. However, these
tools only lead to one-way interaction; in other words, chil-
dren’s responses are not reciprocated in these approaches;
therefore, a conversation, which is a prerequisite to commu-
nication, cannot be formed [13].

Among various assistive technologies utilized in ther-
apy sessions, social robots have received growing attention
in recent years due to their potential role as mediators
between therapists and children [4, 14, 15]. Involving social
robots in clinical settings increases participants’ attention,
improves individuals’ social behaviors, and sustains their
level of engagement during therapeutic interventions. The
encouraging implications of employing social robots in ther-
apy interventions for individuals with various impairments,
such as Autism Spectrum Disorder (ASD) [16–18], Down
syndrome [19, 20], and Hearing impairments [21], have
underscored the encouraging prospects of these promis-
ing assistive tools in terms of providing equal educational
opportunities for special needs children [22]. A notewor-
thy characteristic of employing a social robot as an assistive
tool in therapy sessions is the two-way interaction formed
between the robot and the child, which encourages different
aspects of the children’s behaviors, such as attention span
and willingness to learn.

This research endeavors to explore the potential benefits
of employing the RASA robot [23, 24] in speech therapy
sessions via quantitative analysis. In this regard, two scenar-
ios were carried out: the first was associated with comparing
the children’s engagement level in an imitation game played

with the therapist and the robot, and the second was con-
cerned with investigating the efficacy of the robot’s presence
in speech therapy sessions. The children’s awareness of the
robot’s capabilities to recognize its users’ facial expres-
sions and express several emotional states forms a positive
preconception about the robot’s intelligence level and the
complexity of its behaviors, which helps to sustain the chil-
dren’s engagement through long-term interaction with the
robot [25]. Additionally, when children assess a social robot,
the delight they have experienced through their interactions
affects the acceptance of the robot. Enjoyment is a crucial
element in the investigation of social robots’ acceptance;
it diminishes the individuals’ anxiety and makes them feel
more confident about their ability to communicate with this
technology [26–28]. Thus, the first scenario could benefit the
second by increasing the children’s willingness to approve
the social robot as an educational assistive tool in speech ther-
apy sessions. To scrutinize the impacts of the robot’s presence
in the two scenarios, two groups of children were recruited
to participate in our examinations: the first one (the inter-
vention group) participated in robot-assisted speech therapy
(RAST) sessions and the second one (the control group)
participated in traditional therapy sessions. Each group of
participants was comprised of six children with language
disorders (four males and two females) with a mean age
of 6.4 years. To accomplish the robot’s objective in terms
of interacting with children in the RAST sessions, a facial
expression recognition system and an accurate lip-syncing
systemwere developed and implemented on theRASArobot.
To do this, several well-established Convolutional Neural
Network (CNN) architectures were trained on the AffectNet
emotional database [29] and modified via the transfer learn-
ing technique performed on the CK+ database to become
more suitable for the RAST sessions. The other significant
aspect of this study that distinguishes it from previous works
[3, 4, 30] is the design of the robot’s mouth, which can pre-
cisely synchronize lip movement with the robot’s speech. In
this way, children with language disorders can better learn
the exact pronunciation of each word by concentrating on the
robot’s lips.

The rest of the paper is organized as follows: Sect. 2 is
devoted to elucidating related works. Section 3 explains the
design of the affective interaction system composed of three
main phases: recognizing facial expressions, expressing var-
ious emotions, and implementing the system on the RASA
robot. Section 4 describes the development of an appropriate
human-like lip-syncing system for the robot. This section
explains the design of the robot’s visual articulatory ele-
ments for each Persian phoneme in detail, along with the
algorithm utilized to attain human-like lip-syncing. Section 5
gives details about the experimental procedure and discusses
the two scenarios carried out in the study. The first sce-
nario sought to answer a primarily exploratory question: Are
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Fig. 1 An overview of the study

children with language disorders more inclined to play a col-
laborative emotional imitation game with a social robot or a
therapist? The second scenario aimed to explore the effects
of the robot’s presence in speech therapy interventions on the
individuals’ language skills development and was assessed
by comparing the progress of two groups of children with
language disorders, those who participated in robot-assisted
therapy sessions with those who took part in conventional
sessions. Section 6 analyzes the results and discusses the out-
comes via conducted statistical tests. The assessment tools
used in this analysis include video coding for the first sce-
nario and the Persian version [31] of the Test of Language
Development (TOLD) [32] for the second scenario. The fol-
lowing section discusses the limitations of this study and
future works. Finally, the conclusion is drawn in Sect. 8. An
overview of the study is shown in Fig. 1.

2 RelatedWork

2.1 Robot-Assisted Speech Therapy

According to studies investigating the potential of social
robots in speech therapy interventions for children suffer-
ing from different impairments such as ASD [33], Cleft
Lip and Palate (CL/P) [34], Cerebral Palsy (CP) [35], Hear-
ing impairments [36, 37], and DSD [38], the presence of a
robotic assistant is beneficial in terms of providing incentives
for children to participate in therapy sessions and improv-
ing their verbal and communication skills. For example, in
Ref. [38], Zhanatkyzy and Turarova used the NAO robot to
investigate the effectiveness of robot-assisted therapy (RAT)

sessions. They conducted their experiments for two weeks
(three sessions per week) with four DSD children between
four and six years old. In this study, the robot played the
role of entertainer by performing dances, playing games, and
telling several fairy tales. The study results suggested that
RAT could be regarded as a practical approach to encourage
DSD children and facilitate their development in pronounc-
ing simple sentences and singing well-known songs with the
robot. However, the robotic platforms utilized in references
[33–38] did not possess precise visual articulatory systems;
consequently, the RAT scenarios conducted in these stud-
ies were based on auditory-verbal therapy (concerned with
developing auditory and verbal skills) andwere ineffective in
enhancing children’s capabilities with regard to lip-reading
and perceiving other non-verbal cues [37].

2.2 Facial Communication Channels in HRI

By and large, blurring the distinctions between therapists and
socially assistive robots in terms of communication meth-
ods used to interact with children could lead to progress in
human–robot interaction (HRI). Moreover, real-time inter-
action between children and robots can positively affect both
the learning process and social development [39, 40]. Thus,
augmenting human-like features to a socially assistive robot,
such as real-time recognition and expression of emotional
states, body gestures, and lip-syncing, makes the robot more
socially acceptable [41].
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2.2.1 Facial Expression Recognition in HRI

Following advances in computer vision technologies, devel-
oping emotional facial expression recognition systems for
social robots via various machine learning algorithms and
promoting the robots’ emotional intelligence have been
trending upward [42–45]. Since facial cues are essen-
tial elements in an affective interaction, their recognition
and expression lead to more in-depth communications
[46–51]. Furthermore, the more extravagantly the social
robot behaves, the more it encourages children to remain
engaged through long-term interactions with the robot [25].
In social robots’ acceptance, sociability is a primary fac-
tor attributed to the users’ opinions about the robot’s social,
emotional, and cognitive skills [28]. Hence, the robot’s
capabilities in terms of recognizing and expressing various
emotional states influence the individuals’ evaluation of the
robot’s intelligence level and heighten the robot’s acceptance.
Different machine learning methods, e.g., deep learning,
have been extensively used in the literature to promote
social robots’ emotional intelligence [52]. Ref. [53] trained
the Xception architecture [54] on the FER-2013 database
[55] and implemented the trained model on the Pepper
humanoid robot. In that study, the robot was able to rec-
ognize pedestrians’ emotions (neutral, happiness, sadness,
and anger) and consider their emotional states to perform
emotion-aware navigation while moving among them. In
Ref. [47], theVGG16Network [56]was trained on theFERW
database to develop a model capable of recognizing seven
basic emotions; the trained model was then implemented on
the XiaoBao robotic platform to improve the quality of the
robot’s interactions.

2.2.2 Lip-Syncing in HRI

Lip-syncing is a key factor in human–human interactions, and
its precise presentation could result in a better perception of
the communicators’ purposes [57]. The visual components
of human articulatory systems (lips, tongue, teeth, and jaw)
and their motions convey the sounds generated by the vocal
tract [58]. Due to the importance of multimodal commu-
nication in social robotics, many studies have focused on
synchronizing lip movements with speech to take advantage
of audio-visual information [59]. Cid and Manso [60] con-
cluded that a robot’s verbal articulation could be improved
by compounding two sources of signals, auditory cues (pitch,
pause, and emphasize) and visual cues (lip motions, facial
expressions, and body gestures). Ref. [61] found that pos-
sessing a dynamic and human-like mouth could increase
the acceptance of the robot. The significance of this type
of mouth for a socially assistive robot is much more critical
in speech therapy interventions where the ultimate goal is
emulating natural speech.

3 Emotional Interaction SystemDesign

3.1 Facial Expression Recognition System

As previously mentioned, social robots with the capacity to
interact with children emotionally can substantially attract
their attention [62]. Generally, emotional interaction is com-
prised of emotion recognition and expression that can be
conveyed through assorted audio and visual channels, includ-
ing facial cues, which are a primary way of displaying
feelings in human–human interactions. End-to-end neural
networks are ubiquitously utilized among different machine
learning algorithms for facial expression recognition tasks.
The two principal aspects of developing awell-trainedmodel
for a recognition task are adopting proper databases and suit-
able architectures.

Developed by Mohammad H. Mahoor and his colleagues
in 2017, AffectNet is one of the most comprehensive wild
emotional datasets comprising approximately 1 M web
images [29]. This dataset consists of two main parts, man-
ually and automated annotated images. Manually labeled
images, the focus of this study, are classified into eight
expressions and three invalid emotion categories: neutral,
sad, happy, surprise, fear, anger, disgust, contempt, none,
uncertain, and non-face. It should be noted that invalid emo-
tion categories (none, uncertain, and non-face) were not
considered in the training process of the current study. Due to
the copious number of annotated images and wild hallmarks
of the dataset, training an appropriate CNN architecture on
this dataset will yield a well-trained model with superior
generalization capability, which can be used in real-world
applications.

The extended Cohn-Kanade (CK+) is another standard
facial expression dataset developed by Patrick Lucey [63].
With only a tiny number of samples consisting of 327
sequences across 123 subjects gathered in a controlled con-
dition, it superficially resembles the sequences captured by
the RASA robot’s head-mounted camera in the laboratory.
In this paper, similar to [64, 65], the last three frames of
each labeled sequence were categorized as one of the basic
emotions, and the sequences’ first frames were extracted as
neutral. Table 1 summarizes the total number of images per
expression for each dataset.

Sample images of the AffectNet and CK datasets and an
image captured by the robot’s camera in the lab environment
are shown in Fig. 2.

As the figure shows, the images captured by the robot’s
camera and the CK+ images have two conspicuous similar-
ities; both were captured in a straight-ahead position and a
standard lab environment.

In this study, the facial expression recognition system
was designed and implemented on the robotic platform in
three steps. In the first step, several noted architectures were
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Table 1 The total number of
images in the AffectNet and CK+
datasets per each expression [29,
65]

Neutral Sad Happy Surprise Fear Anger Disgust Contempt

CK+ 593 84 207 249 75 135 177 54

AffectNet 75,374 25,959 134,915 14,590 6878 25,382 4303 4250

Fig. 2 a An image captured by
the robot’s camera in the
experimental setup, b a sample
image of the AffectNet [29], and
c a sample image of the CK+
datasets [63]

trained on the AffectNet dataset, and the results were com-
pared through various evaluation metrics, such as accuracy,
F1-score [66], Cohen’s kappa [67], and area under the ROC
curve (AUC) [68], to achieve an accurate model. Afterward,
to enhance the system’s performance in interactions with the
robot’s users in the laboratory, the model (selected accord-
ing to its performance on the AffectNet test set) was then
adapted via the transfer learning technique conducted on the
CK+ dataset. Finally, the modified model was implemented
on the RASA robot.

3.1.1 Step One: Model Training

Several well-known CNN architectures, including
MobileNet [69], MobileNet v2 [70], NASNET [71],
DenseNet169 [72], DenseNet121 [72], Xception [54],
Inception v3 [73], and VGG16 [56], with satisfactory
performance on the ImageNet dataset [74], were trained on
the AffectNet dataset. According to the dataset’s instruction
manual, faces were cropped and resized to 224 × 224. Then,
the corresponding preprocesses were applied to the images
for each network. In order to achieve a better-generalized
model, data augmentation was performed via three standard
techniques: rotation (from -10 to 10 degrees), translation (up
to 10% in both x and y directions), and horizontal flipping.
The Adam optimizer was utilized with a learning rate of
1e-5 and a momentum of 0.9. The weighted-loss function
was also used to compensate for the adverse effects of the
imbalanced training set. The mentioned networks were
trained over ten epochs. For each network, the maximum
batch size was limited by the available memory of the
hardware: 64 for MobileNet, 64 for MobileNet v2, 64 for
NASNET, 32 for DenseNet169, 32 for DenseNet121, 16
for Xception, 16 for Inception v3, and 8 for VGG16. All
the networks were trained on an NVIDIA GeForce GTX
1080Ti GPU using Keras framework. Table 9, presented

Table 2 Confusion matrix of the trained MobileNet architecture on the
AffectNet test set

in the “Appendix” section, summarizes the accuracy of
the trained models. A comparison of the various networks’
accuracies led us to adopt the MobileNet architecture for
the facial expression recognition task due to the number of
parameters and superior performance on the AffectNet test
set. The confusion matrix of the MobileNet model is shown
in Table 2.

Other evaluation metrics for the CNNs mentioned above
are also concisely presented in Table 10 in the “Appendix”
section. It is worth noting that the AffectNet dataset’s anno-
tators concurred with each other on 60.7% of the images
[29].
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Table 3 A comparison of theMobileNet evaluation metrics on the CK+
test set, before and after transfer learning

Before transfer learning After transfer
learning

Accuracy 0.85 0.95

F1 score 0.77 0.92

Recall 0.85 0.91

Precision 0.75 0.97

Cohen Kappa 0.76 0.94

AUC 0.86 0.98

3.1.2 Step Two: Model Adaptation

In this step, the MobileNet model, chosen in the previous
step,was evaluated on theCK+dataset and tunedby the trans-
fer learning technique. The datasetwas split into train and test
sets to assess the network’s performance on the CK+ . The
splittingprocedurewas subject-based, so 10%of the subjects,
randomly selected, formed the test set. The face detection for
this dataset was done by the Viola-Johns method [75], and
the previous preprocesses and augmentation techniques were
applied, as explained above. While the features extracted in
the early layers of a CNN model are more generic, the ones
extracted from later layers are more dataset-specific. Hence,
to optimize the model on the CK+, the 20 earliest layers’
parameters were frozen, and the other layers’ parameters
were tuned over ten epochs. Table 3 represents the accuracy
and the evaluation metrics of the MobileNet model on the
CK+ test set before and after performing transfer learning on
the CK+ train set.

As Table 3 presents, transfer learning improved the
model’s performance on the CK+ test set. Due to the simi-
larity between the study’s experimental environment and the
CK+ , we could reasonably expect to acquire a more precise
facial expression recognition system after the tuning.

3.1.3 Step Three: Implementing the Facial Expression
Recognition System on the RASA Robot

The humanoid robotic platform utilized in the study was
RASA, designed and manufactured at CEDRA (Center of
Excellence in Design, Robotics, and Automation) at the
Sharif University of Technology [23, 24]. This socially
assistive robot aims to interact with special needs children.
Figure 3 displays the employed robotic platform.

The robot’s abilities to perform real-time recognition and
react authentically are critical factors in providing a natural
interaction. Hence, due to the limited power of the graphics
processing unit of the robot’s onboard computer, it would
be beneficial to use an external graphics processing unit to

Fig. 3 The RASA socially assistive robot

execute the facial expression recognition task’s computa-
tional cost. Accordingly, an external NVIDIA GeForce RTX
2070 GPU was deployed to do graphical computations. To
implement the developed emotional system on the RASA,
the robot’s onboard camera first captured the user’s image.
Next, a ROSnodewas used to stream the image topic. Then, a
python code was developed to capture live stream video from
the robot’s IP and apply Viola-John’s face detector algorithm
[75] to the received data. Following the face detection, the
CNN model was used to predict the user’s facial expression.
By way of response, the proper reaction, according to the
HRI scenario, was selected and published on a ROS topic.
Ultimately, the robot reacted according to the subscribed
message. In this scheme, only the tasks of streaming the video
and subscribing to messages were loaded onto the robot’s
onboard computer.

3.2 Facial Expressions

To achieve a two-way interaction between the robot and a
child, not only is it essential to recognize the child’s emo-
tional state, but the robotmust also depict a justifiable expres-
sion. Therefore, designing appealing facial expressions for
the robot is crucial. In the current study’s speech therapy
scenarios, the robot should be able to convey emotional
messages and enunciate letters and words simultaneously.
Thus, the robot’s emotional expressions should not depend
only on articulatory visual elements. Hence, several other
components, such as eyes, eyebrows, and cheeks, were also
considered in the design of the robot’s emotional states. In
this way, the robot will be able to express emotions and lip-
sync concurrently.

Figure 4 depicts the eight emotional states designed for
the robot’s face.

4 Lip-Syncing System

4.1 Graphic Design

Developing a lip-syncing system with realistic articulators
could boost the robot’s efficacy in the RAST sessions. To

123



International Journal of Social Robotics (2023) 15:165–183 171

Fig. 4 Designed emotional states
of the robot

Fig. 5 The procedure of designing the robot’s articulators for a partic-
ular phoneme

achieve a perceptible visual articulatory system, an Iranian
sign language interpreter was hired to pronounce Persian
phonemes (including vowels and consonants), and the artic-
ulators were thoroughly sketched based on the images
captured from him in a straight-ahead position. Figure 5
illustrates the procedure of sketching the robot’s visual artic-
ulatory elements for a particular phoneme.

Figure 6 shows the individual shapes sketched for Persian
phonemes, including twenty-two consonants and six vowels.

4.2 Morphing Algorithm

The algorithm proposed for the lip-syncing system exe-
cutes according to a three-step process, including receiving
a word, disassembling it into basic phonemes, and morphing
them into each other smoothly. In the procedure of mor-
phing a phoneme into its subsequent one, the deformation
of the articulators should be minimized to achieve a natu-
ral visual articulation. Furthermore, although minor defects
in the sketches could be ignored by spectators, discrete and
unnatural transitions of elements are not permissible. Follow-
ing a path between the initial and final points with a constant
velocity throughout the transitionprocedure adversely affects
the fluidity ofmovement and leads to unnatural motions [76];
this problemcould be addressed by adding acceleration terms
[77].

In animation jargon, an easing function describes the way
that the transition from an initial point to a final point occurs
by determining the velocity and acceleration terms. Figure 7
demonstrates some well-established easing functions.

After examining the easing functions presented in Fig. 7,
the “InOutExpo” function was selected due to its capability
to provide a natural and smooth transformation. The equation
of this function is given by [76]:

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x = 0
220x−11 x ∈ (

0, 1
2

]

1 − 2−20x+9 x ∈ ( 1
2 , 1

)

1 x = 1

(1)

The smooth transition from a particular articulatory ele-
ment of a phoneme to its corresponding component in another
phonemewithin successive frames could be accomplished by
dividing each shape into numerous points and employing an
easing function to determine the points’ transition character-
istics. The two shapes’ corresponding points are determined
by minimizing the deformation according to the following
penalty function:

J =
√

∑N
i=1

(
xi − x̂i

)2

N
(2)

Thus, the transition problem is simplified to the opti-
mization of the least square penalty function presented in
Eq. (2). Increasing the number of points makes the transi-
tion smoother; however, it accrues more computational cost.
In this study, the KUTE library was deployed for morphing
the articulators’ vector shapes sketched by Adobe Illustra-
tor. The sign language interpreter and the speech therapist
assessed the caliber of the proposed articulatory system by
visual examinations. Figure 8 demonstrates the procedure of
lip-syncing a Persian word.
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/æ/ /ɒː/ /o/ /uː/ /e̞/

/iː/ /b/ /p/ /t/ /s/

/d͡ʒ/ /t͡ʃ/ /h/ /χ/ /d/

/z/ /ɾ/ /ʒ/ /ʃ/ /f/

/ɢ/ /k/ /ɡ/ /l/ /m/

/n/ /v/ /j/ /n/ Normal

Fig. 6 The sketches of the articulatory elements for the Persian phonemes and the normal state

5 Methodology

In this study, two groups of children with language dis-
orders were investigated to assess the efficacy of utilizing
social robots as assistive tools in speech therapy. The first
group (the intervention group) was enrolled in the RAST
interventions, while the second group (the control group)
participated in conventional speech therapy sessions. The

under-investigation groups underwent two scenarios: a ten-
minute imitation game and a set of thirty-minute speech
therapy sessions.

The first scenario was designed to scrutinize the children’s
engagement level through a mimic game played with the
robot (for the intervention group) and the therapist (for the
control group). This examination endeavored to compare the
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Fig. 7 Penner’s easing functions
[76]

Fig. 8 The procedure of
lip-syncing (/A�

�b/), which means
water in Persian

duration participants looked at the therapist/robot employ-
ing the manual video coding technique. The second scenario
was formulated to examine the potential of deploying social
robots in speech therapy sessions for children with language
disorders. This inspection investigated the language skills
progression of individuals who participated in the RAST

sessions and traditional therapeutic interventions. To accom-
plish this objective, the Persian TOLD was taken from the
intervention and control groups in two phases: a pre-test and a
post-test. The pre-intervention scores were utilized to assess
the comparability of the two groups’ initial language levels,
and the post-intervention scores were used to investigate the
efficacy of the RAST sessions.

123



174 International Journal of Social Robotics (2023) 15:165–183

Each group participated in ten one-to-one therapy ses-
sions, one session per week. The first session (Week #1) was
devoted to familiarizing the children with the experimental
setup (to negate the novelty factor effects) and administrat-
ing the pre-test. The second session (Week #2) was dedicated
to performing the first scenario, the imitation game, and the
other sessions were held to explore the social robot’s poten-
tial in speech therapy. Oneweek after the final speech therapy
session, the post-test was given to both groups of children.

5.1 Participants

In this exploratory study, the intervention groupwasmade up
of six native Persian-speaking children with language disor-
ders (two female, four male) with an average age of 6.4 years
and a standard deviation of 2.2 months. The control group
consisted of the same number of native Persian-speaking
children, the same distribution of genders, and an average
age of 6.4 years with a standard deviation of 1.9 months.
In order to make a precise evaluation, both groups of chil-
dren were selected from individuals who attended weekly
traditional speech therapy sessions at the Mahan Language
Disorders Center. Furthermore, they were asked not to par-
ticipate in any other therapy sessions from two weeks before
the start of our investigation until the end of it. According to
a post-hoc power analysis conducted via G*Power 3.1 Soft-
ware [78], for the sample size of N = 6 per group, the power
of this pilot study is 12% considering a medium effect size
of 0.5 and a significance level of 0.05%.

5.2 Experimental Setup

The RAST sessions were conducted at the Social and Cog-
nitive Robotics Lab at the Sharif University of Technology.
Three cameras, two located in the room’s corners and one
mounted on the robot’s head, recorded all interventions. In
all sessions, the speech therapistwas present beside the robot.
In another room (control room), the robot’s operators con-
trolled andnarrated the robot’s dialogues, synchronizing their
voice with the lip-syncing of the robot through videos they
received from the RAST sessions. Hence, a real-time human
voice was synchronously compounded with the robot’s artic-
ulation to communicatewith the children. Two speakerswere
also placed in the room to play the filtered operator’s voice,
which was made to sound like a child by changing its pitch.
The schematic of the experimental setup, including the inter-
vention and control room, is shown in Fig. 9.

The conventional speech therapy sessions of the second
group were also held in the aforementioned experimental
setup without the social robot’s presence to eliminate the
environmental conditions’ impact.

Fig. 9 The schematic of the intervention and control rooms

5.3 Intervention Scenarios

Speech therapy aims to hone individuals’ communication
skills and enhance the participants’ abilities to grasp and
express thoughts, ideas, and feelings. Therefore, engaging
children and boosting their achievements from therapy ses-
sions are two pre-eminent factors that should be considered
in the interventions.

5.3.1 Scenario One: The Investigation of the Children’s
Engagement Level via an Imitation Game

The current scenario was designed to explore whether or not
children with language disorders are more engaged during
interaction with the social robot than with the therapist. Sce-
nario onewas a facial expressionmimicry game that required
children to stand in front of a playmate (robot/therapist) and
imitate its facial expressions. The scenariowas conducted in a
ten-minute intervention where the child’s playmate revealed
a random facial expression and waited until the child emu-
lated the same emotional state. The playmate would express
the next emotionwhen the imitationwas performed correctly.
The intervention group played with the robot throughout the
scenario, while the control group played with the therapist.

5.3.2 Scenario Two: Utilizing a Social Robot for the Therapy
of Children with Language Disorders

In this scenario, two sets of thirty-minute speech therapy
sessions were carried out for the two groups of participants.
The intervention group attended RAST sessions, while the
control group participated in conventional speech therapy
interventions. During the RAST sessions, the RASA robot
interacted with children in various ways, i.e., teaching the
correct pronunciation of words via lip-syncing, providing
a system of reward and punishment by expressing differ-
ent emotional states, asking multiple questions, and guiding
children to answer the therapist’s questions nicely. Five fre-
quent tasks (extracted from relevant studies [79–83]) were
performed in each speech therapy session for both groups of
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Table 4 The list of activities performed in the speech therapy sessions

Activity Description

Picture description Ask children to describe the
components in the picture
accurately [79]

Oral narrative Ask children to generate a narrative
in response to the wordless picture
book [80]

Syntactic understanding Ask children to re-tell the targeting
story, using full sentences as well as
asking and answering a wide range
of "wh" questions [81]

Picture identification Ask children to respond by pointing
to one of twelve pictures following
each stimulus presentation [82]

Oral imitation ask children to imitate specific words
that are in different syllable
categories [83]

Fig. 10 A robot-assisted speech therapy session

participants to facilitate the children’s oral language devel-
opment. Table 4 describes the list of the activities conducted
in the therapeutic interventions.

Figure 10 displays the therapist and the robot in a RAST
session.

5.4 Assessment Tools

5.4.1 Scenario One: Assessment of Children’s Engagement
Level via an Imitation Game

In the context of HRI, content analysis of the interventions’
recorded videos was extensively employed to probe indi-
viduals’ behavioral patterns [84–86]. Meanwhile, analyzing
the gaze data (frequencies and durations of gazes) provides
metrics quantifying individuals’ engagement throughout
human–human and human–robot interactions [87–89]. In

this regard, in the first scenario, the evaluation of the partici-
pants’ engagement was conducted via deploying the manual
video coding technique to elicit the children’s gaze infor-
mation from the videos of the therapy sessions. The video
coding was performed by two raters separately according to
the following procedure.

First, due to the oscillating attribute of the partici-
pants’ attention and distraction during interventions, the
game’s duration was segmented into specific equal spans
(�t = 20s). Secondly, in each span, the interval’s raw score
was defined as the portion of the time children spent gaz-
ing at their playmates (either the robot or the therapist).
Afterward, the mean score of each span was calculated by
averaging the coders’ raw scores. Finally, the individuals’
engagement scores were computed by taking the integral of
the participants’mean scores over the interventions’ duration
and dividing it by the length of the sessions. The Pearson
correlation coefficient between the two raters’ raw scores
was calculated to determine the inter-rater reliability of the
results.

5.4.2 Scenario Two: Assessment of the RASA Social Robot’s
Utility in Speech Therapy for Children with Language
Disorders

In the second scenario, the Persian version of the TOLD was
used to evaluate the impacts of the robot on children’s lan-
guage development. This questionnaire is a certified tool for
evaluating preschooler language abilities in six core and three
supplemental subsets. The test’s subsets are summarized in
Table 5.

A speech therapist was hired to hold the therapy interven-
tions and score the Persian TOLD questionnaire. Following
the test scoring instructions, the therapist asked each child
several items to rate the test subsets. If the participant cor-
rectly answered the therapist’s question, they would have
received a score of one; otherwise, they would have been
given zero. Thus, the number of items the children cor-
rectly answered in each subset’s examination determined
their respective raw scores. To eliminate the potential impact
of the children’s age in assessing their language develop-
ment, the TOLD proposed tables regarding the participants’
ages to convert their raw scores into scaled scores varying
between 0 and 20. In the current study, the normalized scaled
scores (the scaled scores divided by 20) were adopted asmet-
rics to compare the participants’ oral language enhancement
in the speech therapy scenarios. By integrating the subsets’
scores, composite scores were calculated that disclose the
children’s development concerning primary facets of lan-
guage, including listening, organizing, speaking, semantics,
grammar, phonology, and overall language ability. The cor-
responding score of each language dimension was evaluated
by summing the scaled scores of the subsets associated with
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Table 5 The TOLD subsets’ descriptions [31, 32]

Subsets Item Description

Picture vocabulary 30 Measures a child’s
understanding of the
meaning of spoken
Persian words

Relational vocabulary 30 Measures a child’s
understanding and ability
to orally express the
relationships between two
spoken stimulus words

Oral vocabulary 28 Measures a child’s ability
to give oral definitions to
common Persian words
that the examiner speaks

Syntactic
understanding

25 Measures a child’s ability
to comprehend the
meaning of sentences

Sentence imitation 30 Measures a child’s ability to
imitate Persian sentences

Morphological
completion

28 Measures a child’s ability
to recognize, understand,
and use common Persian
morphological forms

Word discrimination 20 Measures a child’s ability
to recognize the
differences in significant
speech sounds

Word analysis 14 Measures a child’s ability
to segment words into
smaller phonemic units

Word articulation 20 Measures a child’s ability
to utter important Persian
speech sounds

the under-investigation skill and normalizing the calculated
score according to the number of subsets involved in the
skill leading to a score between zero and one [31]. Table 6
demonstrates the association of the TOLD subsets with pri-
mary language skills.

6 Results and Discussion

In the explained scenarios, the scores of both groups (inter-
vention and control groups) were separately evaluated by
the proposed assessment tools and then examined via sta-
tistical analysis using Minitab software. The p-values of the
tests were employed to identify any significant differences
between the intervention and control groups. Ta
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Fig. 11 The scores of the children’s engagement in the intervention group

Fig. 12 The scores of the children’s engagement in the control group
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Table 7 The engagement scores
of the intervention and control
groups

Intervention group (N = 6) Control group (N = 6) p-value Cohen’s d

M SD M SD

Score 0.70 0.014 0.68 0.009 0.025 1.66

6.1 Content Analysis of the RecordedVideos

Figures 11 and 12 present the scores of each child’s engage-
ment for the intervention and control groups, respectively.
Table 7 also encapsulates the average and standard devia-
tion of the two groups’ engagement scores and the statistical
analysis results.

As Table 7 demonstrates, the results of the t-test indicate
that the engagement scores of the intervention group are sig-
nificantly higher than the control group (p = 0.025 < 0.05).
Statisticmeasures show that the intervention groupmembers,
on average, gazed at the robot for 11.7 s more than the con-
trol group participants looked at the therapist. Furthermore,
the large Cohen’s d effect size (1.66 > 0.8) indicates the chil-
dren disclosed a higher intention to play with the social robot
than the therapist. According to the Pierson correlation coef-
ficient, the two raters’ raw scores were strongly correlated (r
= 0.72 > 0.7).

6.2 TOLD Analysis

This study quantified the participants’ language skills and
overall language abilities through the scoring system pro-
posed by the Persian TOLD questionnaire. The groups’
pre-test scores were statistically analyzed to explore the
comparability of the intervention and the control groups
in terms of their initial language levels. Furthermore, the
implications of the robot’s presence on the participants’ lan-
guage skills improvement were assessed by computing their
progress scores, defined by subtracting the children’s pre-test
scores from their post-test scores. The normalized results
of these measures and their corresponding statistical anal-
ysis are summarized in Table 8. A Bonferroni correction
(α

′ = α/k, where k defines the number of tests; in this study,
the k is equal to nine, which is the number of the TOLD
subsets) was utilized for the pairwise comparisons to avoid
a Type I error.

According to Table 8, p-values related to the admin-
istered pre-test highlight no significant differences (p >
0.05) between the intervention and control groups regard-
ing the initial levels of language development metrics; thus,
these groups can be considered comparable. The Bonferroni
post-hoc tests indicate that only the scores of the “Word Dis-
crimination” subset were significantly different between the
intervention and control groups (p < 0.005).

As previously mentioned, the scores of the primary lan-
guage skills could be evaluated by summing and normalizing
the scores of the associated subsets, as explained in Table 6.
Table 8 reveals that the two groups’ primary language skills
scores in the pre-test were not significantly different, which
means that the initial states of the groups were comparable.
According to the Bonferroni post-hoc tests, the intervention
group made significantly more progress in primary language
skills than the control group. Furthermore, the overall lan-
guage ability score, calculated by summing and normalizing
the nine subsets’ scores of the TOLD, is a measure that rep-
resents the total language development of the children. The
analysis of this metric shows that the overall language ability
of the childrenwho interactedwith the robot improved signif-
icantly more than those who took part in conventional speech
therapy sessions. The results of this preliminary exploratory
investigation shed light on the encouraging implications of
utilizing social robots in speech therapy sessionswhich are in
agreement with the results of Ref. [4]. However, the limited
number of study participants prevents us frommaking a gen-
eralized claim about the robot’s efficacy through interaction
with other children with language disorders.

7 Limitations and FutureWork

The COVID-19 pandemic restricted the families willing to
collaborate with our research group, which resulted in the
small number of study participants. This issue was a seri-
ous limitation of this examination, which underpowered the
study, as proven by the power analysis. The fact that the
authors had no control over the families of the special needs
children and could not in good conscience deprive them
of therapies for a longer span before the beginning of the
examination was another study limitation. Consequently, a
thorough separation of the possible influences of the previ-
ously experienced therapy sessions on the current therapeutic
interventions was impossible. The temporary displeasure of
a few children in a limited number of training sessions was
another limitation of the current study. Although the training
sessions were based on one-to-one interactions, a few chil-
drenwould have refused to participate in some sessions if one
of their families or companions had not been present at the
beginning of the training sessions. It should be noted that this
could lead to possible social bias in the study’s results, which
was inevitable. Due to the lack of similar studies about the
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Table 8 Comparison between the two groups of children’s language development metrics

Language
development
metrics

Pre-test scores Progress scores

Intervention group
mean (SD)

Control group mean
(SD)

P value Intervention group
mean (SD)

Control group mean
(SD)

P value

Picture
vocabulary

0.33 (0.103) 0.32 (0.075) 0.757 0.27 (0.082) 0.20 (0.063) 0.148

Relational
vocabulary

0.30 (0.167) 0.33 (0.103) 0.689 0.35 (0.105) 0.18 (0.075) 0.012

Oral vocabulary 0.40 (0.126) 0.42 (0.117) 0.818 0.37 (0.082) 0.15 (0.122) 0.007

Syntactic
understanding

0.28 (0.172) 0.27 (0.121) 0.851 0.38 (0.133) 0.15 (0.084) 0.007

Sentence
imitation

0.28 (0.117) 0.27 (0.121) 0.814 0.38 (0.133) 0.15 (0.055) 0.007

Morphological
completion

0.30 (0.179) 0.28 (0.098) 0.847 0.30 (0.110) 0.17 (0.052) 0.031

Word
discrimination

0.47 (0.197) 0.43 (0.082) 0.715 0.30 (0.141) 0.18 (0.041) 0.110

Word analysis 0.40 (0.141) 0.38 (0.172) 0.859 0.50 (0.089) 0.22 (0.075) 0.000

Word
articulation

0.65 (0.259) 0.63 (0.151) 0.895 0.28 (0.194) 0.13 (0.103) 0.139

Listening 0.36 (0.136) 0.34 (0.049) 0.719 0.32 (0.069) 0.18 (0.045) 0.003

Organizing 0.33 (0.127) 0.33 (0.083) 1.000 0.41 (0.045) 0.18 (0.018) 0.000

Speaking 0.45 (0.146) 0.44 (0.083) 0.938 0.32 (0.046) 0.15 (0.046) 0.000

Semantics 0.34 (0.128) 0.35 (0.072) 0.858 0.33 (0.061) 0.18 (0.050) 0.001

Grammar 0.29 (0.141) 0.27 (0.098) 0.818 0.35 (0.045) 0.15 (0.034) 0.000

Phonology 0.51 (0.168) 0.48 (0.105) 0.790 0.36 (0.083) 0.18 (0.034) 0.002

Overall language
ability

0.38 (0.132) 0.37 (0.045) 0.876 0.35 (0.035) 0.17 (0.022) 0.000

Significant values are reported in bold

utility of social robots in speech therapy interventions, it was
hard for our team to compare the outcomes of this research
with others comprehensively.

In our future work, we will increase the number of partic-
ipants and consider the subjects’ gender as an independent
variable to see whether the current findings can be general-
ized to RAST sessions for children with language disorders.
Moreover, to encourage children to participate in the RAST
sessions, they were initially engaged with the robot via an
imitation game. However, the influences of the gaming sce-
nario and the augmented robot’s features, including facial
expression recognition and lip-syncing capabilities, on the
therapeutic interventions were not explicitly investigated.
Thus, further inspections would be required to rigorously
assess whether the children’s language progress is attributed
to only the robot’s presence or the augmented capabilities
implemented on the robot. Additionally, the novelty of the
robot could have repercussions on the outcomes of the two
scenarios. Although the first week of the examination was
dedicated to introducing the robot to children, quantitative

investigations would be beneficial in negating the novelty
factor’s impacts.

8 Conclusion

This paper addressed the potential benefits of employing a
socially assistive robot in speech therapy interventions. The
main focus of the study was to evaluate the robot’s capac-
ity to engage children with language disorders and enhance
their learning achievements. To attain the interventions’
objectives, two capabilities, facial expression recognition
and lip-syncing, were developed for the employed robotic
platform, the RASA social robot. The facial expression
recognition model was achieved by training various well-
known CNNs on the AffectNet database and modifying
via the transfer learning technique to enhance the system’s
performance in the robot’s environment. The lip-syncing
capability was developed by designing and implementing an
articulatory system on the robot, which endeavored to imitate
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human articulation. The study’s results, acquired by video
coding, the Persian TOLD, and statistical analysis, revealed
the prospects of using the RASA robot in speech therapy
sessions for children with language disorders. However, one
should avoid expecting considerable improvements and con-
sider this study’s reportedfindings as preliminary exploratory
results that must be interpreted with caution since the small
number of subjects limits the investigation, as proven by the
power analysis.

Acknowledgements This study was funded by the “Dr. Ali Akbar
Siassi Memorial Research Grant Award” and The Sharif University of
Technology (GrantNo.G980517).We also thankMrs. ShariHolderread
for the English editing of the final manuscript.

Author Contributions All authors contributed to the study’s conception
and design.Material preparation, data collection, and analysis were per-
formed by AE and ZR. The first draft of the manuscript was written by
AE and ZR, and all authors commented on the manuscript. All authors
read and approved the final manuscript.

Data Availability All data from this project (videos of the sessions,
results, scores of the performances, etc.) are available in the archive of
the Social & Cognitive Robotics Laboratory.

Code Availability All of the codes are available in the archive of the
Social & Cognitive Robotics Laboratory. If the readers need the codes,
they may contact the corresponding author.

Declarations

Conflict of interest Authors Alireza Taheri received a research grant
from the “Sharif University of Technology” (Grant No. G980517). The
authors Alireza Esfandbod, Zeynab Rokhi, Ali F. Meghdari, Minoo
Alemi, and Mahdieh Karimi declared that they had no conflict of inter-
est.

Ethical Approval Ethical approval for the protocol of this study
was provided by the Iran University of Medical Sciences
(#IR.IUMS.REC.1395.95301469).

Consent to Participate Informed consent was obtained from all indi-
vidual participants included in the study.

Consent for Publication The authors affirm that human research partic-
ipants provided informed consent for the publication of all participants’
images. All of the participants have consented to the submission of the
results of this study to the journal.

Appendix

In the Table 9, the Top 1 value describes the proportion of
test samples forwhich themodel prediction results (predicted
labels with the highest probability) are in harmony with their
correct labels. The Top 2 value indicates the proportion of
the test samples in which the predicted classes with the two
highest probabilities match their corresponding real labels.

Table 9 The accuracy of various networks trained on the AffectNet train set and tested on the AffectNet test set

CNN MobileNet MobileNet
V2

NASNET DenseNet
121

DenseNet
169

Xception Inception
V3

VGG 16

Top
1

Top
2

Top
1

Top
2

Top
1

Top
2

Top
1

Top
2

Top
1

Top
2

Top
1

Top
2

Top
1

Top
2

Top
1

Top 2

Accuracy 0.58 0.90 0.56 0.78 0.56 0.76 0.58 0.80 0.59 0.79 0.56 0.77 0.58 0.77 0.59 0.79

Table 10 The evaluation metrics of various networks trained on the AffectNet train set and tested on the AffectNet test set

MobileNet MobileNet V2 NASNET DenseNet 121 DenseNet 169 Xception Inception V3 VGG 16

Accuracy 0.58 0.56 0.56 0.58 0.59 0.56 0.58 0.59

F1 score 0.58 0.56 0.55 0.58 0.59 0.56 0.58 0.59

Recall 0.58 0.56 0.56 0.58 0.59 0.56 0.58 0.59

Precision 0.59 0.57 0.56 0.58 0.60 0.58 0.58 0.60

Cohen Kappa 0.52 0.50 0.49 0.52 0.53 0.50 0.52 0.53

AUC 0.76 0.75 0.75 0.76 0.77 0.76 0.76 0.73

#Parameters 4 M 3 M 5 M 8 M 14 M 23 M 24 M 138 M
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