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Abstract
Current guidelines for Human-Robot Collaboration (HRC) allow a person to be within the working area of an industrial robot
arm whilst maintaining their physical safety. However, research into increasing automation and social robotics have shown
that attributes in the robot, such as speed and proximity setting, can influence a person’s workload and trust. Despite this,
studies into how an industrial robot arm’s attributes affect a person during HRC are limited and require further development.
Therefore, a study was proposed to assess the impact of robot’s speed and proximity setting on a person’s workload and trust
during an HRC task. Eighty-three participants from Cranfield University and the ASK Centre, BAE Systems Samlesbury,
completed a task in collaboration with a UR5 industrial robot arm running at different speeds and proximity settings, workload
and trust were measured after each run. Workload was found to be positively related to speed but not significantly related to
proximity setting. Significant interaction was not found for trust with speed or proximity setting. This study showed that even
when operating within current safety guidelines, an industrial robot can affect a person’s workload. The lack of significant
interaction with trust was attributed to the robot’s relatively small size and high success rate, and therefore may have an
influence in larger industrial robots. As workload and trust can have a significant impact on a person’s performance and
satisfaction, it is key to understand this relationship early in the development and design of collaborative work cells to ensure
safe and high productivity.

Keywords Human-robot interaction · Workload · Trust in automation · Robotics · Multivariate analysis

1 Introduction

Robotics within industry has seen a significant uptake in
recent years, with increases in sales reaching a peak in 2018
[1]. Despite a decrease in overall robot sales to industry in
2019 and 2020, collaborative robots have seen an increase in
sales [2]. This can be attributed to the changing demands of
robots in automation and collaborative robots seeing signifi-
cant increases in application [3]. Whereas robots are capable
of high payload and exposure to hazardous chemicals, they
lack the adaptability of a human worker. Human–Robot Col-
laboration (HRC) aims to combine these strengths to increase
overall productivity, whilst maintaining the safety of the
worker.
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Traditionally, the concept of maintaining safety has been
limited to physical safety (the actions of the robot do not
result in an injury to the human). As industrial robot arms
have been completely separated from human workers by
physical barriers, the interest in understanding the impacts on
a person’s psychological safety has been minimal. Interna-
tional standards ISO10218–1:2011 and ISO/TS15,066:2016
[4, 5] show the manufacturing industry is opening to HRC
and can provide solutions for maintaining physical safety
without the use of physical barriers, and research is expand-
ing to also examine psychological safety (risks to human
cognitive/affective wellbeing) [6, 7].

Two key robot attributes that can be controlled and
adjusted without significant offline time to maintain phys-
ical safety are the robot’s speed and proximity. Although
speed (250 mm/s) and proximity limits are defined in current
safety standards in relation to physical risk, psychological
safety is not considered in the guidance. This is key, as failure
to address the human element when increasing automation
has been shown to limit the successful integration of new
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technology [8]. In this paper, it is proposed that variations
in a robot’s attributes operating within the envelope of safe
speed and proximity set by the HRC guidelines can influence
a person’s psychological safety.

For the purpose of this paper, HRI considers any situation
where a robot’s actions, or inactions, result in a reaction from
a human (and vice versa) and HRC considers any situation
where the robot and the human work together to complete
a task. Studies in mobile robotics have revealed a range of
factors linked to changes in a person’s psychological safety.
The study of such relationships are sparse for robot arms, and
the extent to which findings from mobile robots experiments
can be generalized to robot arms is debated [9–11]. First, the
key psychological constructs will be discussed, with their
relevance to increased automation and robotics.

1.1 Workload

As HRC will predominantly take place in industrial work
settings, an important psychological state to consider is
workload. In fields which have seen increased levels of
automation, the impacts on workload have been a topic of
research for over 40 years. With no universally accepted and
clear definition ofworkload [12] this study uses the definition
of workload used for the development of the widely used and
verified NASA-Task Load IndeX (NASA-TLX): “the cost
incurred by a human operator to achieve a particular level of
importance” [13].

Workload has been identified as a key factor to influ-
ence human performance, with an optimal level from which
deviation can be detrimental [14–17]. Too high and the per-
son risks fatigue and illness, too low and the person may
lose focus in the task. However, the specific elements of
an automated system that influence workload levels, and
the optimal levels required for specific tasks, are important
to understand as these are linked to performance and acci-
dent prevention [14]. For example, levels of automation have
been shown to influence a person’s workload during driv-
ing [18] and teleoperation tasks [19, 20] but these findings
cannot be directly extrapolated to other tasks. Additionally,
relationships between a robot’s speed and a person’s psycho-
logical safety have been identified in social robotics research
but without exploring workload specifically [21–24]. Thus,
although general trends can be identified, it is difficult to
generalise or compare research findings outside of the speci-
ficities of respective studies, primarily due to differences in
research methods and contexts. Early studies in the context
of industrial robots for HRC have shown that working within
a robot’s operating area increases workload [25, 26], but few
have studied the effects of changing robot attributes onwork-
load. Therefore, to optimise the design of industrial HRC, it
is important to identify which specific robot attributes lead

to changes in operator workload and how they impact upon
effective HRC.

Industrial HRC research using formal Ergonomics /
Human Factors methods is uncommon. For example, Tan
et al. [9], studied the skin potential reflex (SPR) of partici-
pants collaborating with an industrial robot arm operating at
250, 500, and 1000 mm/s as an objective measure of work-
load and collected self-reported levels of ‘fear’ and ‘surprise’
as a subjective measure of workload—but provided no clear
definitions of these constructs to participants or validation
of how they reliably represent workload. They found both
higher SPR and ‘fear’ and ‘surprise’ levels at speeds greater
than 500 mm/s, suggesting that workload would not only be
dependent on the task but also the robot’s speed, but find-
ings may not truly reflect the construct of workload. Many
psychological and affective states, such as ‘comfort’, ‘fear’,
‘surprise’, ‘anxiety’, etc., can be considered subjective mani-
festations of a persons’ psychological safety as we know that
extreme levels can cause deleterious effects on wellbeing.
Some of these have been found associated with workload,
such as the decreasing comfort resulting in an increase in
workload [13, 27]. Therefore, although it is not yet possible to
directly link these psychological / affective states and work-
load, they are likely to be a part of the relationship between
robot attributes and psychological safety outcomes.

Butler and Agah [28] studied the relationship between
a mobile robot’s speed and human ‘comfort’ in a study
which involved the robot approaching participants directly
at a slow (254 mm/s) or a fast (1016 mm/s) speed condition,
after which they rated their level of ‘comfort’ using a scale.
This study established that participant ‘comfort’ decreased
in the fast speed condition, suggesting an increase in work-
load may have also occurred. Similarly, Kulic and Croft
[29] gathered self-reported measures of ‘anxiety’, ‘calm’,
and ‘surprise’ when a robot arm moved using 2 different
path planners under 3 different speed settings (0.31, 1.57
and 3.14 rad/s). They found positive correlations between
robot speed and participants’ ‘surprise’, and between speed
and ‘anxiety’, and a negative correlation between speed and
‘calm’ levels. As with [9], an increase in ‘surprise’ may have
an effect on the person’s workload, suggesting a positive cor-
relation between speed and workload, but the exact nature
and strength of relationships between these psychological
outcomes and workload is not yet confirmed. A study by
Koppenborg et al., [30] directly measured the influence of
the changing speed of an industrial robot arm during HRC
on workload in a virtual environment. The results showed a
significant increase in workload from the low-speed setting
(750 mm/s) to the high-speed setting (1400 mm/s). Although
the study is limited by the lack of presence that an actual robot
would provide, the results further reinforce link between
workload and robot speed during HRC than previous work.
It is also noteworthy that the majority of speeds used in
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these studies exceed the maximum 250 mm/s safety guid-
ance limit for HRC. To the knowledge of the authors of the
present paper, there are no studies to date that have assessed
the effects of an industrial robot arm’s speed during HRC,
within the speed envelope defined by ISO/TS 15,066:2016,
which this paper seeks to address.

Compared to speed, the effect of the robot’s proximity in
HRI has seen a greater amount of research. This is due to the
prevalence of social robots that are, by definition, designed
for close proximity. The majority of the studies reviewed
for this paper developed their models around the Proxemics
model by Hall [31], which defines the socially acceptable
distances around a person for Human–Human Interaction.
Kim and Mutlu [32] assessed the participant’s ‘comfort’,
‘pleasure’, and ‘likeability’ via questionnaire duringmultiple
tasks when a mobile robot was at 0.46 and 1.2 m. They found
that when co-operating with the robot, participants reported
lower ‘comfort’ and ‘likeability’ when the robot was closer.
This decrease in comfort with reduced separation was also
reported with robot arms [33, 34], as well as an increase in
workload [9].

Ameans of overcoming subjective uncertainty is to objec-
tively measure participant’s changes in position. This is
demonstrated in Stark et al.[10], where the reactions of
participants to a robot arm’s proximity during HRC were
monitored. As the robot arm entered the personal zone of the
person (0.45–1.2m), they physicallymoved away suggesting
they were not comfortable with that proximity. Walters et al.,
[35] attempted to identify some of the factors that influence
the accepted proximity, focusing on the participant’s level of
control and their personality. When the robot is static and the
participant is approaching, the majority (60%) would move
to within the intimate zone (0.15–0.45 m) compared to only
38% of participants accepting of the robot approaching up
to 0.5 m. This indicates that when participants are in control
of the proximity, they feel more comfortable however, this
was not supported in other studies [36]. The robot’s size and
“gaze” direction have also been shown to influence the allow-
able distance [28, 37, 38]. From these studies, it appears that
the proximity of the robot has an impact on person’s com-
fort during HRI and, therefore, potentially on their workload.
However, the studies into the effects of an industrial robot
arm’s proximity during HRC whilst adhering to the guid-
ance set in ISO/TS 15,066:2016 are few and limited. With
physical barriers being removed and the increased sophis-
tication of collision avoidance algorithms for application in
HRC, it is imperative that such attributes of the robot (and
the psychological factors they impact upon) be further under-
stood.

Although these comparisons are not direct between robot
attributes and workload, they can be used to inform. They
demonstrate that a person’s psychological safety can be influ-
enced by changing robot speed and proximity. A major

limitation in HRI and HRC studies is the lack of valid
and reliable measures, and consistent experimental methods.
Furthermore, HRC studies are rarely conducted under the
industrial settings which they are intended for. Whilst some
have used established reliable tools for subjective measures,
such as the NASA TLX, others have not used rigorously
tested scales. Alternatively, objective measures can be task
specific, where the choice of which element of the activity
is contributing to the workload of the task allows for sub-
jectivity [17, 39, 40]. Indeed, a great deal of research has
not accounted for the possibility that results may reflect task
characteristics and complexity rather than effects of robot
attributes. This study aims to rectify this oversight, by having
the impact of speed and proximity on a person’s psycholog-
ical responses as the primary research focus. Furthermore,
the dependent variables will use clear definitions for the psy-
chological concepts that are adopted from previously used
surveys where the focus has been on the increasing use of
automation/robotics in an industrial setting.

A key challenge when measuring workload is that it can
vary based on the individual, the task at hand, and the envi-
ronment inwhich the task is being conducted [40]. In order to
understand workload, the different aspects which contribute
to it should be considered. Cain [12] postulated that these
aspects can be divided into 3 categories: the amount of work
and number of things to do, the subjective psychological
experiences of the human, and the time required to com-
plete the task. These criteria fall in line with the variables
measured by the most commonly used subjective workload
scales. Of these, two that are frequently compared are the
NASA-Task Load IndeX (NASA-TLX) [13] and the Subjec-
tiveWorkload Assessment Technique (SWAT) [41]. In direct
comparisons, there has been little evidence that either scale
shows a greater sensitivity to changes in users’ workload,
however, both showed higher sensitivity in comparison with
other scales [12, 42, 43]. A key difference is user accept-
ability, which is higher in NASA-TLX and attributed to the
faster completion of the scale, therefore, this was chosen
as the scale for this study. The NASA-TLX [44] measures
6 subscales: Mental Demand (MD), Physical Demand (PD),
Temporal Demand (TD), Performance, Effort, and Frustra-
tion. The average of the scores obtained on each of those
subscales provides an overall workload score [44, 45]. For
this study, the Raw TLX (RTLX) was used, in which the
weighting of the subscales is omitted. This was chosen as
the test is simpler to apply, and comparative studies show no
consensus of an effect on the sensitivity of the scale [45].

1.2 Trust

Another key psychological state which has been highly
related to performance with automation is ‘trust’ [46]. Like
workload, trust is also problematic to define and there is no
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universal definition, so it is highly important to consider the
context and system attributes for which it is being investi-
gated. For this study, the definition used was “the attitude
that an agent will help an individual’s goals in a situation
characterised by uncertainty and vulnerability” [46], where
the agent is the robot. As the level of trust the operator has in
the system increases, the efficiency of the system increases
making it a desirable concept to better understand in industry
[47–49]. There is a limit to the system efficiency increasing,
as increasing trust may result in passivity or complacency in
the task, leading to difficulty in detecting changes/faults in
the system. Too little trust, however, and the person will be
more likely to interfere with the process [47, 50]. As with
workload, deviations from the optimal level can have detri-
mental effects.

Hancock et al. [51] ran a meta-analysis and identified
3 main categories of factors which could affect a person’s
trust during HRI: the human, the robot, and the environ-
ment. Amongst the factors falling under the Robot category,
the robot’s performance had the largest impact. The robot’s
attributes (proximity, shape, anthropomorphism, personal-
ity, and type) were also shown to be significant factors.
MacArthur et al. [34] manipulated the speed and proximity
of a mobile robot approaching participants, after which they
would then complete Human Robot Trust Scale and Neg-
ative Attitudes Towards Robots Scale surveys. They found
that participants’ trust was reduced by decreasing proximity
and increasing speed of the robot.

Whilst the trust scales mentioned above are sufficient for
quantifying general trust in HRI, as outlined it is important
to consider the impact of specific robot attributes where pos-
sible. A more focused measurement tool for industrial HRC
was developed by Charalambous et al. [52] to account for the
impact of robot attributes on operator trust in collaborative
tasks. As this scale was developed with industrial robot arms
and end-effectors it was deemed the most relevant for this
study.

As outlined, direct analysis of the relationship between
robot speed and proximity with workload and trust has been
highly limited and previous findings are largely incompara-
ble. This highlights a gap in knowledge, which the present
study aims to begin filling. It measures the impact of an
industrial robot arm’s speed and proximity setting on a per-
son’s workload and trust during a HRC task. Workload and
trust have been identified as key metrics in task performance,
whilst speed and proximity have been identified as two robot
attributes which impact on a person’s psychology during
HRI. Based on our current knowledge, the aim of the present
study is to determine if there is a link between the speed and
proximity setting of an industrial robot during HRC with a
person’s workload and trust. This will be tested by the fol-
lowing hypotheses:

H1: The speed of the robot arm will influence workload dur-
ing HRC.

H2: The proximity setting of the robot arm will influence
workload during HRC.

H3: The speed of the robot arm will influence trust during
HRC.

H4: The proximity setting of the robot arm will influence
trust during HRC.

2 Method

2.1 Design

The task was designed to replicate an assembly task in a col-
laborative cell with a human and robot team. The assembly
task was a simplified version of a common task that is found
in aircraft assembly. In this task, the robot completed a pick
and place operation whilst equipped with an avoidance algo-
rithm. The robot collected a pipe, brought the pipe to the
first foam block with a pre-drilled hole, and held the pipe
in position until the participant pushed a release button, at
which point the robot released the pipe and then moved to
collect the next pipe. Once the participant had deemed the
robot had moved to a safe distance away (as instructed in the
briefing), they positioned the pipe correctly into the hole and
tightened two pipe connectors onto the robot side of the pipe
and confirmed by visual inspection that the pipe connectors
were in contact with the foam block. During this, the robot
collected the next pipe and brought it to the next foam block.
A vision system monitored the participant’s head and hand
locations, and should a potential collision be detected the
robot changed path. The changed path was always in the x-
direction away from the participant, with the distance in the

Fig. 1 The avoidancemotion taken by the robot to avoid a collisionwith
an obstacle where i represents the current position, i + 1 represents the
next waypoint, 1 and 2 represent avoidance waypoints, obs represents
the proximity setting, and the obstacle is either the head, left hand or
right hand (depending on which is closest to TCP, and then in priority
order of avoiding the head over the hands)
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Fig. 2 A time-lapse of the experiment, where the UR5 avoids the participant before moving to the holding position with the pipe. The algorithm is
activated on the 38 s mark, in this case avoiding the head as it has the closest proximity

x-direction determined by the proximity setting away from
the participant’s head or hands (whichever was closest to the
Tool Centre Point) using an iteration on a repulsive vectors
algorithm (see Fig. 1).After reaching the next foamblock, the
robot held its position until the participant pushed the release
button, at which point it moved to collect the final pipe. The
third pipe had no assembly required, and participants only
positioned the pipe in the hole. The ability for the participant
to adjust the distance to the robot was a deliberate one, as it
was deemed that forcing the participants to remain in fixed
position even after they had completed the task would have
a large impact. A time-lapse of the experiment can be found
in Fig. 2.

2.2 Participants

Eighty-three participants were recruited between May and
October 2019. Forty were students and staff at Cranfield
University, and 43 were from the Academy for Skills &
Knowledge Centre and BAE Systems in Samlesbury, United
Kingdom. The participant’s age range at Cranfield was
21–53 years (median � 25 years), with 15 female and 25
male participants. The participants’ age range at Samlesbury
was 16–59 years (median � 19 years), with 35 male and
eight female participants. The experience of the participants
is shown in Fig. 3.
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Fig. 3 The number of
participants per frequency of
experience with an industrial
robot arm
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Fig. 4 The setup of the study
from the participant’s position

2.3 Materials and Apparatus

The experiment involved participants working together with
a Universal Robots UR5 to complete a task. The UR5
was chosen as it has been designed for HRC and is see-
ing deployment in different areas of manufacturing to assist
workers. The position of the participants in the collaborative
workspace was monitored by a Microsoft Kinect v2 vision
system. The position of the participants and the position of
the Tool Centre Point (TCP) of theUR5were processed by an
obstacle avoidance algorithm developed by Matthew Story,
one of the authors, running on Visual Basic Studio 2017. The
set up can be found in Fig. 4, where the blocks were located

0.62–0.72 m away from the base of the UR5, and 0.3 m dis-
tance separation between each other. Positioned next to the
first two foam blocks were a set of white pipe connectors.
The surveys used for the study were the RTLX [13] and the
Trust in Human Robot Collaboration Scale [52].

The study was conducted in accordance with the General
Data ProtectionRegulation 2018,with data fully anonymized
during processing. A risk assessment was conducted for the
study and was granted ethical approval by Cranfield Univer-
sity. Participants were provided with a bump cap and safety
glasses to ensure their protection. This research complied
with theAmerican Psychological Association Code of Ethics
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and was approved by the Institutional Review Board at Cran-
field University.

2.4 Procedure

After a briefing, the participants completed a consent form
and a brief demographic questionnaire. Prior to beginning the
study, participantswere given their safety cap and glasses and
they were then offered the opportunity to complete the task
whilst the robot was stationary to ensure they understood the
task and able to complete what was asked of them prior to
beginning the main task performance session. Participants
were informed they could complete the task at a pace they
were comfortable with.

Each participant underwent one data collection session,
which consisted of completing the same task 6 times with

the combination of a given speed and proximity changing for
each task in a counterbalanced measures design. The speed
was the linear velocity of the TCP, and the distancewas deter-
mined as the distance between the TCP of the UR5 and the
participants’ limb (head, right hand or left hand) which was
closest to the UR5. There were 3 speed settings chosen for
the UR5 robot to operate at during the different conditions.
These were 60%, 80%, and 100% of the maximum speed the
robot could run in accordance with ISO/TS 15066:2016 (36,
48, and 60 degrees/s for joint movements and 150, 200, and
250 mm/s for linear movements respectively). There were
2 proximity settings chosen for the UR5 robot to operate at
during the separate tasks, 0.2m and 0.3m. The distances were
determined through the calculation of the minimum safe dis-
tance set out in ISO/TS 15066:2016 (0.182m at 250 mm/s).
The upper distance of 0.3m was chosen due to the limita-

Fig. 5 The change in mean
workload with speed (Top) and
proximity setting (Bottom)
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tions in the size of the UR5. After each time completing the
task, participants were asked to complete the survey forms.
Participants were informed that each run was under varying
conditions but not informed until after the study what the
changes were. Upon completion of all runs and surveys, par-
ticipants were asked if they had any questions or comments
regarding the study.

3 Results

A linear mixed-effects model (LMM) analysis was run for
workload using IBM SPSS Statistics 26. This technique is
used to identify relationships in data comprising different
categories, with both fixed and random effects, as is the
case with the within-subjects repeated-measures data pro-
duced in this study. A linear mixed-effects model analysis
was therefore chosen as it can be used to describe nonlinear
relationships across timewithmissing data points [53]. Anal-
ysis with incomplete/unbalanced data, and acceptable type I
error rateswhenobservingparticipants inmultiple conditions
has seen linear mixed effects models receive more attention
over recent years [54].

Location (Cranfield or Samlesbury), speed, and proximity
were entered as fixed factors, participant treated as random
factors, and workload as the dependent variable. There was
no significant relationship between location and workload
(F(1, 80.808) � 0.985, p � 0.324), and both the interaction
effect between location and speed (F(2, 191.850) � 0.815, p
� 0.444) and location and proximity setting (F(1, 79.793) �
0.031, p � 0.970) with workload were not significant.

There was a significant relationship for workload with
speed (F(2, 191.850) � 9.450, p <0.001) but not for prox-
imity setting (F(1, 79.793) � 3.026, p � 0.086) (see Fig. 5).
The interaction effect between speed and proximity setting
on workload was not significant (F(2, 184.820) � 0.031, p
� 0.970) (see Table 1).

To determine the changes between the speed variables,
paired t-tests were run, with a Bonferroni correction applied
to the level of significance (p� 0.05/3� 0.0167). The paired
t-tests showed a significant difference between 60 and 100%
(p <0.001), and 80% and 100% (p � 0.002) (see Table 2).

The same analysis was run for the workload subscales and
speed. There was a significant relationship between speed
and mental demand (F(2, 246.040) � 3.814, p � 0.023),
temporal demand (F(2, 161.340) � 31.958, p <0.001), per-
formance (F(2, 182.148) � 4.707, p � 0.010), effort (F(2,
175.690)� 13.625, p<0.001), and frustration (F(2, 157.815)
� 10.284, p <0.001) (see Fig. 6). To determine the changes
between the speedvariables, paired t-testswere run (seeTable
3), with a Bonferroni correction applied to the level of sig-
nificance (p � 0.05/3 � 0.0167).

Table 1 The descriptive statistics for workload with speed and proxim-
ity setting

Speed (%) Proximity
setting/m

N Mean 95% Confidence
interval

Lower Upper

60 0.2 83 12.912 10.944 14.879

0.3 83 12.279 10.311 14.247

80 0.2 83 13.303 11.336 15.271

0.3 83 12.540 10.573 14.508

100 0.2 83 15.532 13.564 17.500

0.3 83 14.629 12.661 16.596

An LMM analysis was also run for trust. The appropri-
ateness of LMM for trust followed the same rationale as for
workload. Location, speed, and proximity were first entered
as fixed factors, participant treated as random factors, and
workload as the dependent variable. There was no significant
relationship between location and workload (F(1, 80.762) �
0.090, p � 0.765), and both the interaction effect between
location and speed (F(2, 168.950) � 0.502, p � 0.606) and
location and proximity setting (F(1, 71.633) � 2.266, p �
0.137) with workload were not significant.

There was no significant relationship between trust and
speed (F(2, 168.950)� 2.587, p� 0.078) nor with proximity
setting (F(1, 71.633) � 1.711, p � 0.195) (see Fig. 7). The
interaction effect between speed and proximity setting on
trust was not significant (F(2, 192.415) � 0.143, p � 0.867)
(see Table 4).

An LMM was also run to determine if the experience of
the participants with robots would influence either workload
or trust, with experience as a fixed factor and participant as
a random factor. The experience levels are found in Fig. 3
and Fig. 8. There was no significant relationship between
experience and workload (F(4, 77.870) � 0.925, p � 0.454)
nor between experience and trust (F(4, 77.731) � 0.373, p
� 0.827). The interaction effect between speed and experi-
ence on workload was significant (F(8, 175.301) � 2.087, p
� 0.039), however the interaction effect between proximity
and experience on workload was significant (F(4, 76.281) �
0.207, p � 0.934).

4 Discussion

In this study, the aim was to determine whether there was
a link between a small (relative to the person), low payload
robot arm’s speed and proximity setting, and levels of human
workload and trust. Hypothesis 1 was supported by the data.
Hypothesis 1 put forward that the speed of the robot arm will
influence workload during HRC, which was shown in the
data with a significant positive relationship between speed
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Table 2 The paired t-tests for
workload with changing speed Speed (I) Speed (J) Mean difference (I–J) Standard error p-value

Workload 60 80 − 0.326 0.615 1.000

100 − 2.485 0.618 <0.001*

80 100 − 2.159 0.615 0.002*

*Represents a significant difference

Fig. 6 The change in means for mental demand (Top Left), physical demand (Top Right), Temporal Demand (Mid left), Performance (Mid Right),
Effort (Bottom Left), and Frustration (Bottom Right) with speed

and workload. However, this positive relationship was not
significant when comparing 60% and 80% of the maximum
speed of the UR5, suggesting that the speed only impacts
on overall workload above a critical threshold. The concept
of a critical threshold for robot speed has been reported in
previous studies [28, 55]–[21], however these studies used

higher speeds than is considered safe by the guidance set in
ISO/TS 15066:2016.

The present study used speeds within the envelope for
HRC as defined by ISO/TS 15066. The present results
suggest that speeds within the acceptable brackets deemed
physically safe can impact an operator’s workload. Further-
more, the workload of the operator can be affected by the
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Table 3 The paired t-tests for
the workload subscales with
changing speed

Variable Speed (I) Speed (J) Mean Difference (I – J) Standard Error p-value

Mental demand 60 80 − 1.386 0.767 0.217

100 − 1.717 0.646 0.027

80 100 − 0.331 0.767 1.000

Physical demand 60 80 0.090 0.731 1.000

100 − 0.723 0.713 0.938

80 100 − 0.813 0.731 1.000

Temporal demand 60 80 − 5.030 1.189 <0.001*

100 − 11.084 1.390 <0.001*

80 100 − 6.054 1.189 <0.001*

Performance 60 80 0.452 0.934 1.000

100 − 2.229 0.937 0.057

80 100 − 2.681 0.934 0.014*

Effort 60 80 − 2.349 0.830 0.015*

100 − 4.669 0.894 <0.001*

80 100 − 2.319 0.830 0.017

Frustration 60 80 6.145 1.411 <0.001*

100 5.512 1.580 0.002*

80 100 − 0.633 1.411 1.000

*Represents a significant difference

robot’s speed even when the task to be completed is of low
complexity, as shown in the study by the overall average
workload score being in the lower end of the scale. The low
complexity may also play a key role on the speed threshold
for increasing workload. As the task increases in complex-
ity, the threshold may decrease, as operators are required to
dedicate more resources to the task and less to monitoring
the robot. A more developed understanding of the changes
in workload can be gained from the analysis of the changes
in the subscales with speed.

The speed threshold, for example, can be better under-
stood when looking at the subscales. Although an increase in
speed resulted in significant changes in the temporal demand
and effort subscales between 60% and 80% speed, this was
offset by the decrease in frustration. Therefore, although the
overall workload may not significantly differ the reasons for
the values differ. Higher levels of the temporal demand and
effort subscales that occurred with increasing speed may be
attributed to participants feeling the need to complete the task
faster to keep up with the robot (as reported by some par-
ticipants). Although this was only reported by some of the
participants in casual ad-hoc manner, the finding does sug-
gest a potential competitive element brought in that would
differentiate between the lower speed settings and the highest
speed setting. As shown in [32], this sense of competing with
the robot displays differing effects on the person’s psycho-
logical wellbeing with respect to the robot attributes, when
compared to collaborating. Although that study focused on
changes in proximity when competing or collaborating, the

findings can be used to illuminate potential causes for the
changes in the workload subscales. The decrease in frus-
tration suggests that speed below a certain value would be
detrimental. Participants’ frustration was shown to have a
negative relationship with speed, agreeing with the findings
of [56]. However, whereas that study reported frustration as
a result of confusion over the robot’s intent, the frustration in
this study may have been due to participants feeling delayed
in completing the task. At the highest speed, participantsmay
have felt the urge to keep upwith the robot and increased their
effort in order to do this, but this was not a behaviour recipro-
cated by the robot whilst the participants were waiting for the
robot. The increase in frustration at the lowest speed was ver-
bally expressed by 10 participants in the post study question.
It was also noted that during the task runs at lower speeds,
more participants would lose focus on the task, and begin
reading posters in the lab instead. This highlights the impor-
tance of developing aminimum speed for the robot to operate
at as well, to ensure optimal focus and avoid distraction and
potential injury.

Despite the increase in effort and temporal demand, partic-
ipants did not report a change in their perceived performance
with changing speed. However, the lack of relationship
between perceived performance and speed may be attributed
to the scale used and the simplicity of the task meaning that
participants would always succeed (outside of robot error).
Performance also lacked an objectivemeasure andwas there-
fore prone to subjectivity. Except for the first run, participants
would consider performance a complete success unless a fail-
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Fig. 7 The change in mean trust
with speed (Top) and proximity
setting (Bottom)

Table 4 The descriptive statistics for trust with speed and proximity
setting

Speed (%) Proximity
setting/m

N Mean 95% confidence
interval

Upper Upper

60 0.2 83 42.602 41.151 44.054

0.3 83 420.36 40.585 43.487

80 0.2 83 43.277 41.826 44.728

0.3 83 43.145 41.693 44.596

100 0.2 83 42.843 41.392 44.295

0.3 83 42.506 41.055 43.957

ure in the UR5 resulted in them being unable to complete the
task. This is also reflected in participants reporting a high
rate of performance (the scales in RTLX are flipped for per-

formance, so a low score on RTLX indicates participants felt
a high level of performance).

The findings for the workload and workload subscales
indicate that more fine-tuned guidance, taking into consider-
ation psychological factors, could further define the optimal
robot’s speed so that it is not only safe for one’s physical
integrity, but also optimal for one’s work efficiency and job
satisfaction. The identification of a relationship within this
envelope provides further justification for the need to bet-
ter understand the psychological impacts on a person during
HRC. This is further reinforced by findings in previous stud-
ies which provide links, direct and indirect, between a robot’s
speed and the person’s workload.

Hypothesis 2 was not supported by the data. The relationship
between proximity setting andworkload being not significant
is not supported by previous studies inworkload [9] and other
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Fig. 8 The changes in the
interaction effect between speed
and experience on workload

social psychological factors [28, 33, 34]. A possible cause for
this was initially thought to be due to the participant’s ability
to move freely in the collaborative workspace leading to the
objective proximity being similar for both settings. This was
demonstrated by analysis of the objective positional data of
the participant’s head whilst both participant and robot were
in the collaborativeworkspace.Whilst the robot was engaged
in avoidance behaviour in the 0.3 m setting, participant’s
heads were on average 0.1 m closer (in the x-direction, see
Fig. 1) to the base of the robot than in the 0.2 m setting.
However, the UR5 TCP only averaged a difference between
the 2 settings of 0.03 m (in the x-direction), which may have
been a result of the TCP reaching the avoidance limit that
was put in place to prevent a joint limit violation. Despite
this, the avoidance algorithm was able to maintain a distance
above the proximity settings for 99.775% of the recorded
data points whilst the robot was in the collaborative work
area.Of note, the average distances for all settings are>0.7m,
suggesting that the participants spendmore time at a distance
greater than the proximity setting, but the difference in head
position as a result of proximity setting implies that theywere
still influenced by it.

The participants moving as a response to the robot would
suggest there would be an increase in workload, such as
in Stark et al., [10] as participants were devoting more
resources tomonitoring the robot than to completing the task.
Therefore, participants may have devoted a similar level of
resources to moving either towards or away from the robot.
This would also agree with findings in [25] and [57] where an
industrial robot arm entering the collaborative area increased
workload. By entering the collaborative area, the distance

was reduced between the robot and participant. This sug-
gests a proximity threshold, where the workload is increased
should the robot exceed a certain point but does not sig-
nificantly change within that area, in a similar way to the
Human-Human boundaries of proxemics [31]. A proximity
threshold may explain not finding a significant interaction
between proximity setting and workload in this study, as the
distance between the proximities was not large enough to
significantly influence the person’sworkload.Another expla-
nation may be supported by the findings in Walters et al.,
[35] where participants reported a higher ‘comfort’ when in
control of the proximity. It may have been the case that the
workload was not significantly different because the partic-
ipants felt they were dictating the proximity more than the
robot, despite objective data showing they adhered to the dif-
ference in proximity. This is supported by the UR5 having
a maximum reach of 0.85m, enabling participants to move
to a perceived safe distance without disengaging from the
task. In the post experiment interview, four participants ver-
bally reported feeling less comfortable when the robot was
closer, and three participants stated they did not notice a dif-
ference in the proximity. As all these participants would have
experienced the same conditions and been maintain the same
distance away from the robot, this highlights the subjectivity
of perceived proximity. Initially the experience of the partic-
ipants was considered, however the reported experience by
these participants was inconsistent with this reasoning. The
findings in this study, along with the findings of previous
studies, suggest that a threshold may exist for the proximity
between the robot TCP and the person which can influence
workload and that after crossing this threshold the workload
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of the person may not increase as long as they are able to dic-
tate the distancewithin that area. This would be an areaworth
investigating in future studies, where workload is evaluated
based on the person being able to control their proximity
whilst completing a task.

Hypothesis 3 and Hypothesis 4, which put forward an influ-
ence on trust by speed and proximity setting, respectively,
were not supported by the data, as trust remained consis-
tently on the higher end of the scale. The high levels of
trust are consistent with the task completion rate, where only
3.43% of the runswere not completed due to an error, none of
which involved a collision. This is reflected in the high per-
ceived performancementioned previously. Of the failed runs,
the majority were a result of the robot overcompensating to
avoid a collision, resulting in a joint limit violation. The high
levels of trust may also be attributed to the relatively small
size and payload of the robot, and the low threat levels of
the objects it was manipulating. This perceived low level of
threat prompted one participant to ask why the PPE provided
was necessary as they did not perceive that the robot could
harm them. A lack of previous studies into direct changes
in trust with robot speed and proximity setting limit conclu-
sions that can be drawn.Aswithworkload, it is possible that a
threshold exists for the interaction between speed, proximity
setting and trust. Future studies could examine the relation-
ship between robot failure with speed and proximity setting,
to determine if participants would experience lower trust in a
faster moving/closer proximity robot after a failed task. The
high trust may also be linked to the control over their posi-
tion and of the release of the pipe by the robot. A future study
where the robot exhibits greater autonomy may also provide
greater insight into the relationship between robot attributes
and trust.

One’s experience with robots was considered a cofound-
ing variable and was, as a result, measured. No significant
difference in workload nor trust was found between the
different levels of experience. The location, whether the par-
ticipants were from the Samlesbury pool or the Cranfield
pool, was added to the mixed model to account for the
higher homogeneity within each group. The lack of signif-
icant relationship may be linked to the results found with
experience. Firstly, despite the Samlesbury participants being
primarily of an aircraft manufacturing background, they had
similar levels of experience with robotics as those from the
University (as expected from general trends in aircraft manu-
facturing highlighted in the literature). Secondly, itwas found
that the participant’s experience did not have a significant
relationship with either workload or trust. A potential cause
for this may be the wording in the survey, which asked for
participant’s experience with a robot but not collaborating
with a robot. Therefore, a participant may have put a few
encounterswith a robot but have not collaboratedwith a robot

to complete a task. The results from this study still provide
useful inferences, especially as the low experience in HRC
reflects an industry wide level in aircraft manufacture. These
low levels of experience also factor into an area of research
which is even more limited in data, the effects of long-term
interaction of HRC in industry. Changes in the interactive
effects between the robot attributes and the person’s psycho-
logical attributes as the person gainsmore experience inHRC
is an area which requires further investigation for successful
implementation of the technology.

5 Conclusions

The main application for this research is in the development
of guidance for improving psychological safety in indus-
trial HRC. This study establishes that there are relationships
between two key robot attributes and psychologicalmeasures
that have been developed in other industrial processes with
increasing automation but are lacking in HRC. As concepts
such as workload and trust have been linked to a person’s
performance, efficiency, and acceptance of automation [8,
17, 33, 58], an improved understanding of the influence of
robot attributes on them is paramount. The changes in work-
load with speed are prevalent as they were significant despite
the small size and low payload of the robot used. This study
provides a basis for that understanding and establishes the
existence of the psychological relationships for a robot act-
ing under safe industrial HRC guidance. Further studies into
the variables discussed would be beneficial to the field, espe-
cially in establishing a proximity setting threshold and further
understanding trust in HRC. These studies would be further
enhanced by developing an understanding of the effects of
long-term interactions with industrial robots during HRC on
a person’s workload and trust, as this has been significantly
lacking in previous studies despite the increased purchases
of collaborative robots.
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