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Abstract
Robots destined to tasks like teaching or caregiving have to build a long-lasting social rapport with their human partners.
This requires, from the robot side, to be capable of assessing whether the partner is trustworthy. To this aim a robot should
be able to assess whether someone is lying or not, while preserving the pleasantness of the social interaction. We present
an approach to promptly detect lies based on the pupil dilation, as intrinsic marker of the lie-associated cognitive load that
can be applied in an ecological human–robot interaction, autonomously led by a robot. We demonstrated the validity of the
approach with an experiment, in which the iCub humanoid robot engages the human partner by playing the role of a magician
in a card game and detects in real-time the partner deceptive behavior. On top of that, we show how the robot can leverage on
the gained knowledge about the deceptive behavior of each human partner, to better detect subsequent lies of that individual.
Also, we explore whether machine learning models could improve lie detection performances for both known individuals
(within-participants) over multiple interaction with the same partner, and with novel partners (between-participant). The
proposed setup, interaction and models enable iCub to understand when its partners are lying, which is a fundamental skill
for evaluating their trustworthiness and hence improving social human–robot interaction.

Keywords Lie detection · Machine learning · Adaptation · Human-robot interaction · Entertainment

1 Introduction

Trust is a fundamental component of social interaction. For
an individual, it is crucial to gain the partners’ trust and, at
the same time, to assess their trustworthiness. One of the
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main elements normally adopted to evaluate whether some-
one should be trusted or not is the veridicality of their claims;
since, the occurrence of lies naturally undermines the trust
given to a partner [1, 2]. Being able to recognize when some-
one is lying to us plays an important role in shaping our trust
toward them and the entire social rapport.

If robots are meant to become autonomous agents active
in our society, they should consider the relevance of mutual
trust with their human partners. Recently, researchers and
social media raised public awareness on how much arti-
ficial intelligence and robots can be trusted [3]. On the
other hand, it will be necessary also for the social robot
to evaluate how much the human partner is trustworthy
and consistently adapt its behavior. Several Human–Robot
Interaction (HRI) studies explored the factors that influence
humans’ trust toward robots. For example, robots’ shape
and performances can affect trust and its development [4–6].
Additionally, robot’s transparency [7, 8], behavior explana-
tion [9] and perceived reliability [10–13] have been shown to
affect trust. To measure trust in human–robot collaboration
different scale metrics have been developed [14–16]. How-
ever, little research has focused on the opposite scenario:
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how a robot should assess human partner’s trustworthiness.
Vinanzi et al. [17] and Patacchiola et al. [18] worked on
a developmental cognitive architecture based on the The-
ory of Mind. Their architecture exploits episodic memory to
feed a Bayesian model of trust, making the iCub and Pep-
per humanoid robots able to decide whether to trust or not
the human partners. Importantly, in these models, trust is
assessed based on whether the human has provided a veridi-
cal or a false indication to the robot, but this information is
not dynamically updated in further interactions. Hence, the
ability to detect lies represents for a robot a crucial skill to
evaluate whether its partner should be trusted. Indeed, detect-
ing lies has been proved to be an effective way to evaluate
partner’s trustworthiness in a social interaction [1]. In the
context of human robot interaction, a robot capable of detect-
ing lies, could use it as a quantitative measure to understand
and predict the human partners’ behaviors.

Lie detection has been well explored in the literature.
De Paulo et al. [19] and Honts et al. [20] showed how
lying can be related to an increment of cognitive load with
respect to truth telling. This cognitive effort is due to the cre-
ation and maintenance of a credible and coherent story [21].
Therefore, traditional methods of lie detection involve the
monitoring of physiological metrics like skin conductance,
respiration rate, heartbeat, or blood pressure, all reflecting
variations of cognitive load and stress. The polygraph, one
of the most used lie detection devices, relies on the afore-
mentioned metrics reaching an accuracy between 81 and
91% [22] (but see [20] about the possibility of bypassing the
measure). Other lie detection methods rely on fMRI images
[23], skin temperature variations [24], micro-expressions
[25], photoplethysmography [26] or acoustic prosody [27].
Most of thesemethods (i) are invasive or require cumbersome
devices, not easily portable to everyday life scenarios; (ii) are
expensive; (iii) or require experts to evaluate the measures.
These characteristics make these approaches not suitable for
porting them to robotic platforms.

Recent findings [28–33] proved how pupillometry mea-
surements [34] and, in particular, Task Evoked Pupillary
Responses (TEPRs) [35], can be used to evaluate the task-
evoked cognitive load. Beatty et al. [35] identified mean
pupil dilation, peak dilation and latency to peak as useful
task-evoked pupillary responses. Dionisio et al. [36] stud-
ied the task-evoked pupil dilation related to lie telling. They
asked students to lie or tell the truth, answering questions
about episodic memory. They reported a significant greater
pupil dilation during lie production with respect to truth
telling. Gonzalez-Billandon et al. [37] and Aroyo et al. [38]
found that participants had a highermean pupil dilationwhen
lying with respect to telling the truth both in human–human
and human–robot interaction. Both, mobile head mounted
[39, 40], and remote eye tracker [41, 42] devices have been
used asminimally invasivemethods tomeasure pupillometric

features, more appropriate for real-world scenarios. Recent
research showed the possibility tomeasureTEPRs fromRGB
cameras, suitable for robotic platforms,making pupillometry
a promising candidate to detect lies in real-life human–robot
interactions [43–46].

Beyond minimizing the invasiveness of the sensors used,
the social robot should perform this evaluationwhile preserv-
ing the pleasantness of the interaction. This is particularly
important for humanoid robots that aim to act as teachers,
caregivers, or just friendly companions. Conversely, state-of-
the-art setups and scenarios for lie detection are long, strict,
and interrogatory-like [26, 27, 37].

In this paper, we propose a method to detect lies in real-
time via pupillometry-driven cognitive load assessment, by
learning how each individual partners’ pupil dilation changes
while lying. From a technical point of view, we show how
specific pupil dilation patters can be related to an increase
in cognitive load due to lying, and how a robot can exploit
them to work out if the human partner is lying. We vali-
date the approach in a quick and entertaining interaction
autonomously led by the iCub humanoid robot. The iCub
asked participants to describe 12 gaming cards and to lie
about a few of them. iCub autonomously processed in real-
time participants’ pupil dilation to detect the deceptive card
description based on our proposed method. During a first
phase of the game (Calibration Phase) participants had to
lie about one predefined card among six. Afterwards, partic-
ipants could freely decide whether to lie or not for each of the
next 6 cards in the game (Testing Phase). In this secondphase,
iCub exploited the knowledge about pupil dilation acquired
in the Calibration phase to detect the player’s lies, without
knowing in advance the number of true or false descriptions.
The robot obtained an average accuracy of 70.8%, during
the game, among the two phases, where the number of lies
was either fixed (1 over 6 cards, Calibration) or it was arbi-
trarily chosen by each participant (Testing). To improve the
robustness of the approach, we designed novel classification
methods to adapt iCub’s knowledge over multiple interac-
tions with the same individual. Last, we propose an attempt
to train a generic machine learning model, able to detect lies
without any previous information about the specific human
partner.

In the following sections we will first describe the exper-
imental procedure and the setup used to run the validation
experiment (Sect. 2), the collected measures (Sect. 3) and
the architecture enabling the robot to conduct the game and
detect lies (Sect. 4). Then, we describe the data prepara-
tion procedures and the datasets built with the collected data
(Sect. 5). Last, we will report the results of the experimen-
tal validation with naïve subjects and the results of machine
learning methods aimed at improving within-subject detec-
tion and lie detection in presence of novel partners (Sect. 6).
Results suggest that with the proposed interaction and lie
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Fig. 1 Card game experimental setup with iCub (left) and the participant (right) sitting on a table. The deployment area is the location where the
remaining Dixit Cards after each drawing were placed. (Color figure online)

detection models iCub could reliably assess when the human
partners were lying.

2 Methods

To prove the effectiveness of our lie detection method, we
performed an HRI experiment. The setup and a subset of the
procedure have been previously described in [47].

Fig. 2 (Left) Participant describing a card to iCub, while wearing the
Tobii Pro Glasses 2 eye tracker (Logitech Brio 4 k webcam point of
view); (Center) Point of view of the participant during the interaction
collected through the Tobii glasses; (Right) Examples of Dixit Journey
gaming cards (authored by Jean-Louis Roubira, designed by Xavier
Collette and published by Libellud). (Color figure online)

2.1 Setup andMaterials

The room was arranged to replicate an informal interaction
scenario between a human and a robot (Fig. 1). The partic-
ipants sat in front of the iCub humanoid robot separated by
a table covered with a black cloth. On the table, the experi-
menter placed: six green marks (95×70 mm); a deck of 84
cards from Dixit Journey card game with the back painted
in blue; a keyboard; and a Tobii Pro Glasses 2 eye-tracker.
On participants’ left there was a little drawer (deployment
area); while on the right, a black curtain hid the experimenter
from participants’ sight. Behind iCub, a 47 inches televi-
sion showed iCub’s speech during the interaction (to prevent
any speech misunderstanding). A Logitech Brio 4k webcam,
fixed on the television, recorded the scene from iCub’s point
of view at a resolution of 1080p (Fig. 1, left).

The Dixit Journey card deck is composed by 84 cards
(80×120 mm) with different toon-styled drawings meant
to stimulate creative thinking [48] (Fig. 2, right). Designing
the card game, we tried to avoid any cue—other than the
wearable eye-tracker—for the participants about the method
used by iCub to detect their false card descriptions; in this
sense,we avoided anymachine-readablemark (i.e.,QRcodes
on cards’ back) that iCub could use to recognize the cards.
The Tobii Pro Glasses 2 eye tracker recorded participants’
pupillometric features at a frequency of 100 Hz and streamed
in real-time the participants’ pupil dilations at a frequency
of 10 Hz (Fig. 2, center). The window blinders were closed,
and the room was lit with artificial light to ensure a stable
light condition for all the participants.

The iCub humanoid robotic platform [49] played the role
of a magician. iCub autonomously led the whole interaction
thanks to the autonomous end-to-end (E2E) architecture in
Fig. 3 (see Sect. 4). The experimenter monitored the scene
through the iCub’s left eye ensuring the safety of the partic-
ipants and the correct execution of the experiment.
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2.2 Procedure

At least a day before the experimental session, the partici-
pants filled in a set of questionnaires meant to assess their
personality (see Sect. 3). After signing the informed con-
sent, the experimenter led the participants to the experimental
room. They were asked to sit on the chair in front of iCub
and informed that the robot would have played a game with
them. Then, the experimenter hid himself behind the black
curtain and started the experiment.

The human–robot interaction was composed of two
phases, Calibration Phase and Testing Phase, both led
autonomously by iCub.

2.2.1 Calibration Phase

As the game started, iCub asked the participants to shuffle
the cards deck, extract six cards without looking at them
and put the deck on the deployment area. Then, iCub asked
them to draw out one of the cards (referred as secret card)
andmemorize it. Afterwards, iCub instructed the participants
to look at all the cards, one by one, shuffle them and put
them facing down on the six green marks on the table. iCub
explained that it was going to point each card one by one
and they had to take the pointed card, look at it, describe it
and then put it back facing down on the table. Then, iCub
explained the game rules: “The trick is this: if the card you
take is your secret card, you should describe it in a deceitful
and creative way. Otherwise, describe just what you see”.
Finally, iCub asked the participants to wear the Tobii Pro
Glasses 2 eye tracker, take a deep breath and relax.

iCub randomly pointed to each of the six cards, while lis-
tening to participants’ description, and acknowledging itwith
a short greeting sentence (e.g., “ok”, “I see”, etc.). After the
last description, iCub guessed the participants’ secret card
and asked them to put the six cards aside to validate the
detection or show to iCub the real secret card to reject it. Par-
ticipants’ confirmation is meant to select the correct secret
card in case iCub fails to detect it. Before the beginning of
the Testing Phase, the experimenter could manually override
the detected secret card with the one presented by the partic-
ipants, in case the robot failed the guess. Finally, iCub asked
them to remove the six cards to start a new game.

2.2.2 Testing Phase

As soon as the participants removed the six cards from the
table, iCub asked to take the deck again and draw out six new
cards. iCub told the participants to look at all the cards, one
by one, then shuffle them and place them on the six green
marks. Afterward, iCub instructed the participants that it was
going to point to all the cards from right to left (with respect
to participants’ point of view) and instructed them to handle

the pointed card as in the first game. However, it added: “This
time you can choose, for each card, whether to describe it in a
creative and deceitful way, or to describe just what you see”.
While the robot was explaining the rules, the participants
kept wearing the Tobii Pro Glasses 2.

For each card, iCub (i) pointed it, (ii) listened to par-
ticipants’ description, (iii) acknowledged it with a short
sentence, (iv) tried to classify the description as truthful or
false and, (v) asked for a confirmation. The participants had
to show the card they just described to reject iCub’s classifi-
cation or do nothing to validate it.

2.2.3 General Remarks

During the rule explanationof the twophases, iCub instructed
the participants to press a button on the keyboard to move to
the next task (i.e., after shuffling the cards deck, or after
memorizing the secret card). No time limit was given to
shuffle the card, to look at them, to memorize the secret card
nor to describe them. iCub’s pointing has been designed to
replicate a human-like gesture: first moving the gaze toward
the target, then the arm, fingers, and torso with a biological
inspired velocity profile.

After the second game, the experimenter led the par-
ticipants to the initial room and asked them to fill in a
questionnairemeant to evaluate their task load and self-report
their performance during the game (see Sect. 3). Finally, the
experimenter deeply debriefed the participants and let them
have the chance to ask questions about the experiment before
receiving their monetary compensation.

2.3 Participants

39 participants (25 females, 14 males), with an average age
of 28 years (SD � 8) and a broad educational background
took part in the experiment. They signed an informed con-
sent form approved by the ethical committee of the Regione
Liguria (Italy) where it was stated that cameras and micro-
phones could record their performance and agreed on the
use of their data for scientific purposes. After the experiment,
they received amonetary compensation of 10e. Although all
participants completed the game, 5 were excluded from fur-
ther analysis: 2 for technical issues, 2 because they did not
follow the rules of the game. The last one was considered
an outlier, as she concluded the game in 38 min (a duration
longer than 3SDplus the average gameduration,which lasted
17min). Hence, the final sample includesN� 34 participants
(22 females, 12 males).
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3 Measurements

3.1 Pre-Questionnaires

Before the experiment, the participants filled in the following
questionnaires: The Big Five personality traits (extroversion,
agreeableness, conscientiousness, neuroticism, openness)
[50]; the Brief Histrionic Personality Disorder (BHPD) [51];
and the Short Dark Triad (SD3, machiavellianism, narcis-
sism, and psychopathy) [52].

3.2 Post-Questionnaires

After the experiment, the participants filled in the NASA-
TLX [53] and a set of questions regarding: (i) the experienced
fun, (ii) creative effort, (iii) strategies adopted in fabricating
a deceitful and creative description during the game, (iv)
previous experience about the Dixit Journey card game, (v)
previous experience about improvisation and acting, and, (vi)
habits on playing deception-related games.

3.3 GazeMeasurements

From the full set of pupillometric features measured by the
Tobii Pro Glasses 2 eye tracker, we collected and used only
the pupil dilation, in millimeters, for right and left eyes. To
avoid any impact on the informality of the social interaction,
we avoided the eye tracker calibration phase; indeed, the
calibration does not affect the pupil dilation measurement
[54]. Pupil dilation data points are synchronized over the
YARP robotic platform with the annotation events.

Fig. 3 Autonomous end-to-end architecture used in real-time to make
iCub able to lead the card game. (Color figure online)

Fig. 4 Mean pupil dilation during Calibration Phase (left) and Testing
Phase (right) for participant A. Green circles are truthful card descrip-
tion; red squares are false ones. Bars represent standard errors. (Color
figure online)

4 Robot Architecture

iCub autonomously leads the human–robot interaction
thanks to the end-to-end architecture in Fig. 3. An initial
version of the architecture, designed to handle the Calibra-
tion Phase only, is described in [47]. With the Turn Detector
iCub detects the beginning and end of each card description
by tracking the number of green (marks) and blue (cards)
blobs visible in the scene. This is also used to understand
participants’ confirmations. The Tobii Streamer reads partic-
ipants’ pupillometric features from the Tobii Pro Glasses 2
eye-tracker and streams and logs them in real-time over the
YARP robotic platform [55]. The Game Controller imple-
ments themaingameengine: (i) it controls iCub’smovements
and speech; and (ii) it segments the start and end of each
pointing, card description and phases, logging annotation
events. The logged annotation events and pupil data points
are synchronized over the YARP robotic platform [55], pro-
viding an autonomous annotation for future analysis.

Finally, the Secret Card Detector and the Card Clas-
sifier enable iCub to identify participants’ lies during the
game. iCub detects (Calibration Phase) and classifies (Test-
ing Phase) players’ lies thanks to a specific Task Evoked
Pupillary Response: the fabrication of a credible and consis-
tent deceptive card description triggers an increase in players’
cognitive load [56, 57]; this increment reflects on a higher
pupil dilation with respect to a truthful card description [19,
21, 58]. iCub aggregates participants’ eye pupil dilation data
points, computing the mean pupil dilation during each card
description and use them to detect players’ lies. We focused
on right eye’s pupil dilation since both Tobii documentation
[54] and previous results indicate that pupil dilation is not
different between right and left eye [37]. The components
implement two heuristic methods:
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Fig. 5 Computational workflow to preprocess the collected data from
Tobii Pro Glasses 2 eye-tracker. Two datasets are extracted. The differ-
ence depends on the applied baseline correction (single or per-card)

Calibration Heuristic (Fig. 4, left) During the Calibration
Phase, iCub detects as secret card the one related to the
highest mean pupil dilation among the six card descriptions.
This approach has been described in [47].

Testing Heuristic (Fig. 4, right) At the end of the Calibra-
tion Phase, iCub knows 6 mean pupil dilation data points:
1 related to the secret card, and 5 related to truthful cards.
With them, it computes two reference scores: the true ref-
erence score is the average of the 5 mean pupil dilations of
truthful cards; the false reference score is just the secret card
mean pupil dilation. For each Testing Phase card description,
the mean pupil dilation was computed and compared to the
two reference scores. By taking the minimum absolute dif-
ference iCub could label the current description as fake or as
true.

5 Data Preparation

From the pupil dilation data points collected in real-time we
built two datasets following the computational workflow in
Fig. 5.

5.1 Card Segmentation (Fig. 5, Top)

The card trial annotation is autonomously performed by the
Game Controller (Fig. 4) by rising annotation events on the
YARP robotic platform for the beginning and end of each
pointing and card description. We segmented the pupil dila-
tion time series into 3 temporal intervals for each card trial: (i)
robot’s turn: iCub’s pointing gesture, from the moment iCub
starts the pointing gesture till the participant takes the pointed
card from the green mark; (ii) player’s turn: a card descrip-
tion, from the moment the participant takes the card from
the green mark, till they put it back on it; (iii) card trial: the
whole interaction for a single card, from the moment iCub
starts the pointing gesture till the participant puts the card
back on the green mark.

5.2 Data Preprocessing (Fig. 5, Center)

We fitted and resampled the time series at 10 Hz to make
it consistent with the real-time processing, then applied a
median filter to remove the outliers and a rolling window
mean filter to smooth the time series and infer any even-
tual missing data points. We then corrected each time series
subtracting a baseline value for each participant [59]. In this
reference system, a positive value represents a dilation, while
a negative value represents a contraction with respect to the
baseline. We corrected the time series with respect to two
different baselines: (i) In the Single Baseline Correction, the
baseline is computed as the average pupil dilation during the
5 seconds before the first pointing of the Calibration Phase
and applied to all the cards of both phases; (ii) in thePer-card
Baseline Correction, a specific baseline is computed for each
card as the average pupil dilation during the 5 seconds before
each pointing.

5.3 Feature Extraction (Fig. 5, Bottom)

Finally, we aggregated the time series of each temporal inter-
val, and computed several features. For each player’s turn,
robot’s turn, and card trial we computed the maximum,
minimum, mean and standard deviation of the pupil dila-
tion in millimeters, and the duration in seconds. Moreover,
on the whole card trial we computed a set of 26 specific
time series features using the python module Time Series
Feature Extraction Library (TSFEL) [60]. In particular, the
TSFEL features are: (i) Statistical Features: median, median
absolute deviation, mean absolute deviation, kurtosis, skew-
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ness and variance; (ii) Temporal Features: absolute energy,
area under the curve, autocorrelation, centroid, entropy,
mean absolute difference, mean difference, median abso-
lute difference, median difference, peak to peak distance,
slope, total energy; (iii) Spectral Features: fundamental fre-
quency, maximum frequency, median frequency, spectral
centroid, spectral entropy, spectral kurtosis, spectral skew-
ness, spectral slope.We considered the features for both eyes
as separate data points to augment the datasets and hence
included a feature to discriminate from the right and left eye.
The resulting feature set is composed of 42 features; based
on them, we defined two different datasets:

5.3.1 Single Baseline Dataset

This dataset includes the data points of both phases, replicat-
ing the data structure used in real-time. It is meant to explore
an incremental learning over multiple interactions with the
same individual.

5.3.2 Per-card Baseline Dataset

This dataset, instead, includes only data from the Testing
Phase; it is meant to train a generic machine learning model,
independent from the specific interacting partner.

Shapiro–Wilk and D’Agostino K-squared normality tests
showed that some of the features of the datasets were not nor-
mally distributed. Therefore, we opted to use non-parametric
tests for all the following statistical analyses. Additionally,
we decided to focus on data points from participants’ right
eye (unless otherwise specified), since there is no difference
between right and left eye pupillary features [54].

6 Results

In this section we report the in-game and questionnaires
results, along with the post-hoc analysis on the collected
pupillometric data. In the post-hoc analysis, we mainly focus
on the learning from theCalibration to the Testing Phase and
on the second phase per-se; for a deeper analysis of the Cal-
ibration Phase see [47].

6.1 In-Game Results

The interaction lasted on average 17 min (SD � 5) from the
beginning of iCub explaining the Calibration Phase’s rules
till the final greeting of the Testing Phase.

The Calibration Phase lasted on average 8 min (SD � 3),
during which, iCub successfully detected the players’ secret
card with an accuracy of 88.2% (against a chance level of
16.6%, N � 34). The Testing Phase lasted on average 8 min
(SD � 2). The participants were free to choose whether to

Table 1 Participants’ psychological profile from pre-questionnaires

Score % Participants’ psychological profile

Big 5 {C, A, N, O, E} Dark Triad {M, N, P} Histrionic

0–20 {0, 0, 2, 0, 0} {2, 6, 15} 6

20–40 {5, 1, 17, 4, 3} {8, 4, 13} 4

40–60 {22, 6, 6, 24, 23} {18, 11, 1} 11

60–80 {2, 21, 3, 1, 1} {0, 4, 0} 4

80–100 {0, 1, 1, 0, 0} {1, 4, 0} 4

Big 5 (Conscientiousness, Agreeableness, Neuroticism, Openness to
experience, Extraversion); Dark triad (Machiavellianism, Narcissism,
Psychopathy); and Histrionic—higher score means higher effect. In
brackets the number of participants per each percentage range

lie or not, producing on average 2.73 (SD � 0.94, 45%)
false descriptions among6cards. ICub successfully classified
each card description as true or false with accuracy� 70.8%,
precision � 73.6%, recall � 57% and F1 score � 64.2% (N
� 34).

Considering the questionnaires, Table 1 summarizes the
results of the Big Five personality traits [50], Brief Histri-
onic Personality Disorder [51] and Short Dark Triad [52]
questionnaires, performed before the experiment. Average
scores for the Big Five were Agreeableness: M � 0.659, SD
� 0.113; Conscientiousness: M � 0.481, SD � 0.072; Neu-
roticism: M � 0.387, SD � 0.16; Openness to experiences:
M � 0.476, SD � 0.07 and Extraversion: M � 0.486, SD
� 0.061. Considering the Dark Triad, the scores were Psy-
chopathy: M � 0.191, SD � 0.113; Machiavellianism: M �
0.438, SD � 0.129 and Narcissism: M � 0.396, SD � 0.15.
For the Brief Histrionic Personality Disorder, the average
score was M � 0.481, SD � 0.26.

After the experiment, participants filled in theNASA-TLX
questionnaire, rating on a 10-points Likert scale their effort
on performing the task. On average, they reported a low task
load (M � 3.717, SD � 1.041). Among the components,
Mental Effort (M � 5.41, SD � 1.78), Fatigue (M � 5.07,
SD � 2.14) and Performance (M � 5.35, SD � 2.32) are
slightly higher than Temporal Effort (M� 2.59, SD� 1.72),
Frustration (M � 2.72, SD � 1.83) and Physical Effort (M
� 1.21, SD� 0.49). This is consistent with the requirements
of the task. Also, we asked participants to self-report, on a
5-points Likert scale the effort put on fabricating creative and
deceptive descriptions (Lie Effort:M� 4.17, SD� 0.71) and
the experienced fun (Fun: M � 4.59, SD � 0.57).

Then, we explored whether pupil dilation features were
dependent on participants’ personality traits. We considered
theTesting Phase data from thePer-card Baseline Dataset, to
minimize the impact of card presentation order on pupil fea-
tures, normalizing each card for its own baseline. We fit two
linear regression models with the personality traits from the
pre-questionnaire as independent variables and, as dependent
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Fig. 6 Average of mean pupil dilation during player’s turn for Calibra-
tion and Testing Phases, with standard errors of the mean. (*� p <0.05,
** � p <0.001). (Color figure online)

variables the difference betweenmean pupil dilation for false
and true cards or the mean pupil dilation baseline. Results
show that only Neuroticism correlates significantly with the
mean pupil dilation baseline (t� 2.492, p� 0.021, Adj. R2 �
0.115). We also tested whether pupil features correlated with
the average description duration, Fun, Lie Effort, task load or
Mental Effort, but we did not find any significant correlation.

6.2 Learning from a Brief Interaction

To investigate in more detail the relationship between pupil
dilation and lying observed during the game, we started ana-
lyzing the Single Baseline Dataset which resembles the data
structure used in real-time.

The Single Baseline Dataset presents a multilevel struc-
ture (multiple phases for the same participant, nested in card
trials, nested in turns) with unbalanced card classes (one
secret card among six—about 16.6%—in the Calibration
Phase and on average 45% of false cards in the Testing
Phase). Since the real-time game was based on participants’
mean pupil dilation during the player’s turn, we decided to
focus on such temporal intervals.

We fitted a mixed effects model for the player turns with
mean pupil dilation as the outcome variable. As fixed effects
we entered “card label” (two levels: true, false), “phase”
(two levels: calibration, testing) and their interaction into the
model. As random effect we had intercept for participants.
We set the reference level on the Testing Phase and false card
label. Results show a highly significant effect of card label (B
� −0.223, t � −8.885, p <0.0001) revealing a higher mean
pupil dilation for the false card descriptions with respect to
the truthful ones. We also found a significant effect of phase
(B � 0.104, t � 2.428, p � 0.016), with a significantly lower
mean pupil dilation in the Testing Phase, and no significance

of the interaction between the two factors (B � −0.052, t �
−1.023, p � 0.307) (Fig. 6).

As an exploratory analysis, we fit another mixed effects
model on the robot’s turn, with the same abovementioned
structure. Results show no effect on the card label (B � −
0.035, t� −1.373, p � 0.171), but a highly significant effect
on the phase (B � 0.124, t � 3.490, p � 0.0005) confirming
a lower mean pupil dilation in the Testing Phase with respect
to the Calibration one also for this turn. Finally, we found no
effect of the interaction of card label and phase factors (B �
−0.014, t � −0.331, p � 0.741).

6.2.1 Incremental Testing Heuristic

Even if theTesting Heuristic demonstrated a quite good accu-
racy—humans performnear chance on detecting lies [61]—it
has a low recall score (recall � 57%, accuracy � 70.8%,
precision � 73.6%, N � 34), that is it recognizes only a rel-
atively low proportion of the false statements made by the
participants.

Figure 7 provides two examples of correct (left graph) and
wrong (right graph) classifications. The two panels show the
mean pupil dilations of participant A (left graph) and partici-
pant B (right graph) as processed by the Testing Heuristic. In
each graph, the two data points on the left represent the two
reference scores: the red square is the mean pupil dilation for
the secret card, while the green circle is the average of the
mean pupil dilations for the truthful cards. On the right there
are the mean pupil dilation data points for each card of the
Testing Phase. For participant A, pupil dilations for false and
true descriptions remain consistent with the average values
measured during the previous phase and the classification is
always successful. Conversely, all the Testing Phase mean
pupil dilations of participant B (right graph) fall in the range
of the true reference score. Hence all the false card descrip-
tions have been misclassified as false positives (red circles).

The observed errors are determined by two assumption
on which the heuristic is based: (i) the difference in pupil
dilation between false and true sentences remains almost the
same between the two phases; and (ii) participants’ pupil
dilation remains almost stable between the two phases. The
first assumption is confirmed by the non-significant differ-
ence in the interaction of “phase” and “card labels” in both
turns. However, the statistical analysis showed that partici-
pants’ pupil dilation is on average lower during the Testing
Phase.

To compensate for this effect and increase the robustness
of the heuristic, we explored the possibility to incrementally
adapt the reference scores for truthful and false card descrip-
tion. After each card classification, the new card value is
aggregated with the reference scores. This way iCub incre-
mentally learns how the human partner lies and tells the truth,
improving the classification performances trial by trial. We
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Fig. 7 (Left) Mean pupil dilation data points as seen by the Testing Heuristic for participant A (left) and B (right). Color represents the real class
(green � true, red � false); shape represents the predicted class (circle � true, square � false); bars represent standard deviation. (Color fiure
online)

simulated the Testing Heuristic based on mean pupil dilation
during the player’s turn, as in the real-time game, but includ-
ing the incremental learning. For each Testing Phase card
trial, both the reference scores are updated computing the
mean between each score and the novel mean pupil dilation
data point. The heuristic performance increases to accuracy
� 76.7%, precision � 76.1%, recall � 73.7% and F1 score
� 75.6%.

Then, we simulated the Testing Heuristic performing a
grid search on several parameters: (i) all the possible com-
binations of the available features (limited to a maximum of
3 features considered at the same time, see Sect. 5.3 for the
full list); (ii) methods to compute the true reference score
(mean, median, minimum); (iii) methods to update the refer-
ence scores (mean, difference, quadratic error); (iv) whether
to update both scores or just the one of the correct class; (v)
whether to update the reference scores only if the card trial
is misclassified. Since we assume that for a lie detection sys-
tem it is preferable to detect a greater amount of true negative
(i.e., spot a larger amount of lies) even at the expenses of hav-
ing a few false positives, we prioritized the recall score. The
best heuristic has an accuracy � 78.7%, precision � 76%,
recall � 80% and F1 score � 77.9%. It is based on both
the mean and minimum pupil dilation during player’s turn,
which are compared by a 2D Euclidean distance with the
reference scores; the true reference score is computed as the
minimum among mean pupil dilations for the truthful cards
descriptions during theCalibration Phase; both the reference
scores are updated in any case, averaging each score with the
new value.

6.2.2 Random Forest Classifier

Even if the new heuristic method performs better than the
one exploited in real-time, it is still not generic and robust
enough to describe the variability of participants’ pupil dila-
tion between the two phases. Indeed, the Testing Heuristic is
meant to adapt to each specific individual. We supposed that,
by relaxing this constraint, it would be possible to compen-
sate for the variability between the two phases. We trained
a machine learning model able to learn from the Calibra-
tion Phase on the whole participants sample, and to exploit
the gained knowledge on the Testing Phase. The classifica-
tion problem is a binary classification defined by a couple
[X, Y] where: X (42×1) is the vector of input features and
Y∈ [0: true; 1: false] is the vector of desired outputs. We
included all the features from player’s turn, robot’s turn, and
the whole card trial intervals, along with the TSFEL features
on the latter one (for an exhaustive list of the features see Sec
5.3). We defined a within-participant split, considering the
Calibration Phase data as training set and the Testing Phase
data as validation and test (with a splitting ratio of 50:50).
Calibration Phase data points have two main issues: (i) they
are unbalanced (1 secret card among 6 cards); and (ii) the
set is relatively small (6 cards, for 34 participants, 2 eyes
for participants, for a total of 408 data points). We consid-
ered features from both eyes to augment the dataset. Due to
these limitations we selected a Random Forests algorithm
[62]. This kind of model should not overfit when increas-
ing the number of trees, even with relatively small datasets.
Also, we tackled the unbalancing problem by oversampling
theCalibration Phase data points with the synthetic minority
oversampling technique (SMOTE) [63].We did not oversam-
ple the Testing Phase data points validating and testing on
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realistic data. Even if not strictly required by the Random
Forest algorithm, we applied a min max normalization [64]
to all the features within the data points of each participant
in both phases. The idea is that a value that is relevant for a
participant could be not relevant for another. We performed a
grid search validation, with fixed validation set, searching the
best hyper-parameters and feature set for the random forest
classifier. Due to the unbalanced dataset, we rely on the F1
score, precision, recall and AUROC score. The best random
forest classifier trained on the full features set achieved an
F1 score of 56.5%, a precision of 57.1%, a recall of55.9%
and AUCROC score of 59.6%.

6.2.3 Lying as an anomaly: One-Class Support Vector
Machine

Given the low performance of the random forest classifier
we changed approach and we considered the lie detection
task as an anomaly detection problem. In this frame, the
model knows just the values associated to true descriptions
and learns to consider as a lie what is not truthful. We trained
a one-class support vector machine (SVM) anomaly detector
on the Calibration Phase data points, validating and test-
ing it on the Testing Phase data points. We considered as
training set the truthful card description of the Calibration
Phase and we carefully balanced Testing Phase data points,
preserving the ratio between true and false card descriptions
in the validation and test sets. We performed a grid search
validation, with fixed validation set, searching the best hyper-
parameters and feature set for the one-class SVMmodel. Due
to the nature of the anomaly detection problem, we evaluate
it based on precision, recall and F1 score. The best one-class
SVM model achieved a F1 score of 67.7%, a precision of
60% and a recall of 77.8%. It is based on features from both
the player’s turn (minimum, maximum and mean pupil dila-
tion); and the whole card trial (minimum, maximum, mean,
and median pupil dilation; total energy, absolute energy, and
autocorrelation).

6.3 Detecting Lies fromNovel Human Partners

After having analyzed how previous knowledge gained dur-
ing an interaction, can be used to improve lie detection in
a subsequent task, we explored the possibility of building a
pupil-dilation based lie detector able to classify false card
descriptions from novel human partners. This could be the
first step toward a minimally invasive and ecological lie
detector able to classify a generic sentence as true or false,
without any previous interaction with the specific partner. In
this sense, it is important to consider the card descriptions as
independent as possible from the specific participant and the
description order. Hence, we focused on the Per-card Base-
line Dataset which includes only Testing Phase data points.

Fig. 8 Average of mean pupil dilation during robot’s and player’s turns
in the Testing Phase, with standard deviation. (** � p <0.001). (Color
figure online)

In thePer-card Baseline Dataset, the baseline is computed as
the average of the pupil dilation, for each eye separately, dur-
ing the 5 s before each card trial. This baseline is subtracted
to the pupil dilation time series of the relative card descrip-
tion (see Sect. 5.2). We considered only the data from the
Testing Phase since the nature of the task—“This time, you
can choose, for each card, if describe it in a deceitful and
creative way, or describe what you see” makes each card
description more similar to a generic and standalone lie.

First, we analyzed whether the use of a Per-card base-
line determined substantial differences with respect to the
descriptive and statistical analysis conducted with the single
baseline. We fitted a mixed effects model with mean pupil
dilation as the outcome variable. We considered “card label”
(two levels: true, false) and “turn” (two levels: robot, player)
and their interaction as fixed factors, and we had as ran-
dom effect the intercept for participants. We set the reference
level on the player’s turn and false card label. Results show a
highly significant effect on the card label (B� −0.234, t� −
6.58, p <0.001), the turn (B� −0.321, t� −6.39, p <0.001)
and their interaction (B � 0.255, t � 5.205, p <0.001). This
pattern of results (Fig. 8) is similar to that observed for the
Testing phase in the analysis with the “same” baseline (cf.
Fig. 6).

We also analyzed whether the other features differed sig-
nificantly between the true and false card descriptions. We
computed the average of each feature for true and false cards
and performed Wilcoxon signed-rank tests. Results show
that also the minimum pupil dilation (Z � 570.0, p <0.001)
and the maximum pupil dilation (Z � 530.0, p <0.001) dur-
ing player’s turn were significantly different. Regarding the
whole card trial, the mean pupil dilation (Z � 555.0, p
<0.001), the median pupil dilation (Z � 561.0, p <0.001),
the minimum pupil dilation (Z � 542.0, p <0.001), the max-

123



International Journal of Social Robotics (2023) 15:583–598 593

imum pupil dilation (Z � 500.0, p <0.001) and the slope (Z
� 550.0, p <0.001) were significantly different. Also, the
total energy (Z � 477.0, p � 0.001), the absolute energy (Z
� 457.0, p � 0.003), the autocorrelation (Z � 458.0, p �
0.003), and the area under the curve (Z � 442.0, p � 0.007)
on the whole card trial were significantly different. Finally,
we found no significance on robot’s turn features.

6.3.1 Random Forest Classifier

To design a lie detector that could classify a card description
as true or false with no prior knowledge of the partici-
pants, we started from the statistical findings: we selected
a subset of the available features, excluding the five features
(max, min, mean, standard deviation of the pupil dilation
and duration) related to the robot’s turn. The classification
problem is a binary classification defined by a couple [X,
Y] where: X (37×1) is the vector of input features and
Y∈ [0: true; 1: false] is the vector of desired outputs. Con-
sidering data points from both participants’ eyes, we split
Testing Phase data between-participants. We considered 25
randomly selected participants (75%) as training and valida-
tion set and the remaining as test set. We did not apply any
within-participant normalization of the features. We ran a 4-
fold grid search cross validation looking for the best values of
the hyper-parameters for the classifier. Even if Testing Phase
data points are more balanced (47% of false card descrip-
tion, against 16.6% during the Calibration Phase), we still
embedded the SMOTE algorithm [63] in the cross valida-
tion. This way it is possible to oversample just the training
set, avoiding any synthetized sample in the validation set.
The best model achieves a precision, recall and F1 score of
71.1% and AUCROC score of 73.3%.

7 Discussion

In this study we endowed iCub with the capability to detect
lies in the context of a natural game-like interaction, using
pupil responses to detect cognitive load associated to lying.
Games are known to provide ecological assessments, pre-
serving the relationship between the interacting partners [6,
65–67].Also in the context ofHRI, games have been success-
fully exploited to perform diverse types of measurements,
even related to cognitive load assessment [40, 68–70]. In the
current work, the game is a perfect scenario to demonstrate
that our lie detection method based on a heuristic function is
quick, interactive and does not depend on invasive measures.
The game results also provide evidence of the feasibility of
our approach, with an overall accuracy of 70.8% (F1 score of
64.2%) during the Testing Phase, when basing the lie detec-
tion on mean pupil dilation alone. We also show that such
accuracy can increase up to 78.7% (F1 score of 77.9%) by

enabling an iterative adaptation to each individual partner
and by leveraging on a combination of different pupil-related
features. The effect on which the lie detection heuristic was
based, i.e., the difference in pupil dilation during false or true
card descriptions, was relatively robust and did not depend
on participants’ personality traits, nor on the characteristics
of the game (e.g., the experienced fun or the description dura-
tion),

Moreover, we explored the possibility to extend the lie
detection (i) over multiple interactions with the same indi-
vidual and (ii) with novel partners. First, we trained a random
forest classifier splitting within-subject over the two phases.
However, the model did not perform better than the heuristic
(F1 score� 56.5%).We assume that this depends on the uni-
modality of the features, the small number of data points and
the strong reliance on synthesized data on the training set.
We expect that a machine learning model trained on more
real data would be more robust and generic with respect to
a real-world human–robot interaction. We tried to overcome
these issues by tackling the problem as an anomaly detec-
tion: we trained a one-class SVM anomaly detector on the
truthful examples of the Calibration Phase and tested on the
wholeTesting Phase (F1 score�67.7%).Needing only truth-
ful examples makes the models independent from collecting
lying examples. This could facilitate the learning, consider-
ing, for instance, a humanoid robot that wants to improve the
lie detectionmodel online in a supervisedway. Finally, think-
ing about a generic lie detection system, we trained a random
forest classifier (F1 score � 71.7%) between-subject to clas-
sify false card descriptions from novel individuals. The main
difference between the heuristic methods and the machine
learning models is in that, the heuristics’ knowledge is lim-
ited to a single individual.Hence, even if themachinemodels’
performances are worse than the heuristic methods’ ones, the
formers should be more robust against unexpected behaviors
from the participants. Additionally, they offer features that
ease their portability on a real-world human–robot interac-
tion i.e., the need of truthful examples only for the one-class
SVM model or the ability to classify lies without any pre-
vious interaction for the last random forest classifier. Even
if both the heuristic and the models can detect human part-
ners’ lies online, they both evaluate partners’ behavior after
their turn. This is acceptable in an informal human–robot
interaction, but it could be an issue for future applications
like interrogatories or security checks (i.e. at airports). In the
future, it will be necessary to consider the temporal evolu-
tion of the pupil dilation timeseries during the interaction; for
instance, by segmenting players’ turn into smaller windows
and applying machine learning models (i.e., LSTM) which
consider windows’ temporal evolution [71–73]. Moreover, it
will be necessary to train such models on a bigger dataset,
involving both a higher number of individuals and longer
interactionswith each of them.The proposedmodels are light
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and independent from any network connections; this makes
them suitable to be implemented with extreme simplicity
in the context of HRI and avoiding untreatable computation
demand. The other advantage of the presented contribution is
that the robot can autonomously address all the stages of the
interaction keeping the human partner engaged and assessing
deceptive behavior in real-time. At the current development
stage, the only potential intervention is required if the robot
fails to detect the secret card at the end of the Calibra-
tion Phase. However, also this intervention could be made
autonomously by the robot: after iCub’s detection, the partic-
ipants have to show the correct secret card in order to reject
it; iCub could detect the correct card position, thanks to the
HSV (Hue, Saturation, Value) color threshold of cards and
marks, and hence self-learn the correct false reference score.

The current implementation relies on the players’ pupil
dilation measured with a head mounted eye-tracker, such as
the Tobii Pro Glasses 2. This device tends to be dependent on
the environmental light condition and could impact the natu-
ralness of the human–robot interaction. We tried to limit the
latter factor by removing the calibration step (not needed to
measure participants’ pupil dilation). However, skipping the
calibration, we could not use the other features from the eye-
tracker (e.g., gaze orientation). The ideal solution would be
to measure a full set of pupillometric features from the RGB
cameras embedded on the robotic platform. Recent findings
suggest that this approach could be feasible [43–46, 74];
hence, we look forward to removing this limitation, mak-
ing the system completely non-intrusive. Other than due to
cognitive load changes, pupil dilation tends to be affected by
other factors like excitement, stress, and environmental light
conditions. Looking toward a real-world application, itwould
be necessary to compensate for pupil dilation limitations. For
instance, a multimodal solution adding both the audio and
video of the scene could help the robot understanding the
context of the interaction and explain unexpected pupillary
responses of the human partner.

The analysis of pupil dilation revealed that 38% of the par-
ticipants (N � 13 out of 34) presented a lower pupil dilation,
during the second phase with respect to the first one. We
speculate that this is associated to a reduction in cognitive
load and that this effect depends on several factors that con-
tribute tomaking theTesting Phase less stressful. First, in this
phase participants do not need to remember the secret card
and can freely choose how to play the game. As a result, there
is no need to prepare in advance the deceptive and creative
card description. Moreover, participants are also more used
to play the game, even if there are small differences, and they
are more aware of their role and iCub’s behavior and capa-
bilities. Additionally, iCub provides a feedback after each
card description, eliminating the need to wait for the phase
completion to know if the lie had been discovered or not. All
these factors could have contributed to decrease of partici-

pants’ cognitive load. However overall, the interaction has
been judged as entertaining and not too cognitively demand-
ing in the questionnaires, suggesting that also theCalibration
phase was not too challenging for the participants.

We designed the human–robot interaction to validate our
lie detection method in an informal interactive scenario.
Since the game is based on 84 different cards, with complex
and diverse drawings, we speculate that the results we obtain
cannot be explained by artifacts on pupil dilation based on
the nature of the cards (e.g., different colors, or emotions in
the cards’ pictures). Hence, we think our approach is modu-
lar and generic enough to be ported to different application
fields. For instance, in an elderly caregiving scenario, the
cards could be pills bottles a patient has to take; the robot
could ask the patient if he took the medication, detecting a
lie from the patient. Also, the modularity of the end-to-end
architecture makes it easy to replace iCub with other robotic
platforms, developing a consistent way to present the items
based on the application context.

By detecting lies a humanoid robot could evaluatewhether
the interacting partner is trustworthy or not. Furthermore, the
robot could adapt its social behavior over multiple interac-
tions based on this evaluation. However, the system is not
perfectly accurate; hence, how the robot should perform
its judgment and adaptation should be carefully managed
to minimize the impact on the partners’ trust toward the
humanoid. For instance, in the abovementioned elderly care-
giving case, if a caregiver robot detected patient’s lies several
times it might need to report the patient’s behavior to the doc-
tor along with its confidence about the performed measure,
rather than accusing the patient to be a liar. In the future, it
would be necessary to explore the impact of a misclassifica-
tion of both truthful and false sentences, on the interacting
partners, along with the effect on their trust toward the robot.

Besides the practical applications of detecting lies to
assess trustworthiness, the proposed setup, interaction, and
methods are based on measuring the task-evoked cognitive
load related to creativity. The evaluation is performed in
real-time, providing entertainment [47]. This is novel with
respect to the long, strictly controlled, and tedious cognitive-
load measurement tasks from the literature [37, 38, 41]. For
instance, the system could be used to assess creative thinking
abilities, before and after a creativity training session [75].
Also, one could use the system to monitor patients’ cognitive
load during a training task in order to provide a correct sup-
port [76], adapt task difficulty [70], evaluate their progress
[77] or schedule proper resting sessions [78].

8 Conclusion

In the current manuscript we proposed novel methods to
enable robots to detect whether the human partner is lying
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in a quick and entertaining interaction. We have shown that
the detection works and that it is possible to improve it if the
model can adapt to each partner during the interaction (F1
score� 78%). The approach, however, could still succeed in
a first encounter with a new participant (F1 score � 71%).
The ability to autonomously detect lies could be relevant for
robots as a basis to build a model of its human partners’
trustworthiness. The naturalness of the approach proposed
here would allow to do so without impacting on the sociality
of the human–robot interaction. Mutual trust is important to
ensure healthy and stable social interactions and this should
hold also for HRI. Hence, we believe that novel methods to
understand human deceptive behavior will be more andmore
important in pursuing effective human–robot cooperation.
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